1
0
Fork 0

Pull cpuidle into test branch

hifive-unleashed-5.1
Len Brown 2007-10-10 00:32:13 -04:00
commit de85871a9a
23 changed files with 1901 additions and 109 deletions

View File

@ -1069,6 +1069,8 @@ endif # APM
source "arch/i386/kernel/cpu/cpufreq/Kconfig"
source "drivers/cpuidle/Kconfig"
endmenu
menu "Bus options (PCI, PCMCIA, EISA, MCA, ISA)"

View File

@ -706,6 +706,8 @@ source "drivers/acpi/Kconfig"
source "arch/x86_64/kernel/cpufreq/Kconfig"
source "drivers/cpuidle/Kconfig"
endmenu
menu "Bus options (PCI etc.)"

View File

@ -76,6 +76,7 @@ obj-$(CONFIG_MCA) += mca/
obj-$(CONFIG_EISA) += eisa/
obj-$(CONFIG_LGUEST_GUEST) += lguest/
obj-$(CONFIG_CPU_FREQ) += cpufreq/
obj-$(CONFIG_CPU_IDLE) += cpuidle/
obj-$(CONFIG_MMC) += mmc/
obj-$(CONFIG_NEW_LEDS) += leds/
obj-$(CONFIG_INFINIBAND) += infiniband/

View File

@ -1042,14 +1042,6 @@ static int __init acpi_wake_gpes_always_on_setup(char *str)
__setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
/*
* max_cstate is defined in the base kernel so modules can
* change it w/o depending on the state of the processor module.
*/
unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
EXPORT_SYMBOL(max_cstate);
/*
* Acquire a spinlock.
*

View File

@ -44,6 +44,7 @@
#include <linux/seq_file.h>
#include <linux/dmi.h>
#include <linux/moduleparam.h>
#include <linux/cpuidle.h>
#include <asm/io.h>
#include <asm/system.h>
@ -1049,11 +1050,13 @@ static int __init acpi_processor_init(void)
return -ENOMEM;
acpi_processor_dir->owner = THIS_MODULE;
result = cpuidle_register_driver(&acpi_idle_driver);
if (result < 0)
goto out_proc;
result = acpi_bus_register_driver(&acpi_processor_driver);
if (result < 0) {
remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
return result;
}
if (result < 0)
goto out_cpuidle;
acpi_processor_install_hotplug_notify();
@ -1062,11 +1065,18 @@ static int __init acpi_processor_init(void)
acpi_processor_ppc_init();
return 0;
out_cpuidle:
cpuidle_unregister_driver(&acpi_idle_driver);
out_proc:
remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
return result;
}
static void __exit acpi_processor_exit(void)
{
acpi_processor_ppc_exit();
acpi_thermal_cpufreq_exit();
@ -1075,6 +1085,8 @@ static void __exit acpi_processor_exit(void)
acpi_bus_unregister_driver(&acpi_processor_driver);
cpuidle_unregister_driver(&acpi_idle_driver);
remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
return;

