1
0
Fork 0

PM / OPP: Add infrastructure to manage multiple regulators

This patch adds infrastructure to manage multiple regulators and updates
the only user (cpufreq-dt) of dev_pm_opp_set{put}_regulator().

This is preparatory work for adding full support for devices with
multiple regulators.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
hifive-unleashed-5.1
Viresh Kumar 2016-12-01 16:28:19 +05:30 committed by Rafael J. Wysocki
parent ce31781a75
commit dfbe4678d7
6 changed files with 299 additions and 126 deletions

View File

@ -93,6 +93,8 @@ struct opp_table *_find_opp_table(struct device *dev)
* Return: voltage in micro volt corresponding to the opp, else
* return 0
*
* This is useful only for devices with single power supply.
*
* Locking: This function must be called under rcu_read_lock(). opp is a rcu
* protected pointer. This means that opp which could have been fetched by
* opp_find_freq_{exact,ceil,floor} functions is valid as long as we are
@ -112,7 +114,7 @@ unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
if (IS_ERR_OR_NULL(tmp_opp))
pr_err("%s: Invalid parameters\n", __func__);
else
v = tmp_opp->supply.u_volt;
v = tmp_opp->supplies[0].u_volt;
return v;
}
@ -210,6 +212,24 @@ unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
static int _get_regulator_count(struct device *dev)
{
struct opp_table *opp_table;
int count;
rcu_read_lock();
opp_table = _find_opp_table(dev);
if (!IS_ERR(opp_table))
count = opp_table->regulator_count;
else
count = 0;
rcu_read_unlock();
return count;
}
/**
* dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
* @dev: device for which we do this operation
@ -222,34 +242,51 @@ unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
{
struct opp_table *opp_table;
struct dev_pm_opp *opp;
struct regulator *reg;
struct regulator *reg, **regulators;
unsigned long latency_ns = 0;
unsigned long min_uV = ~0, max_uV = 0;
int ret;
int ret, i, count;
struct {
unsigned long min;
unsigned long max;
} *uV;
count = _get_regulator_count(dev);
/* Regulator may not be required for the device */
if (!count)
return 0;
regulators = kmalloc_array(count, sizeof(*regulators), GFP_KERNEL);
if (!regulators)
return 0;
uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
if (!uV)
goto free_regulators;
rcu_read_lock();
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
rcu_read_unlock();
return 0;
goto free_uV;
}
reg = opp_table->regulator;
if (IS_ERR(reg)) {
/* Regulator may not be required for device */
rcu_read_unlock();
return 0;
}
memcpy(regulators, opp_table->regulators, count * sizeof(*regulators));
list_for_each_entry_rcu(opp, &opp_table->opp_list, node) {
if (!opp->available)
continue;
for (i = 0; i < count; i++) {
uV[i].min = ~0;
uV[i].max = 0;
if (opp->supply.u_volt_min < min_uV)
min_uV = opp->supply.u_volt_min;
if (opp->supply.u_volt_max > max_uV)
max_uV = opp->supply.u_volt_max;
list_for_each_entry_rcu(opp, &opp_table->opp_list, node) {
if (!opp->available)
continue;
if (opp->supplies[i].u_volt_min < uV[i].min)
uV[i].min = opp->supplies[i].u_volt_min;
if (opp->supplies[i].u_volt_max > uV[i].max)
uV[i].max = opp->supplies[i].u_volt_max;
}
}
rcu_read_unlock();
@ -258,9 +295,16 @@ unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
* The caller needs to ensure that opp_table (and hence the regulator)
* isn't freed, while we are executing this routine.
*/
ret = regulator_set_voltage_time(reg, min_uV, max_uV);
if (ret > 0)
latency_ns = ret * 1000;
for (i = 0; reg = regulators[i], i < count; i++) {
ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
if (ret > 0)
latency_ns += ret * 1000;
}
free_uV:
kfree(uV);
free_regulators:
kfree(regulators);
return latency_ns;
}
@ -580,7 +624,7 @@ int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
{
struct opp_table *opp_table;
struct dev_pm_opp *old_opp, *opp;
struct regulator *reg;
struct regulator *reg = ERR_PTR(-ENXIO);
struct clk *clk;
unsigned long freq, old_freq;
struct dev_pm_opp_supply old_supply, new_supply;
@ -633,14 +677,23 @@ int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