View File

@ -40,6 +40,7 @@
#include <linux/sched.h> /* need_resched() */
#include <linux/latency.h>
#include <linux/clockchips.h>
#include <linux/cpuidle.h>
/*
* Include the apic definitions for x86 to have the APIC timer related defines
@ -64,14 +65,22 @@ ACPI_MODULE_NAME("processor_idle");
#define ACPI_PROCESSOR_FILE_POWER "power"
#define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
#define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
#ifndef CONFIG_CPU_IDLE
#define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
#define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
static void (*pm_idle_save) (void) __read_mostly;
module_param(max_cstate, uint, 0644);
#else
#define C2_OVERHEAD 1 /* 1us */
#define C3_OVERHEAD 1 /* 1us */
#endif
#define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
module_param(max_cstate, uint, 0000);
static unsigned int nocst __read_mostly;
module_param(nocst, uint, 0000);
#ifndef CONFIG_CPU_IDLE
/*
* bm_history -- bit-mask with a bit per jiffy of bus-master activity
* 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
@ -82,9 +91,10 @@ module_param(nocst, uint, 0000);
static unsigned int bm_history __read_mostly =
(HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
module_param(bm_history, uint, 0644);
/* --------------------------------------------------------------------------
Power Management
-------------------------------------------------------------------------- */
static int acpi_processor_set_power_policy(struct acpi_processor *pr);
#endif
/*
* IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
@ -177,6 +187,18 @@ static inline u32 ticks_elapsed(u32 t1, u32 t2)
return ((0xFFFFFFFF - t1) + t2);
}
static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
{
if (t2 >= t1)
return PM_TIMER_TICKS_TO_US(t2 - t1);
else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
else
return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
}
#ifndef CONFIG_CPU_IDLE
static void
acpi_processor_power_activate(struct acpi_processor *pr,
struct acpi_processor_cx *new)
@ -248,6 +270,7 @@ static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
}
}
#endif /* !CONFIG_CPU_IDLE */
#ifdef ARCH_APICTIMER_STOPS_ON_C3
@ -342,6 +365,7 @@ int acpi_processor_resume(struct acpi_device * device)
return 0;
}
#ifndef CONFIG_CPU_IDLE
static void acpi_processor_idle(void)
{
struct acpi_processor *pr = NULL;
@ -439,7 +463,7 @@ static void acpi_processor_idle(void)
* an SMP system. We do it here instead of doing it at _CST/P_LVL
* detection phase, to work cleanly with logical CPU hotplug.
*/
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
cx = &pr->power.states[ACPI_STATE_C1];
#endif
@ -739,6 +763,7 @@ static int acpi_processor_set_power_policy(struct acpi_processor *pr)
return 0;
}
#endif /* !CONFIG_CPU_IDLE */
static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
{
@ -756,7 +781,7 @@ static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
#ifndef CONFIG_HOTPLUG_CPU
/*
* Check for P_LVL2_UP flag before entering C2 and above on
* an SMP system.
* an SMP system.
*/
if ((num_online_cpus() > 1) &&
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
@ -957,7 +982,12 @@ static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
* Normalize the C2 latency to expidite policy
*/
cx->valid = 1;
#ifndef CONFIG_CPU_IDLE
cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
#else
cx->latency_ticks = cx->latency;
#endif
return;
}
@ -1037,7 +1067,12 @@ static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
* use this in our C3 policy
*/
cx->valid = 1;
#ifndef CONFIG_CPU_IDLE
cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
#else
cx->latency_ticks = cx->latency;
#endif
return;
}
@ -1102,6 +1137,7 @@ static int acpi_processor_get_power_info(struct acpi_processor *pr)
pr->power.count = acpi_processor_power_verify(pr);
#ifndef CONFIG_CPU_IDLE
/*
* Set Default Policy
* ------------------
@ -1113,6 +1149,7 @@ static int acpi_processor_get_power_info(struct acpi_processor *pr)
result = acpi_processor_set_power_policy(pr);
if (result)
return result;
#endif
/*
* if one state of type C2 or C3 is available, mark this
@ -1129,35 +1166,6 @@ static int acpi_processor_get_power_info(struct acpi_processor *pr)
return 0;
}
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int result = 0;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
/* Fall back to the default idle loop */
pm_idle = pm_idle_save;
synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
pr->flags.power = 0;
result = acpi_processor_get_power_info(pr);
if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
pm_idle = acpi_processor_idle;
return result;
}
/* proc interface */
static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
{
struct acpi_processor *pr = seq->private;
@ -1239,6 +1247,35 @@ static const struct file_operations acpi_processor_power_fops = {
.release = single_release,
};
#ifndef CONFIG_CPU_IDLE
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int result = 0;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
/* Fall back to the default idle loop */
pm_idle = pm_idle_save;
synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
pr->flags.power = 0;
result = acpi_processor_get_power_info(pr);
if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
pm_idle = acpi_processor_idle;
return result;
}
#ifdef CONFIG_SMP
static void smp_callback(void *v)
{
@ -1261,8 +1298,367 @@ static int acpi_processor_latency_notify(struct notifier_block *b,
static struct notifier_block acpi_processor_latency_notifier = {
.notifier_call = acpi_processor_latency_notify,
};
#endif
#else /* CONFIG_CPU_IDLE */
/**
* acpi_idle_bm_check - checks if bus master activity was detected
*/
static int acpi_idle_bm_check(void)
{
u32 bm_status = 0;
acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
if (bm_status)
acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
/*
* PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
* the true state of bus mastering activity; forcing us to
* manually check the BMIDEA bit of each IDE channel.
*/
else if (errata.piix4.bmisx) {
if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
|| (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
bm_status = 1;
}
return bm_status;
}
/**
* acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
* @pr: the processor
* @target: the new target state
*/
static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
struct acpi_processor_cx *target)
{
if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
pr->flags.bm_rld_set = 0;
}
if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
pr->flags.bm_rld_set = 1;
}
}
/**
* acpi_idle_do_entry - a helper function that does C2 and C3 type entry
* @cx: cstate data
*/
static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
{
if (cx->space_id == ACPI_CSTATE_FFH) {
/* Call into architectural FFH based C-state */
acpi_processor_ffh_cstate_enter(cx);
} else {
int unused;
/* IO port based C-state */
inb(cx->address);
/* Dummy wait op - must do something useless after P_LVL2 read
because chipsets cannot guarantee that STPCLK# signal
gets asserted in time to freeze execution properly. */
unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
}
}
/**
* acpi_idle_enter_c1 - enters an ACPI C1 state-type
* @dev: the target CPU
* @state: the state data
*
* This is equivalent to the HALT instruction.
*/
static int acpi_idle_enter_c1(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
pr = processors[smp_processor_id()];
if (unlikely(!pr))
return 0;
if (pr->flags.bm_check)
acpi_idle_update_bm_rld(pr, cx);
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (!need_resched())
safe_halt();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
return 0;
}
/**
* acpi_idle_enter_simple - enters an ACPI state without BM handling
* @dev: the target CPU
* @state: the state data
*/
static int acpi_idle_enter_simple(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
u32 t1, t2;
pr = processors[smp_processor_id()];
if (unlikely(!pr))
return 0;
if (acpi_idle_suspend)
return(acpi_idle_enter_c1(dev, state));
if (pr->flags.bm_check)
acpi_idle_update_bm_rld(pr, cx);
local_irq_disable();
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (unlikely(need_resched())) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return 0;
}
if (cx->type == ACPI_STATE_C3)
ACPI_FLUSH_CPU_CACHE();
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
acpi_state_timer_broadcast(pr, cx, 1);
acpi_idle_do_entry(cx);
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
/* TSC could halt in idle, so notify users */
mark_tsc_unstable("TSC halts in idle");;
#endif
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
acpi_state_timer_broadcast(pr, cx, 0);
cx->time += ticks_elapsed(t1, t2);
return ticks_elapsed_in_us(t1, t2);
}
static int c3_cpu_count;
static DEFINE_SPINLOCK(c3_lock);
/**
* acpi_idle_enter_bm - enters C3 with proper BM handling
* @dev: the target CPU
* @state: the state data
*
* If BM is detected, the deepest non-C3 idle state is entered instead.
*/
static int acpi_idle_enter_bm(struct cpuidle_device *dev,
struct cpuidle_state *state)
{
struct acpi_processor *pr;
struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
u32 t1, t2;
pr = processors[smp_processor_id()];
if (unlikely(!pr))
return 0;
if (acpi_idle_suspend)
return(acpi_idle_enter_c1(dev, state));
local_irq_disable();
current_thread_info()->status &= ~TS_POLLING;
/*
* TS_POLLING-cleared state must be visible before we test
* NEED_RESCHED:
*/
smp_mb();
if (unlikely(need_resched())) {
current_thread_info()->status |= TS_POLLING;
local_irq_enable();
return 0;
}
/*
* Must be done before busmaster disable as we might need to
* access HPET !
*/
acpi_state_timer_broadcast(pr, cx, 1);
if (acpi_idle_bm_check()) {
cx = pr->power.bm_state;
acpi_idle_update_bm_rld(pr, cx);
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
acpi_idle_do_entry(cx);
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
} else {
acpi_idle_update_bm_rld(pr, cx);
spin_lock(&c3_lock);
c3_cpu_count++;
/* Disable bus master arbitration when all CPUs are in C3 */
if (c3_cpu_count == num_online_cpus())
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
spin_unlock(&c3_lock);
t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
acpi_idle_do_entry(cx);
t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
spin_lock(&c3_lock);
/* Re-enable bus master arbitration */
if (c3_cpu_count == num_online_cpus())
acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
c3_cpu_count--;
spin_unlock(&c3_lock);
}
#if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
/* TSC could halt in idle, so notify users */
mark_tsc_unstable("TSC halts in idle");
#endif
local_irq_enable();
current_thread_info()->status |= TS_POLLING;
cx->usage++;
acpi_state_timer_broadcast(pr, cx, 0);
cx->time += ticks_elapsed(t1, t2);
return ticks_elapsed_in_us(t1, t2);
}
struct cpuidle_driver acpi_idle_driver = {
.name = "acpi_idle",
.owner = THIS_MODULE,
};
/**
* acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
* @pr: the ACPI processor
*/
static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
{
int i, count = 0;
struct acpi_processor_cx *cx;
struct cpuidle_state *state;
struct cpuidle_device *dev = &pr->power.dev;
if (!pr->flags.power_setup_done)
return -EINVAL;
if (pr->flags.power == 0) {
return -EINVAL;
}
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
cx = &pr->power.states[i];
state = &dev->states[count];
if (!cx->valid)
continue;
#ifdef CONFIG_HOTPLUG_CPU
if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
!pr->flags.has_cst &&
!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
continue;
#endif
cpuidle_set_statedata(state, cx);
snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
state->exit_latency = cx->latency;
state->target_residency = cx->latency * 6;
state->power_usage = cx->power;
state->flags = 0;
switch (cx->type) {
case ACPI_STATE_C1:
state->flags |= CPUIDLE_FLAG_SHALLOW;
state->enter = acpi_idle_enter_c1;
break;
case ACPI_STATE_C2:
state->flags |= CPUIDLE_FLAG_BALANCED;
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->enter = acpi_idle_enter_simple;
break;
case ACPI_STATE_C3:
state->flags |= CPUIDLE_FLAG_DEEP;
state->flags |= CPUIDLE_FLAG_TIME_VALID;
state->flags |= CPUIDLE_FLAG_CHECK_BM;
state->enter = pr->flags.bm_check ?
acpi_idle_enter_bm :
acpi_idle_enter_simple;
break;
}
count++;
}
dev->state_count = count;
if (!count)
return -EINVAL;
/* find the deepest state that can handle active BM */
if (pr->flags.bm_check) {
for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++)
if (pr->power.states[i].type == ACPI_STATE_C3)
break;
pr->power.bm_state = &pr->power.states[i-1];
}
return 0;
}
int acpi_processor_cst_has_changed(struct acpi_processor *pr)
{
int ret;
if (!pr)
return -EINVAL;
if (nocst) {
return -ENODEV;
}
if (!pr->flags.power_setup_done)
return -ENODEV;
cpuidle_pause_and_lock();
cpuidle_disable_device(&pr->power.dev);
acpi_processor_get_power_info(pr);
acpi_processor_setup_cpuidle(pr);
ret = cpuidle_enable_device(&pr->power.dev);
cpuidle_resume_and_unlock();
return ret;
}
#endif /* CONFIG_CPU_IDLE */
int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
struct acpi_device *device)
{
@ -1279,7 +1675,7 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
"ACPI: processor limited to max C-state %d\n",
max_cstate);
first_run++;
#ifdef CONFIG_SMP
#if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
register_latency_notifier(&acpi_processor_latency_notifier);
#endif
}
@ -1297,6 +1693,7 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
}
acpi_processor_get_power_info(pr);
pr->flags.power_setup_done = 1;
/*
* Install the idle handler if processor power management is supported.
@ -1304,6 +1701,13 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
* platforms that only support C1.
*/
if ((pr->flags.power) && (!boot_option_idle_override)) {
#ifdef CONFIG_CPU_IDLE
acpi_processor_setup_cpuidle(pr);
pr->power.dev.cpu = pr->id;
if (cpuidle_register_device(&pr->power.dev))
return -EIO;
#endif
printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
for (i = 1; i <= pr->power.count; i++)
if (pr->power.states[i].valid)
@ -1311,10 +1715,12 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
pr->power.states[i].type);
printk(")\n");
#ifndef CONFIG_CPU_IDLE
if (pr->id == 0) {
pm_idle_save = pm_idle;
pm_idle = acpi_processor_idle;
}
#endif
}
/* 'power' [R] */
@ -1328,21 +1734,24 @@ int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
entry->owner = THIS_MODULE;
}
pr->flags.power_setup_done = 1;
return 0;
}
int acpi_processor_power_exit(struct acpi_processor *pr,
struct acpi_device *device)
{
#ifdef CONFIG_CPU_IDLE
if ((pr->flags.power) && (!boot_option_idle_override))
cpuidle_unregister_device(&pr->power.dev);
#endif
pr->flags.power_setup_done = 0;
if (acpi_device_dir(device))
remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
acpi_device_dir(device));
#ifndef CONFIG_CPU_IDLE
/* Unregister the idle handler when processor #0 is removed. */
if (pr->id == 0) {
pm_idle = pm_idle_save;
@ -1357,6 +1766,7 @@ int acpi_processor_power_exit(struct acpi_processor *pr,
unregister_latency_notifier(&acpi_processor_latency_notifier);
#endif
}
#endif
return 0;
}

View File

@ -0,0 +1,20 @@
config CPU_IDLE
bool "CPU idle PM support"
help
CPU idle is a generic framework for supporting software-controlled
idle processor power management. It includes modular cross-platform
governors that can be swapped during runtime.
If you're using a mobile platform that supports CPU idle PM (e.g.
an ACPI-capable notebook), you should say Y here.
config CPU_IDLE_GOV_LADDER
bool
depends on CPU_IDLE
default y
config CPU_IDLE_GOV_MENU
bool
depends on CPU_IDLE && NO_HZ
default y

View File

@ -0,0 +1,5 @@
#
# Makefile for cpuidle.
#
obj-y += cpuidle.o driver.o governor.o sysfs.o governors/

View File

@ -0,0 +1,295 @@
/*
* cpuidle.c - core cpuidle infrastructure
*
* (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Shaohua Li <shaohua.li@intel.com>
* Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/notifier.h>
#include <linux/latency.h>
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include "cpuidle.h"
DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
EXPORT_PER_CPU_SYMBOL_GPL(cpuidle_devices);
DEFINE_MUTEX(cpuidle_lock);
LIST_HEAD(cpuidle_detected_devices);
static void (*pm_idle_old)(void);
static int enabled_devices;
/**
* cpuidle_idle_call - the main idle loop
*
* NOTE: no locks or semaphores should be used here
*/
static void cpuidle_idle_call(void)
{
struct cpuidle_device *dev = __get_cpu_var(cpuidle_devices);
struct cpuidle_state *target_state;
int next_state;
/* check if the device is ready */
if (!dev || !dev->enabled) {
if (pm_idle_old)
pm_idle_old();
else
local_irq_enable();
return;
}
/* ask the governor for the next state */
next_state = cpuidle_curr_governor->select(dev);
if (need_resched())
return;
target_state = &dev->states[next_state];
/* enter the state and update stats */
dev->last_residency = target_state->enter(dev, target_state);
dev->last_state = target_state;
target_state->time += dev->last_residency;
target_state->usage++;
/* give the governor an opportunity to reflect on the outcome */
if (cpuidle_curr_governor->reflect)
cpuidle_curr_governor->reflect(dev);
}
/**
* cpuidle_install_idle_handler - installs the cpuidle idle loop handler
*/
void cpuidle_install_idle_handler(void)
{
if (enabled_devices && (pm_idle != cpuidle_idle_call)) {
/* Make sure all changes finished before we switch to new idle */
smp_wmb();
pm_idle = cpuidle_idle_call;
}
}
/**
* cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
*/
void cpuidle_uninstall_idle_handler(void)
{
if (enabled_devices && (pm_idle != pm_idle_old)) {
pm_idle = pm_idle_old;
cpu_idle_wait();
}
}
/**
* cpuidle_pause_and_lock - temporarily disables CPUIDLE
*/
void cpuidle_pause_and_lock(void)
{
mutex_lock(&cpuidle_lock);
cpuidle_uninstall_idle_handler();
}
EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
/**
* cpuidle_resume_and_unlock - resumes CPUIDLE operation
*/
void cpuidle_resume_and_unlock(void)
{
cpuidle_install_idle_handler();
mutex_unlock(&cpuidle_lock);
}
EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
/**
* cpuidle_enable_device - enables idle PM for a CPU
* @dev: the CPU
*
* This function must be called between cpuidle_pause_and_lock and
* cpuidle_resume_and_unlock when used externally.
*/
int cpuidle_enable_device(struct cpuidle_device *dev)
{
int ret, i;
if (dev->enabled)
return 0;
if (!cpuidle_curr_driver || !cpuidle_curr_governor)
return -EIO;
if (!dev->state_count)
return -EINVAL;
if ((ret = cpuidle_add_state_sysfs(dev)))
return ret;
if (cpuidle_curr_governor->enable &&
(ret = cpuidle_curr_governor->enable(dev)))
goto fail_sysfs;
for (i = 0; i < dev->state_count; i++) {
dev->states[i].usage = 0;
dev->states[i].time = 0;
}
dev->last_residency = 0;
dev->last_state = NULL;
smp_wmb();
dev->enabled = 1;
enabled_devices++;
return 0;
fail_sysfs:
cpuidle_remove_state_sysfs(dev);
return ret;
}
EXPORT_SYMBOL_GPL(cpuidle_enable_device);
/**
* cpuidle_disable_device - disables idle PM for a CPU
* @dev: the CPU
*
* This function must be called between cpuidle_pause_and_lock and
* cpuidle_resume_and_unlock when used externally.
*/
void cpuidle_disable_device(struct cpuidle_device *dev)
{
if (!dev->enabled)
return;
if (!cpuidle_curr_driver || !cpuidle_curr_governor)
return;
dev->enabled = 0;
if (cpuidle_curr_governor->disable)
cpuidle_curr_governor->disable(dev);
cpuidle_remove_state_sysfs(dev);
enabled_devices--;
}
EXPORT_SYMBOL_GPL(cpuidle_disable_device);
/**
* cpuidle_register_device - registers a CPU's idle PM feature
* @dev: the cpu
*/
int cpuidle_register_device(struct cpuidle_device *dev)
{
int ret;
struct sys_device *sys_dev = get_cpu_sysdev((unsigned long)dev->cpu);
if (!sys_dev)
return -EINVAL;
if (!try_module_get(cpuidle_curr_driver->owner))
return -EINVAL;
init_completion(&dev->kobj_unregister);
mutex_lock(&cpuidle_lock);
per_cpu(cpuidle_devices, dev->cpu) = dev;
list_add(&dev->device_list, &cpuidle_detected_devices);
if ((ret = cpuidle_add_sysfs(sys_dev))) {
mutex_unlock(&cpuidle_lock);
module_put(cpuidle_curr_driver->owner);
return ret;
}
cpuidle_enable_device(dev);
cpuidle_install_idle_handler();
mutex_unlock(&cpuidle_lock);
return 0;
}
EXPORT_SYMBOL_GPL(cpuidle_register_device);
/**
* cpuidle_unregister_device - unregisters a CPU's idle PM feature
* @dev: the cpu
*/
void cpuidle_unregister_device(struct cpuidle_device *dev)
{
struct sys_device *sys_dev = get_cpu_sysdev((unsigned long)dev->cpu);
cpuidle_pause_and_lock();
cpuidle_disable_device(dev);
cpuidle_remove_sysfs(sys_dev);
list_del(&dev->device_list);
wait_for_completion(&dev->kobj_unregister);
per_cpu(cpuidle_devices, dev->cpu) = NULL;
cpuidle_resume_and_unlock();
module_put(cpuidle_curr_driver->owner);
}
EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
#ifdef CONFIG_SMP
static void smp_callback(void *v)
{
/* we already woke the CPU up, nothing more to do */
}
/*
* This function gets called when a part of the kernel has a new latency
* requirement. This means we need to get all processors out of their C-state,
* and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
* wakes them all right up.
*/
static int cpuidle_latency_notify(struct notifier_block *b,
unsigned long l, void *v)
{
smp_call_function(smp_callback, NULL, 0, 1);
return NOTIFY_OK;
}
static struct notifier_block cpuidle_latency_notifier = {
.notifier_call = cpuidle_latency_notify,
};
#define latency_notifier_init(x) do { register_latency_notifier(x); } while (0)
#else /* CONFIG_SMP */
#define latency_notifier_init(x) do { } while (0)
#endif /* CONFIG_SMP */
/**
* cpuidle_init - core initializer
*/
static int __init cpuidle_init(void)
{
int ret;
pm_idle_old = pm_idle;
ret = cpuidle_add_class_sysfs(&cpu_sysdev_class);
if (ret)
return ret;
latency_notifier_init(&cpuidle_latency_notifier);
return 0;
}
core_initcall(cpuidle_init);