return ret;
}
if (opp_table->regulators) {
/* This function only supports single regulator per device */
if (WARN_ON(opp_table->regulator_count > 1)) {
dev_err(dev, "multiple regulators not supported\n");
rcu_read_unlock();
return -EINVAL;
}
reg = opp_table->regulators[0];
}
if (IS_ERR(old_opp))
old_supply.u_volt = 0;
else
memcpy(&old_supply, &old_opp->supply, sizeof(old_supply));
memcpy(&old_supply, old_opp->supplies, sizeof(old_supply));
memcpy(&new_supply, &opp->supply, sizeof(new_supply));
reg = opp_table->regulator;
memcpy(&new_supply, opp->supplies, sizeof(new_supply));
rcu_read_unlock();
@ -764,9 +817,6 @@ static struct opp_table *_add_opp_table(struct device *dev)
_of_init_opp_table(opp_table, dev);
/* Set regulator to a non-NULL error value */
opp_table->regulator = ERR_PTR(-ENXIO);
/* Find clk for the device */
opp_table->clk = clk_get(dev, NULL);
if (IS_ERR(opp_table->clk)) {
@ -815,7 +865,7 @@ static void _remove_opp_table(struct opp_table *opp_table)
if (opp_table->prop_name)
return;
if (!IS_ERR(opp_table->regulator))
if (opp_table->regulators)
return;
/* Release clk */
@ -924,35 +974,50 @@ struct dev_pm_opp *_allocate_opp(struct device *dev,
struct opp_table **opp_table)
{
struct dev_pm_opp *opp;
int count, supply_size;
struct opp_table *table;
/* allocate new OPP node */
opp = kzalloc(sizeof(*opp), GFP_KERNEL);
if (!opp)
table = _add_opp_table(dev);
if (!table)
return NULL;
INIT_LIST_HEAD(&opp->node);
/* Allocate space for at least one supply */
count = table->regulator_count ? table->regulator_count : 1;
supply_size = sizeof(*opp->supplies) * count;
*opp_table = _add_opp_table(dev);
if (!*opp_table) {
kfree(opp);
/* allocate new OPP node and supplies structures */
opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
if (!opp) {
kfree(table);
return NULL;
}
/* Put the supplies at the end of the OPP structure as an empty array */
opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
INIT_LIST_HEAD(&opp->node);
*opp_table = table;
return opp;
}
static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
struct opp_table *opp_table)
{
struct regulator *reg = opp_table->regulator;
struct regulator *reg;
int i;
if (!IS_ERR(reg) &&
!regulator_is_supported_voltage(reg, opp->supply.u_volt_min,
opp->supply.u_volt_max)) {
pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
__func__, opp->supply.u_volt_min,
opp->supply.u_volt_max);
return false;
for (i = 0; i < opp_table->regulator_count; i++) {
reg = opp_table->regulators[i];
if (!regulator_is_supported_voltage(reg,
opp->supplies[i].u_volt_min,
opp->supplies[i].u_volt_max)) {
pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
__func__, opp->supplies[i].u_volt_min,
opp->supplies[i].u_volt_max);
return false;
}
}
return true;
@ -984,12 +1049,13 @@ int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
/* Duplicate OPPs */
dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
__func__, opp->rate, opp->supply.u_volt,
opp->available, new_opp->rate, new_opp->supply.u_volt,
new_opp->available);
__func__, opp->rate, opp->supplies[0].u_volt,
opp->available, new_opp->rate,
new_opp->supplies[0].u_volt, new_opp->available);
/* Should we compare voltages for all regulators here ? */
return opp->available &&
new_opp->supply.u_volt == opp->supply.u_volt ? 0 : -EEXIST;
new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? 0 : -EEXIST;
}
new_opp->opp_table = opp_table;
@ -1056,9 +1122,9 @@ int _opp_add_v1(struct device *dev, unsigned long freq, long u_volt,
/* populate the opp table */
new_opp->rate = freq;
tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
new_opp->supply.u_volt = u_volt;
new_opp->supply.u_volt_min = u_volt - tol;
new_opp->supply.u_volt_max = u_volt + tol;
new_opp->supplies[0].u_volt = u_volt;
new_opp->supplies[0].u_volt_min = u_volt - tol;
new_opp->supplies[0].u_volt_max = u_volt + tol;
new_opp->available = true;
new_opp->dynamic = dynamic;
@ -1303,12 +1369,14 @@ unlock:
EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
/**