View File

@ -0,0 +1,33 @@
/*
* cpuidle.h - The internal header file
*/
#ifndef __DRIVER_CPUIDLE_H
#define __DRIVER_CPUIDLE_H
#include <linux/sysdev.h>
/* For internal use only */
extern struct cpuidle_governor *cpuidle_curr_governor;
extern struct cpuidle_driver *cpuidle_curr_driver;
extern struct list_head cpuidle_governors;
extern struct list_head cpuidle_detected_devices;
extern struct mutex cpuidle_lock;
extern spinlock_t cpuidle_driver_lock;
/* idle loop */
extern void cpuidle_install_idle_handler(void);
extern void cpuidle_uninstall_idle_handler(void);
/* governors */
extern int cpuidle_switch_governor(struct cpuidle_governor *gov);
/* sysfs */
extern int cpuidle_add_class_sysfs(struct sysdev_class *cls);
extern void cpuidle_remove_class_sysfs(struct sysdev_class *cls);
extern int cpuidle_add_state_sysfs(struct cpuidle_device *device);
extern void cpuidle_remove_state_sysfs(struct cpuidle_device *device);
extern int cpuidle_add_sysfs(struct sys_device *sysdev);
extern void cpuidle_remove_sysfs(struct sys_device *sysdev);
#endif /* __DRIVER_CPUIDLE_H */

View File

@ -0,0 +1,56 @@
/*
* driver.c - driver support
*
* (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Shaohua Li <shaohua.li@intel.com>
* Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/cpuidle.h>
#include "cpuidle.h"
struct cpuidle_driver *cpuidle_curr_driver;
DEFINE_SPINLOCK(cpuidle_driver_lock);
/**
* cpuidle_register_driver - registers a driver
* @drv: the driver
*/
int cpuidle_register_driver(struct cpuidle_driver *drv)
{
if (!drv)
return -EINVAL;
spin_lock(&cpuidle_driver_lock);
if (cpuidle_curr_driver) {
spin_unlock(&cpuidle_driver_lock);
return -EBUSY;
}
cpuidle_curr_driver = drv;
spin_unlock(&cpuidle_driver_lock);
return 0;
}
EXPORT_SYMBOL_GPL(cpuidle_register_driver);
/**
* cpuidle_unregister_driver - unregisters a driver
* @drv: the driver
*/
void cpuidle_unregister_driver(struct cpuidle_driver *drv)
{
if (!drv)
return;
spin_lock(&cpuidle_driver_lock);
cpuidle_curr_driver = NULL;
spin_unlock(&cpuidle_driver_lock);
}
EXPORT_SYMBOL_GPL(cpuidle_unregister_driver);

View File

@ -0,0 +1,141 @@
/*
* governor.c - governor support
*
* (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Shaohua Li <shaohua.li@intel.com>
* Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/cpuidle.h>
#include "cpuidle.h"
LIST_HEAD(cpuidle_governors);
struct cpuidle_governor *cpuidle_curr_governor;
/**
* __cpuidle_find_governor - finds a governor of the specified name
* @str: the name
*
* Must be called with cpuidle_lock aquired.
*/
static struct cpuidle_governor * __cpuidle_find_governor(const char *str)
{
struct cpuidle_governor *gov;
list_for_each_entry(gov, &cpuidle_governors, governor_list)
if (!strnicmp(str, gov->name, CPUIDLE_NAME_LEN))
return gov;
return NULL;
}
/**
* cpuidle_switch_governor - changes the governor
* @gov: the new target governor
*
* NOTE: "gov" can be NULL to specify disabled
* Must be called with cpuidle_lock aquired.
*/
int cpuidle_switch_governor(struct cpuidle_governor *gov)
{
struct cpuidle_device *dev;
if (gov == cpuidle_curr_governor)
return 0;
cpuidle_uninstall_idle_handler();
if (cpuidle_curr_governor) {
list_for_each_entry(dev, &cpuidle_detected_devices, device_list)
cpuidle_disable_device(dev);
module_put(cpuidle_curr_governor->owner);
}
cpuidle_curr_governor = gov;
if (gov) {
if (!try_module_get(cpuidle_curr_governor->owner))
return -EINVAL;
list_for_each_entry(dev, &cpuidle_detected_devices, device_list)
cpuidle_enable_device(dev);
cpuidle_install_idle_handler();
printk(KERN_INFO "cpuidle: using governor %s\n", gov->name);
}
return 0;
}
/**
* cpuidle_register_governor - registers a governor
* @gov: the governor
*/
int cpuidle_register_governor(struct cpuidle_governor *gov)
{
int ret = -EEXIST;
if (!gov || !gov->select)
return -EINVAL;
mutex_lock(&cpuidle_lock);
if (__cpuidle_find_governor(gov->name) == NULL) {
ret = 0;
list_add_tail(&gov->governor_list, &cpuidle_governors);
if (!cpuidle_curr_governor ||
cpuidle_curr_governor->rating < gov->rating)
cpuidle_switch_governor(gov);
}
mutex_unlock(&cpuidle_lock);
return ret;
}
EXPORT_SYMBOL_GPL(cpuidle_register_governor);
/**
* cpuidle_replace_governor - find a replacement governor
* @exclude_rating: the rating that will be skipped while looking for
* new governor.
*/
static struct cpuidle_governor *cpuidle_replace_governor(int exclude_rating)
{
struct cpuidle_governor *gov;
struct cpuidle_governor *ret_gov = NULL;
unsigned int max_rating = 0;
list_for_each_entry(gov, &cpuidle_governors, governor_list) {
if (gov->rating == exclude_rating)
continue;
if (gov->rating > max_rating) {
max_rating = gov->rating;
ret_gov = gov;
}
}
return ret_gov;
}
/**
* cpuidle_unregister_governor - unregisters a governor
* @gov: the governor
*/
void cpuidle_unregister_governor(struct cpuidle_governor *gov)
{
if (!gov)
return;
mutex_lock(&cpuidle_lock);
if (gov == cpuidle_curr_governor) {
struct cpuidle_governor *new_gov;
new_gov = cpuidle_replace_governor(gov->rating);
cpuidle_switch_governor(new_gov);
}
list_del(&gov->governor_list);
mutex_unlock(&cpuidle_lock);
}
EXPORT_SYMBOL_GPL(cpuidle_unregister_governor);

View File

@ -0,0 +1,6 @@
#
# Makefile for cpuidle governors.
#
obj-$(CONFIG_CPU_IDLE_GOV_LADDER) += ladder.o
obj-$(CONFIG_CPU_IDLE_GOV_MENU) += menu.o

View File

@ -0,0 +1,166 @@
/*
* ladder.c - the residency ladder algorithm
*
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
* Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
*
* (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Shaohua Li <shaohua.li@intel.com>
* Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#include <linux/kernel.h>
#include <linux/cpuidle.h>
#include <linux/latency.h>
#include <linux/moduleparam.h>
#include <linux/jiffies.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#define PROMOTION_COUNT 4
#define DEMOTION_COUNT 1
struct ladder_device_state {
struct {
u32 promotion_count;
u32 demotion_count;
u32 promotion_time;
u32 demotion_time;
} threshold;
struct {
int promotion_count;
int demotion_count;
} stats;
};
struct ladder_device {
struct ladder_device_state states[CPUIDLE_STATE_MAX];
int last_state_idx;
};
static DEFINE_PER_CPU(struct ladder_device, ladder_devices);
/**
* ladder_do_selection - prepares private data for a state change
* @ldev: the ladder device
* @old_idx: the current state index
* @new_idx: the new target state index
*/
static inline void ladder_do_selection(struct ladder_device *ldev,
int old_idx, int new_idx)
{
ldev->states[old_idx].stats.promotion_count = 0;
ldev->states[old_idx].stats.demotion_count = 0;
ldev->last_state_idx = new_idx;
}
/**
* ladder_select_state - selects the next state to enter
* @dev: the CPU
*/
static int ladder_select_state(struct cpuidle_device *dev)
{
struct ladder_device *ldev = &__get_cpu_var(ladder_devices);
struct ladder_device_state *last_state;
int last_residency, last_idx = ldev->last_state_idx;
if (unlikely(!ldev))
return 0;
last_state = &ldev->states[last_idx];
if (dev->states[last_idx].flags & CPUIDLE_FLAG_TIME_VALID)
last_residency = cpuidle_get_last_residency(dev) - dev->states[last_idx].exit_latency;
else
last_residency = last_state->threshold.promotion_time + 1;
/* consider promotion */
if (last_idx < dev->state_count - 1 &&
last_residency > last_state->threshold.promotion_time &&
dev->states[last_idx + 1].exit_latency <= system_latency_constraint()) {
last_state->stats.promotion_count++;
last_state->stats.demotion_count = 0;
if (last_state->stats.promotion_count >= last_state->threshold.promotion_count) {
ladder_do_selection(ldev, last_idx, last_idx + 1);
return last_idx + 1;
}
}
/* consider demotion */
if (last_idx > 0 &&
last_residency < last_state->threshold.demotion_time) {
last_state->stats.demotion_count++;
last_state->stats.promotion_count = 0;
if (last_state->stats.demotion_count >= last_state->threshold.demotion_count) {
ladder_do_selection(ldev, last_idx, last_idx - 1);
return last_idx - 1;
}
}
/* otherwise remain at the current state */
return last_idx;
}
/**
* ladder_enable_device - setup for the governor
* @dev: the CPU
*/
static int ladder_enable_device(struct cpuidle_device *dev)
{
int i;
struct ladder_device *ldev = &per_cpu(ladder_devices, dev->cpu);
struct ladder_device_state *lstate;
struct cpuidle_state *state;
ldev->last_state_idx = 0;
for (i = 0; i < dev->state_count; i++) {
state = &dev->states[i];
lstate = &ldev->states[i];
lstate->stats.promotion_count = 0;
lstate->stats.demotion_count = 0;
lstate->threshold.promotion_count = PROMOTION_COUNT;
lstate->threshold.demotion_count = DEMOTION_COUNT;
if (i < dev->state_count - 1)
lstate->threshold.promotion_time = state->exit_latency;
if (i > 0)
lstate->threshold.demotion_time = state->exit_latency;
}
return 0;
}
static struct cpuidle_governor ladder_governor = {
.name = "ladder",
.rating = 10,
.enable = ladder_enable_device,
.select = ladder_select_state,
.owner = THIS_MODULE,
};
/**
* init_ladder - initializes the governor
*/
static int __init init_ladder(void)
{
return cpuidle_register_governor(&ladder_governor);
}
/**
* exit_ladder - exits the governor
*/
static void __exit exit_ladder(void)
{
cpuidle_unregister_governor(&ladder_governor);
}
MODULE_LICENSE("GPL");
module_init(init_ladder);
module_exit(exit_ladder);

View File

@ -0,0 +1,137 @@
/*
* menu.c - the menu idle governor
*
* Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#include <linux/kernel.h>
#include <linux/cpuidle.h>
#include <linux/latency.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#define BREAK_FUZZ 4 /* 4 us */
struct menu_device {
int last_state_idx;
unsigned int expected_us;
unsigned int predicted_us;
unsigned int last_measured_us;
unsigned int elapsed_us;
};
static DEFINE_PER_CPU(struct menu_device, menu_devices);
/**
* menu_select - selects the next idle state to enter
* @dev: the CPU
*/
static int menu_select(struct cpuidle_device *dev)
{
struct menu_device *data = &__get_cpu_var(menu_devices);
int i;
/* determine the expected residency time */
data->expected_us =
(u32) ktime_to_ns(tick_nohz_get_sleep_length()) / 1000;
/* find the deepest idle state that satisfies our constraints */
for (i = 1; i < dev->state_count; i++) {
struct cpuidle_state *s = &dev->states[i];
if (s->target_residency > data->expected_us)
break;
if (s->target_residency > data->predicted_us)
break;
if (s->exit_latency > system_latency_constraint())
break;
}
data->last_state_idx = i - 1;
return i - 1;
}
/**
* menu_reflect - attempts to guess what happened after entry
* @dev: the CPU
*
* NOTE: it's important to be fast here because this operation will add to
* the overall exit latency.
*/
static void menu_reflect(struct cpuidle_device *dev)
{
struct menu_device *data = &__get_cpu_var(menu_devices);
int last_idx = data->last_state_idx;
unsigned int measured_us =
cpuidle_get_last_residency(dev) + data->elapsed_us;
struct cpuidle_state *target = &dev->states[last_idx];
/*
* Ugh, this idle state doesn't support residency measurements, so we
* are basically lost in the dark. As a compromise, assume we slept
* for one full standard timer tick. However, be aware that this
* could potentially result in a suboptimal state transition.
*/
if (!(target->flags & CPUIDLE_FLAG_TIME_VALID))
measured_us = USEC_PER_SEC / HZ;
/* Predict time remaining until next break event */
if (measured_us + BREAK_FUZZ < data->expected_us - target->exit_latency) {
data->predicted_us = max(measured_us, data->last_measured_us);
data->last_measured_us = measured_us;
data->elapsed_us = 0;
} else {
if (data->elapsed_us < data->elapsed_us + measured_us)
data->elapsed_us = measured_us;
else
data->elapsed_us = -1;
data->predicted_us = max(measured_us, data->last_measured_us);
}
}
/**
* menu_enable_device - scans a CPU's states and does setup
* @dev: the CPU
*/
static int menu_enable_device(struct cpuidle_device *dev)
{
struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
memset(data, 0, sizeof(struct menu_device));
return 0;
}
static struct cpuidle_governor menu_governor = {
.name = "menu",
.rating = 20,
.enable = menu_enable_device,
.select = menu_select,
.reflect = menu_reflect,
.owner = THIS_MODULE,
};
/**
* init_menu - initializes the governor
*/
static int __init init_menu(void)
{
return cpuidle_register_governor(&menu_governor);
}
/**
* exit_menu - exits the governor
*/
static void __exit exit_menu(void)
{
cpuidle_unregister_governor(&menu_governor);
}
MODULE_LICENSE("GPL");
module_init(init_menu);
module_exit(exit_menu);