* dev_pm_opp_set_regulator() - Set regulator name for the device
* dev_pm_opp_set_regulators() - Set regulator names for the device
* @dev: Device for which regulator name is being set.
* @name: Name of the regulator.
* @names: Array of pointers to the names of the regulator.
* @count: Number of regulators.
*
* In order to support OPP switching, OPP layer needs to know the name of the
* device's regulator, as the core would be required to switch voltages as well.
* device's regulators, as the core would be required to switch voltages as
* well.
*
* This must be called before any OPPs are initialized for the device.
*
@ -1318,11 +1386,13 @@ EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
struct opp_table *dev_pm_opp_set_regulator(struct device *dev, const char *name)
struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
const char * const names[],
unsigned int count)
{
struct opp_table *opp_table;
struct regulator *reg;
int ret;
int ret, i;
mutex_lock(&opp_table_lock);
@ -1338,26 +1408,44 @@ struct opp_table *dev_pm_opp_set_regulator(struct device *dev, const char *name)
goto err;
}
/* Already have a regulator set */
if (WARN_ON(!IS_ERR(opp_table->regulator))) {
/* Already have regulators set */
if (WARN_ON(opp_table->regulators)) {
ret = -EBUSY;
goto err;
}
/* Allocate the regulator */
reg = regulator_get_optional(dev, name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret != -EPROBE_DEFER)
dev_err(dev, "%s: no regulator (%s) found: %d\n",
__func__, name, ret);
opp_table->regulators = kmalloc_array(count,
sizeof(*opp_table->regulators),
GFP_KERNEL);
if (!opp_table->regulators) {
ret = -ENOMEM;
goto err;
}
opp_table->regulator = reg;
for (i = 0; i < count; i++) {
reg = regulator_get_optional(dev, names[i]);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret != -EPROBE_DEFER)
dev_err(dev, "%s: no regulator (%s) found: %d\n",
__func__, names[i], ret);
goto free_regulators;
}
opp_table->regulators[i] = reg;
}
opp_table->regulator_count = count;
mutex_unlock(&opp_table_lock);
return opp_table;
free_regulators:
while (i != 0)
regulator_put(opp_table->regulators[--i]);
kfree(opp_table->regulators);
opp_table->regulators = NULL;
err:
_remove_opp_table(opp_table);
unlock:
@ -1365,11 +1453,11 @@ unlock:
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulator);
EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
/**
* dev_pm_opp_put_regulator() - Releases resources blocked for regulator
* @opp_table: OPP table returned from dev_pm_opp_set_regulator().
* dev_pm_opp_put_regulators() - Releases resources blocked for regulator
* @opp_table: OPP table returned from dev_pm_opp_set_regulators().
*
* Locking: The internal opp_table and opp structures are RCU protected.
* Hence this function internally uses RCU updater strategy with mutex locks
@ -1377,20 +1465,26 @@ EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulator);
* that this function is *NOT* called under RCU protection or in contexts where
* mutex cannot be locked.
*/
void dev_pm_opp_put_regulator(struct opp_table *opp_table)
void dev_pm_opp_put_regulators(struct opp_table *opp_table)
{
int i;
mutex_lock(&opp_table_lock);
if (IS_ERR(opp_table->regulator)) {
pr_err("%s: Doesn't have regulator set\n", __func__);
if (!opp_table->regulators) {
pr_err("%s: Doesn't have regulators set\n", __func__);
goto unlock;
}
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
regulator_put(opp_table->regulator);
opp_table->regulator = ERR_PTR(-ENXIO);
for (i = opp_table->regulator_count - 1; i >= 0; i--)
regulator_put(opp_table->regulators[i]);
kfree(opp_table->regulators);
opp_table->regulators = NULL;
opp_table->regulator_count = 0;
/* Try freeing opp_table if this was the last blocking resource */
_remove_opp_table(opp_table);
@ -1398,7 +1492,7 @@ void dev_pm_opp_put_regulator(struct opp_table *opp_table)
unlock:
mutex_unlock(&opp_table_lock);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulator);
EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
/**
* dev_pm_opp_add() - Add an OPP table from a table definitions