View File

@ -0,0 +1,361 @@
/*
* sysfs.c - sysfs support
*
* (C) 2006-2007 Shaohua Li <shaohua.li@intel.com>
*
* This code is licenced under the GPL.
*/
#include <linux/kernel.h>
#include <linux/cpuidle.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
#include "cpuidle.h"
static unsigned int sysfs_switch;
static int __init cpuidle_sysfs_setup(char *unused)
{
sysfs_switch = 1;
return 1;
}
__setup("cpuidle_sysfs_switch", cpuidle_sysfs_setup);
static ssize_t show_available_governors(struct sys_device *dev, char *buf)
{
ssize_t i = 0;
struct cpuidle_governor *tmp;
mutex_lock(&cpuidle_lock);
list_for_each_entry(tmp, &cpuidle_governors, governor_list) {
if (i >= (ssize_t) ((PAGE_SIZE/sizeof(char)) - CPUIDLE_NAME_LEN - 2))
goto out;
i += scnprintf(&buf[i], CPUIDLE_NAME_LEN, "%s ", tmp->name);
}
out:
i+= sprintf(&buf[i], "\n");
mutex_unlock(&cpuidle_lock);
return i;
}
static ssize_t show_current_driver(struct sys_device *dev, char *buf)
{
ssize_t ret;
spin_lock(&cpuidle_driver_lock);
if (cpuidle_curr_driver)
ret = sprintf(buf, "%s\n", cpuidle_curr_driver->name);
else
ret = sprintf(buf, "none\n");
spin_unlock(&cpuidle_driver_lock);
return ret;
}
static ssize_t show_current_governor(struct sys_device *dev, char *buf)
{
ssize_t ret;
mutex_lock(&cpuidle_lock);
if (cpuidle_curr_governor)
ret = sprintf(buf, "%s\n", cpuidle_curr_governor->name);
else
ret = sprintf(buf, "none\n");
mutex_unlock(&cpuidle_lock);
return ret;
}
static ssize_t store_current_governor(struct sys_device *dev,
const char *buf, size_t count)
{
char gov_name[CPUIDLE_NAME_LEN];
int ret = -EINVAL;
size_t len = count;
struct cpuidle_governor *gov;
if (!len || len >= sizeof(gov_name))
return -EINVAL;
memcpy(gov_name, buf, len);
gov_name[len] = '\0';
if (gov_name[len - 1] == '\n')
gov_name[--len] = '\0';
mutex_lock(&cpuidle_lock);
list_for_each_entry(gov, &cpuidle_governors, governor_list) {
if (strlen(gov->name) == len && !strcmp(gov->name, gov_name)) {
ret = cpuidle_switch_governor(gov);
break;
}
}
mutex_unlock(&cpuidle_lock);
if (ret)
return ret;
else
return count;
}
static SYSDEV_ATTR(current_driver, 0444, show_current_driver, NULL);
static SYSDEV_ATTR(current_governor_ro, 0444, show_current_governor, NULL);
static struct attribute *cpuclass_default_attrs[] = {
&attr_current_driver.attr,
&attr_current_governor_ro.attr,
NULL
};
static SYSDEV_ATTR(available_governors, 0444, show_available_governors, NULL);
static SYSDEV_ATTR(current_governor, 0644, show_current_governor,
store_current_governor);
static struct attribute *cpuclass_switch_attrs[] = {
&attr_available_governors.attr,
&attr_current_driver.attr,
&attr_current_governor.attr,
NULL
};
static struct attribute_group cpuclass_attr_group = {
.attrs = cpuclass_default_attrs,
.name = "cpuidle",
};
/**
* cpuidle_add_class_sysfs - add CPU global sysfs attributes
*/
int cpuidle_add_class_sysfs(struct sysdev_class *cls)
{
if (sysfs_switch)
cpuclass_attr_group.attrs = cpuclass_switch_attrs;
return sysfs_create_group(&cls->kset.kobj, &cpuclass_attr_group);
}
/**
* cpuidle_remove_class_sysfs - remove CPU global sysfs attributes
*/
void cpuidle_remove_class_sysfs(struct sysdev_class *cls)
{
sysfs_remove_group(&cls->kset.kobj, &cpuclass_attr_group);
}
struct cpuidle_attr {
struct attribute attr;
ssize_t (*show)(struct cpuidle_device *, char *);
ssize_t (*store)(struct cpuidle_device *, const char *, size_t count);
};
#define define_one_ro(_name, show) \
static struct cpuidle_attr attr_##_name = __ATTR(_name, 0444, show, NULL)
#define define_one_rw(_name, show, store) \
static struct cpuidle_attr attr_##_name = __ATTR(_name, 0644, show, store)
#define kobj_to_cpuidledev(k) container_of(k, struct cpuidle_device, kobj)
#define attr_to_cpuidleattr(a) container_of(a, struct cpuidle_attr, attr)
static ssize_t cpuidle_show(struct kobject * kobj, struct attribute * attr ,char * buf)
{
int ret = -EIO;
struct cpuidle_device *dev = kobj_to_cpuidledev(kobj);
struct cpuidle_attr * cattr = attr_to_cpuidleattr(attr);
if (cattr->show) {
mutex_lock(&cpuidle_lock);
ret = cattr->show(dev, buf);
mutex_unlock(&cpuidle_lock);
}
return ret;
}
static ssize_t cpuidle_store(struct kobject * kobj, struct attribute * attr,
const char * buf, size_t count)
{
int ret = -EIO;
struct cpuidle_device *dev = kobj_to_cpuidledev(kobj);
struct cpuidle_attr * cattr = attr_to_cpuidleattr(attr);
if (cattr->store) {
mutex_lock(&cpuidle_lock);
ret = cattr->store(dev, buf, count);
mutex_unlock(&cpuidle_lock);
}
return ret;
}
static struct sysfs_ops cpuidle_sysfs_ops = {
.show = cpuidle_show,
.store = cpuidle_store,
};
static void cpuidle_sysfs_release(struct kobject *kobj)
{
struct cpuidle_device *dev = kobj_to_cpuidledev(kobj);
complete(&dev->kobj_unregister);
}
static struct kobj_type ktype_cpuidle = {
.sysfs_ops = &cpuidle_sysfs_ops,
.release = cpuidle_sysfs_release,
};
struct cpuidle_state_attr {
struct attribute attr;
ssize_t (*show)(struct cpuidle_state *, char *);
ssize_t (*store)(struct cpuidle_state *, const char *, size_t);
};
#define define_one_state_ro(_name, show) \
static struct cpuidle_state_attr attr_##_name = __ATTR(_name, 0444, show, NULL)
#define define_show_state_function(_name) \
static ssize_t show_state_##_name(struct cpuidle_state *state, char *buf) \
{ \
return sprintf(buf, "%u\n", state->_name);\
}
static ssize_t show_state_name(struct cpuidle_state *state, char *buf)
{
return sprintf(buf, "%s\n", state->name);
}
define_show_state_function(exit_latency)
define_show_state_function(power_usage)
define_show_state_function(usage)
define_show_state_function(time)
define_one_state_ro(name, show_state_name);
define_one_state_ro(latency, show_state_exit_latency);
define_one_state_ro(power, show_state_power_usage);
define_one_state_ro(usage, show_state_usage);
define_one_state_ro(time, show_state_time);
static struct attribute *cpuidle_state_default_attrs[] = {
&attr_name.attr,
&attr_latency.attr,
&attr_power.attr,
&attr_usage.attr,
&attr_time.attr,
NULL
};
#define kobj_to_state_obj(k) container_of(k, struct cpuidle_state_kobj, kobj)
#define kobj_to_state(k) (kobj_to_state_obj(k)->state)
#define attr_to_stateattr(a) container_of(a, struct cpuidle_state_attr, attr)
static ssize_t cpuidle_state_show(struct kobject * kobj,
struct attribute * attr ,char * buf)
{
int ret = -EIO;
struct cpuidle_state *state = kobj_to_state(kobj);
struct cpuidle_state_attr * cattr = attr_to_stateattr(attr);
if (cattr->show)
ret = cattr->show(state, buf);
return ret;
}
static struct sysfs_ops cpuidle_state_sysfs_ops = {
.show = cpuidle_state_show,
};
static void cpuidle_state_sysfs_release(struct kobject *kobj)
{
struct cpuidle_state_kobj *state_obj = kobj_to_state_obj(kobj);
complete(&state_obj->kobj_unregister);
}
static struct kobj_type ktype_state_cpuidle = {
.sysfs_ops = &cpuidle_state_sysfs_ops,
.default_attrs = cpuidle_state_default_attrs,
.release = cpuidle_state_sysfs_release,
};
static void inline cpuidle_free_state_kobj(struct cpuidle_device *device, int i)
{
kobject_unregister(&device->kobjs[i]->kobj);
wait_for_completion(&device->kobjs[i]->kobj_unregister);
kfree(device->kobjs[i]);
device->kobjs[i] = NULL;
}
/**
* cpuidle_add_driver_sysfs - adds driver-specific sysfs attributes
* @device: the target device
*/
int cpuidle_add_state_sysfs(struct cpuidle_device *device)
{
int i, ret = -ENOMEM;
struct cpuidle_state_kobj *kobj;
/* state statistics */
for (i = 0; i < device->state_count; i++) {
kobj = kzalloc(sizeof(struct cpuidle_state_kobj), GFP_KERNEL);
if (!kobj)
goto error_state;
kobj->state = &device->states[i];
init_completion(&kobj->kobj_unregister);
kobj->kobj.parent = &device->kobj;
kobj->kobj.ktype = &ktype_state_cpuidle;
kobject_set_name(&kobj->kobj, "state%d", i);
ret = kobject_register(&kobj->kobj);
if (ret) {
kfree(kobj);
goto error_state;
}
device->kobjs[i] = kobj;
}
return 0;
error_state:
for (i = i - 1; i >= 0; i--)
cpuidle_free_state_kobj(device, i);
return ret;
}
/**
* cpuidle_remove_driver_sysfs - removes driver-specific sysfs attributes
* @device: the target device
*/
void cpuidle_remove_state_sysfs(struct cpuidle_device *device)
{
int i;
for (i = 0; i < device->state_count; i++)
cpuidle_free_state_kobj(device, i);
}
/**
* cpuidle_add_sysfs - creates a sysfs instance for the target device
* @sysdev: the target device
*/
int cpuidle_add_sysfs(struct sys_device *sysdev)
{
int cpu = sysdev->id;
struct cpuidle_device *dev;
dev = per_cpu(cpuidle_devices, cpu);
dev->kobj.parent = &sysdev->kobj;
dev->kobj.ktype = &ktype_cpuidle;
kobject_set_name(&dev->kobj, "%s", "cpuidle");
return kobject_register(&dev->kobj);
}
/**
* cpuidle_remove_sysfs - deletes a sysfs instance on the target device
* @sysdev: the target device
*/
void cpuidle_remove_sysfs(struct sys_device *sysdev)
{
int cpu = sysdev->id;
struct cpuidle_device *dev;
dev = per_cpu(cpuidle_devices, cpu);
kobject_unregister(&dev->kobj);
}