View File

@ -15,6 +15,7 @@
#include <linux/err.h>
#include <linux/init.h>
#include <linux/limits.h>
#include <linux/slab.h>
#include "opp.h"
@ -34,6 +35,46 @@ void opp_debug_remove_one(struct dev_pm_opp *opp)
debugfs_remove_recursive(opp->dentry);
}
static bool opp_debug_create_supplies(struct dev_pm_opp *opp,
struct opp_table *opp_table,
struct dentry *pdentry)
{
struct dentry *d;
int i = 0;
char *name;
/* Always create at least supply-0 directory */
do {
name = kasprintf(GFP_KERNEL, "supply-%d", i);
/* Create per-opp directory */
d = debugfs_create_dir(name, pdentry);
kfree(name);
if (!d)
return false;
if (!debugfs_create_ulong("u_volt_target", S_IRUGO, d,
&opp->supplies[i].u_volt))
return false;
if (!debugfs_create_ulong("u_volt_min", S_IRUGO, d,
&opp->supplies[i].u_volt_min))
return false;
if (!debugfs_create_ulong("u_volt_max", S_IRUGO, d,
&opp->supplies[i].u_volt_max))
return false;
if (!debugfs_create_ulong("u_amp", S_IRUGO, d,
&opp->supplies[i].u_amp))
return false;
} while (++i < opp_table->regulator_count);
return true;
}
int opp_debug_create_one(struct dev_pm_opp *opp, struct opp_table *opp_table)
{
struct dentry *pdentry = opp_table->dentry;
@ -63,16 +104,7 @@ int opp_debug_create_one(struct dev_pm_opp *opp, struct opp_table *opp_table)
if (!debugfs_create_ulong("rate_hz", S_IRUGO, d, &opp->rate))
return -ENOMEM;
if (!debugfs_create_ulong("u_volt_target", S_IRUGO, d, &opp->supply.u_volt))
return -ENOMEM;
if (!debugfs_create_ulong("u_volt_min", S_IRUGO, d, &opp->supply.u_volt_min))
return -ENOMEM;
if (!debugfs_create_ulong("u_volt_max", S_IRUGO, d, &opp->supply.u_volt_max))
return -ENOMEM;
if (!debugfs_create_ulong("u_amp", S_IRUGO, d, &opp->supply.u_amp))
if (!opp_debug_create_supplies(opp, opp_table, d))
return -ENOMEM;
if (!debugfs_create_ulong("clock_latency_ns", S_IRUGO, d,

View File

@ -17,6 +17,7 @@
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/export.h>
#include "opp.h"
@ -101,16 +102,16 @@ static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
return true;
}
/* TODO: Support multiple regulators */
static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
struct opp_table *opp_table)
{
u32 microvolt[3] = {0};
u32 val;
int count, ret;
u32 *microvolt, *microamp = NULL;
int supplies, vcount, icount, ret, i, j;
struct property *prop = NULL;
char name[NAME_MAX];
supplies = opp_table->regulator_count ? opp_table->regulator_count : 1;
/* Search for "opp-microvolt-<name>" */
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microvolt-%s",
@ -128,34 +129,29 @@ static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
return 0;
}
count = of_property_count_u32_elems(opp->np, name);
if (count < 0) {
vcount = of_property_count_u32_elems(opp->np, name);
if (vcount < 0) {
dev_err(dev, "%s: Invalid %s property (%d)\n",
__func__, name, count);
return count;
__func__, name, vcount);
return vcount;
}
/* There can be one or three elements here */
if (count != 1 && count != 3) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d)\n",
__func__, name, count);
/* There can be one or three elements per supply */
if (vcount != supplies && vcount != supplies * 3) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
__func__, name, vcount, supplies);
return -EINVAL;
}
ret = of_property_read_u32_array(opp->np, name, microvolt, count);
microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
if (!microvolt)
return -ENOMEM;
ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
if (ret) {
dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
return -EINVAL;
}
opp->supply.u_volt = microvolt[0];
if (count == 1) {
opp->supply.u_volt_min = opp->supply.u_volt;
opp->supply.u_volt_max = opp->supply.u_volt;
} else {
opp->supply.u_volt_min = microvolt[1];
opp->supply.u_volt_max = microvolt[2];
ret = -EINVAL;
goto free_microvolt;
}
/* Search for "opp-microamp-<name>" */
@ -172,10 +168,59 @@ static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
prop = of_find_property(opp->np, name, NULL);
}
if (prop && !of_property_read_u32(opp->np, name, &val))
opp->supply.u_amp = val;
if (prop) {
icount = of_property_count_u32_elems(opp->np, name);
if (icount < 0) {
dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
name, icount);
ret = icount;
goto free_microvolt;
}
return 0;
if (icount != supplies) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
__func__, name, icount, supplies);
ret = -EINVAL;
goto free_microvolt;
}
microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
if (!microamp) {
ret = -EINVAL;
goto free_microvolt;
}
ret = of_property_read_u32_array(opp->np, name, microamp,
icount);
if (ret) {
dev_err(dev, "%s: error parsing %s: %d\n", __func__,
name, ret);
ret = -EINVAL;
goto free_microamp;
}
}
for (i = 0, j = 0; i < supplies; i++) {
opp->supplies[i].u_volt = microvolt[j++];
if (vcount == supplies) {
opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
} else {
opp->supplies[i].u_volt_min = microvolt[j++];
opp->supplies[i].u_volt_max = microvolt[j++];
}
if (microamp)
opp->supplies[i].u_amp = microamp[i];
}
free_microamp:
kfree(microamp);
free_microvolt:
kfree(microvolt);
return ret;
}
/**
@ -304,8 +349,8 @@ static int _opp_add_static_v2(struct device *dev, struct device_node *np)
pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
__func__, new_opp->turbo, new_opp->rate,
new_opp->supply.u_volt, new_opp->supply.u_volt_min,
new_opp->supply.u_volt_max, new_opp->clock_latency_ns);
new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns);
/*
* Notify the changes in the availability of the operable