View File

@ -1858,14 +1858,6 @@ static void ipw2100_down(struct ipw2100_priv *priv)
modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
#ifdef ACPI_CSTATE_LIMIT_DEFINED
if (priv->config & CFG_C3_DISABLED) {
IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
acpi_set_cstate_limit(priv->cstate_limit);
priv->config &= ~CFG_C3_DISABLED;
}
#endif
/* We have to signal any supplicant if we are disassociating */
if (associated)
wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
@ -2088,14 +2080,6 @@ static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
/* RF_KILL is now enabled (else we wouldn't be here) */
priv->status |= STATUS_RF_KILL_HW;
#ifdef ACPI_CSTATE_LIMIT_DEFINED
if (priv->config & CFG_C3_DISABLED) {
IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
acpi_set_cstate_limit(priv->cstate_limit);
priv->config &= ~CFG_C3_DISABLED;
}
#endif
/* Make sure the RF Kill check timer is running */
priv->stop_rf_kill = 0;
cancel_delayed_work(&priv->rf_kill);
@ -2326,23 +2310,10 @@ static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
u32 match, reg;
int j;
#endif
#ifdef ACPI_CSTATE_LIMIT_DEFINED
int limit;
#endif
IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
i * sizeof(struct ipw2100_status));
#ifdef ACPI_CSTATE_LIMIT_DEFINED
IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
limit = acpi_get_cstate_limit();
if (limit > 2) {
priv->cstate_limit = limit;
acpi_set_cstate_limit(2);
priv->config |= CFG_C3_DISABLED;
}
#endif
#ifdef IPW2100_DEBUG_C3
/* Halt the fimrware so we can get a good image */
write_register(priv->net_dev, IPW_REG_RESET_REG,

View File

@ -479,7 +479,6 @@ enum {
#define CFG_ASSOCIATE (1<<6)
#define CFG_FIXED_RATE (1<<7)
#define CFG_ADHOC_CREATE (1<<8)
#define CFG_C3_DISABLED (1<<9)
#define CFG_PASSIVE_SCAN (1<<10)
#ifdef CONFIG_IPW2100_MONITOR
#define CFG_CRC_CHECK (1<<11)
@ -508,7 +507,6 @@ struct ipw2100_priv {
u8 bssid[ETH_ALEN];
u8 channel;
int last_mode;
int cstate_limit;
unsigned long connect_start;
unsigned long last_reset;

View File

@ -3,6 +3,7 @@
#include <linux/kernel.h>
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include <asm/acpi.h>
@ -75,7 +76,9 @@ struct acpi_processor_cx {
};
struct acpi_processor_power {
struct cpuidle_device dev;
struct acpi_processor_cx *state;
struct acpi_processor_cx *bm_state;
unsigned long bm_check_timestamp;
u32 default_state;
u32 bm_activity;
@ -199,6 +202,7 @@ struct acpi_processor_flags {
u8 bm_check:1;
u8 has_cst:1;
u8 power_setup_done:1;
u8 bm_rld_set:1;
};
struct acpi_processor {
@ -322,6 +326,7 @@ int acpi_processor_power_exit(struct acpi_processor *pr,
struct acpi_device *device);
int acpi_processor_suspend(struct acpi_device * device, pm_message_t state);
int acpi_processor_resume(struct acpi_device * device);
extern struct cpuidle_driver acpi_idle_driver;
/* in processor_thermal.c */
int acpi_processor_get_limit_info(struct acpi_processor *pr);

View File

@ -189,32 +189,6 @@ extern int ec_transaction(u8 command,
extern int acpi_blacklisted(void);
extern void acpi_bios_year(char *s);
#define ACPI_CSTATE_LIMIT_DEFINED /* for driver builds */
#ifdef CONFIG_ACPI
/*
* Set highest legal C-state
* 0: C0 okay, but not C1
* 1: C1 okay, but not C2
* 2: C2 okay, but not C3 etc.
*/
extern unsigned int max_cstate;
static inline unsigned int acpi_get_cstate_limit(void)
{
return max_cstate;
}
static inline void acpi_set_cstate_limit(unsigned int new_limit)
{
max_cstate = new_limit;
return;
}
#else
static inline unsigned int acpi_get_cstate_limit(void) { return 0; }
static inline void acpi_set_cstate_limit(unsigned int new_limit) { return; }
#endif
#ifdef CONFIG_ACPI_NUMA
int acpi_get_pxm(acpi_handle handle);
int acpi_get_node(acpi_handle *handle);

View File

@ -0,0 +1,180 @@
/*
* cpuidle.h - a generic framework for CPU idle power management
*
* (C) 2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Shaohua Li <shaohua.li@intel.com>
* Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#ifndef _LINUX_CPUIDLE_H
#define _LINUX_CPUIDLE_H
#include <linux/percpu.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/kobject.h>
#include <linux/completion.h>
#define CPUIDLE_STATE_MAX 8
#define CPUIDLE_NAME_LEN 16
struct cpuidle_device;
/****************************
* CPUIDLE DEVICE INTERFACE *
****************************/
struct cpuidle_state {
char name[CPUIDLE_NAME_LEN];
void *driver_data;
unsigned int flags;
unsigned int exit_latency; /* in US */
unsigned int power_usage; /* in mW */
unsigned int target_residency; /* in US */
unsigned int usage;
unsigned int time; /* in US */
int (*enter) (struct cpuidle_device *dev,
struct cpuidle_state *state);
};
/* Idle State Flags */
#define CPUIDLE_FLAG_TIME_VALID (0x01) /* is residency time measurable? */
#define CPUIDLE_FLAG_CHECK_BM (0x02) /* BM activity will exit state */
#define CPUIDLE_FLAG_SHALLOW (0x10) /* low latency, minimal savings */
#define CPUIDLE_FLAG_BALANCED (0x20) /* medium latency, moderate savings */
#define CPUIDLE_FLAG_DEEP (0x40) /* high latency, large savings */
#define CPUIDLE_DRIVER_FLAGS_MASK (0xFFFF0000)
/**
* cpuidle_get_statedata - retrieves private driver state data
* @state: the state
*/
static inline void * cpuidle_get_statedata(struct cpuidle_state *state)
{
return state->driver_data;
}
/**
* cpuidle_set_statedata - stores private driver state data
* @state: the state
* @data: the private data
*/
static inline void
cpuidle_set_statedata(struct cpuidle_state *state, void *data)
{
state->driver_data = data;
}
struct cpuidle_state_kobj {
struct cpuidle_state *state;
struct completion kobj_unregister;
struct kobject kobj;
};
struct cpuidle_device {
int enabled:1;
unsigned int cpu;
int last_residency;
int state_count;
struct cpuidle_state states[CPUIDLE_STATE_MAX];
struct cpuidle_state_kobj *kobjs[CPUIDLE_STATE_MAX];
struct cpuidle_state *last_state;
struct list_head device_list;
struct kobject kobj;
struct completion kobj_unregister;
void *governor_data;
};
DECLARE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
/**
* cpuidle_get_last_residency - retrieves the last state's residency time
* @dev: the target CPU
*
* NOTE: this value is invalid if CPUIDLE_FLAG_TIME_VALID isn't set
*/
static inline int cpuidle_get_last_residency(struct cpuidle_device *dev)
{
return dev->last_residency;
}
/****************************
* CPUIDLE DRIVER INTERFACE *
****************************/
struct cpuidle_driver {
char name[CPUIDLE_NAME_LEN];
struct module *owner;
};
#ifdef CONFIG_CPU_IDLE
extern int cpuidle_register_driver(struct cpuidle_driver *drv);
extern void cpuidle_unregister_driver(struct cpuidle_driver *drv);
extern int cpuidle_register_device(struct cpuidle_device *dev);
extern void cpuidle_unregister_device(struct cpuidle_device *dev);
extern void cpuidle_pause_and_lock(void);
extern void cpuidle_resume_and_unlock(void);
extern int cpuidle_enable_device(struct cpuidle_device *dev);
extern void cpuidle_disable_device(struct cpuidle_device *dev);
#else
static inline int cpuidle_register_driver(struct cpuidle_driver *drv)
{return 0;}
static inline void cpuidle_unregister_driver(struct cpuidle_driver *drv) { }
static inline int cpuidle_register_device(struct cpuidle_device *dev)
{return 0;}
static inline void cpuidle_unregister_device(struct cpuidle_device *dev) { }
static inline void cpuidle_pause_and_lock(void) { }
static inline void cpuidle_resume_and_unlock(void) { }
static inline int cpuidle_enable_device(struct cpuidle_device *dev)
{return 0;}
static inline void cpuidle_disable_device(struct cpuidle_device *dev) { }
#endif
/******************************
* CPUIDLE GOVERNOR INTERFACE *
******************************/
struct cpuidle_governor {
char name[CPUIDLE_NAME_LEN];
struct list_head governor_list;
unsigned int rating;
int (*enable) (struct cpuidle_device *dev);
void (*disable) (struct cpuidle_device *dev);
int (*select) (struct cpuidle_device *dev);
void (*reflect) (struct cpuidle_device *dev);
struct module *owner;
};
#ifdef CONFIG_CPU_IDLE
extern int cpuidle_register_governor(struct cpuidle_governor *gov);
extern void cpuidle_unregister_governor(struct cpuidle_governor *gov);
#else
static inline int cpuidle_register_governor(struct cpuidle_governor *gov)
{return 0;}
static inline void cpuidle_unregister_governor(struct cpuidle_governor *gov) { }
#endif
#endif /* _LINUX_CPUIDLE_H */

View File

@ -40,6 +40,7 @@ enum tick_nohz_mode {
* @idle_sleeps: Number of idle calls, where the sched tick was stopped
* @idle_entrytime: Time when the idle call was entered
* @idle_sleeptime: Sum of the time slept in idle with sched tick stopped
* @sleep_length: Duration of the current idle sleep
*/
struct tick_sched {
struct hrtimer sched_timer;
@ -52,6 +53,7 @@ struct tick_sched {
unsigned long idle_sleeps;
ktime_t idle_entrytime;
ktime_t idle_sleeptime;
ktime_t sleep_length;
unsigned long last_jiffies;
unsigned long next_jiffies;
ktime_t idle_expires;
@ -100,10 +102,17 @@ static inline int tick_check_oneshot_change(int allow_nohz) { return 0; }
extern void tick_nohz_stop_sched_tick(void);
extern void tick_nohz_restart_sched_tick(void);
extern void tick_nohz_update_jiffies(void);
extern ktime_t tick_nohz_get_sleep_length(void);
# else
static inline void tick_nohz_stop_sched_tick(void) { }
static inline void tick_nohz_restart_sched_tick(void) { }
static inline void tick_nohz_update_jiffies(void) { }
static inline ktime_t tick_nohz_get_sleep_length(void)
{
ktime_t len = { .tv64 = NSEC_PER_SEC/HZ };
return len;
}
# endif /* !NO_HZ */
#endif

View File

@ -153,6 +153,7 @@ void tick_nohz_stop_sched_tick(void)
unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
struct tick_sched *ts;
ktime_t last_update, expires, now, delta;
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
int cpu;
local_irq_save(flags);
@ -302,10 +303,25 @@ void tick_nohz_stop_sched_tick(void)
out:
ts->next_jiffies = next_jiffies;
ts->last_jiffies = last_jiffies;
ts->sleep_length = ktime_sub(dev->next_event, now);
end:
local_irq_restore(flags);
}
/**
* tick_nohz_get_sleep_length - return the length of the current sleep
*
* Called from power state control code with interrupts disabled
*/
ktime_t tick_nohz_get_sleep_length(void)
{
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
return ts->sleep_length;
}
EXPORT_SYMBOL_GPL(tick_nohz_get_sleep_length);
/**
* nohz_restart_sched_tick - restart the idle tick from the idle task
*