View File

@ -61,7 +61,7 @@ extern struct list_head opp_tables;
* @turbo: true if turbo (boost) OPP
* @suspend: true if suspend OPP
* @rate: Frequency in hertz
* @supply: Power supply voltage/current values
* @supplies: Power supplies voltage/current values
* @clock_latency_ns: Latency (in nanoseconds) of switching to this OPP's
* frequency from any other OPP's frequency.
* @opp_table: points back to the opp_table struct this opp belongs to
@ -80,7 +80,7 @@ struct dev_pm_opp {
bool suspend;
unsigned long rate;
struct dev_pm_opp_supply supply;
struct dev_pm_opp_supply *supplies;
unsigned long clock_latency_ns;
@ -139,7 +139,8 @@ enum opp_table_access {
* @supported_hw_count: Number of elements in supported_hw array.
* @prop_name: A name to postfix to many DT properties, while parsing them.
* @clk: Device's clock handle
* @regulator: Supply regulator
* @regulators: Supply regulators
* @regulator_count: Number of power supply regulators
* @dentry: debugfs dentry pointer of the real device directory (not links).
* @dentry_name: Name of the real dentry.
*
@ -174,7 +175,8 @@ struct opp_table {
unsigned int supported_hw_count;
const char *prop_name;
struct clk *clk;
struct regulator *regulator;
struct regulator **regulators;
unsigned int regulator_count;
#ifdef CONFIG_DEBUG_FS
struct dentry *dentry;

View File

@ -188,7 +188,7 @@ static int cpufreq_init(struct cpufreq_policy *policy)
*/
name = find_supply_name(cpu_dev);
if (name) {
opp_table = dev_pm_opp_set_regulator(cpu_dev, name);
opp_table = dev_pm_opp_set_regulators(cpu_dev, &name, 1);
if (IS_ERR(opp_table)) {
ret = PTR_ERR(opp_table);
dev_err(cpu_dev, "Failed to set regulator for cpu%d: %d\n",
@ -289,7 +289,7 @@ out_free_priv:
out_free_opp:
dev_pm_opp_of_cpumask_remove_table(policy->cpus);
if (name)
dev_pm_opp_put_regulator(opp_table);
dev_pm_opp_put_regulators(opp_table);
out_put_clk:
clk_put(cpu_clk);
@ -304,7 +304,7 @@ static int cpufreq_exit(struct cpufreq_policy *policy)
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
if (priv->reg_name)
dev_pm_opp_put_regulator(priv->opp_table);
dev_pm_opp_put_regulators(priv->opp_table);
clk_put(policy->clk);
kfree(priv);

View File

@ -79,8 +79,8 @@ int dev_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
void dev_pm_opp_put_supported_hw(struct device *dev);
int dev_pm_opp_set_prop_name(struct device *dev, const char *name);
void dev_pm_opp_put_prop_name(struct device *dev);
struct opp_table *dev_pm_opp_set_regulator(struct device *dev, const char *name);
void dev_pm_opp_put_regulator(struct opp_table *opp_table);
struct opp_table *dev_pm_opp_set_regulators(struct device *dev, const char * const names[], unsigned int count);
void dev_pm_opp_put_regulators(struct opp_table *opp_table);
int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq);
int dev_pm_opp_set_sharing_cpus(struct device *cpu_dev, const struct cpumask *cpumask);
int dev_pm_opp_get_sharing_cpus(struct device *cpu_dev, struct cpumask *cpumask);
@ -187,12 +187,12 @@ static inline int dev_pm_opp_set_prop_name(struct device *dev, const char *name)
static inline void dev_pm_opp_put_prop_name(struct device *dev) {}
static inline struct opp_table *dev_pm_opp_set_regulator(struct device *dev, const char *name)
static inline struct opp_table *dev_pm_opp_set_regulators(struct device *dev, const char * const names[], unsigned int count)
{
return ERR_PTR(-ENOTSUPP);
}
static inline void dev_pm_opp_put_regulator(struct opp_table *opp_table) {}
static inline void dev_pm_opp_put_regulators(struct opp_table *opp_table) {}
static inline int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
{