1
0
Fork 0

NVMe: Initial PRP List support

Add a pointer to the nvme_req_info to hold a new data structure
(nvme_prps) which contains a list of the pages allocated to this
particular request for holding PRP list entries.  nvme_setup_prps()
now returns this pointer.

To allocate and free the memory used for PRP lists, we need a struct
device, so we need to pass the nvme_queue pointer to many functions
which didn't use to need it.

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
hifive-unleashed-5.1
Shane Michael Matthews 2011-02-10 08:51:24 -05:00 committed by Matthew Wilcox
parent 51882d00f0
commit e025344c56
1 changed files with 92 additions and 14 deletions

View File

@ -247,21 +247,55 @@ static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
return 0;
}
static __le64 *alloc_prp_list(struct nvme_queue *nvmeq, int length,
dma_addr_t *addr)
{
return dma_alloc_coherent(nvmeq->q_dmadev, PAGE_SIZE, addr, GFP_ATOMIC);
}
struct nvme_prps {
int npages;
dma_addr_t first_dma;
__le64 *list[0];
};
static void nvme_free_prps(struct nvme_queue *nvmeq, struct nvme_prps *prps)
{
const int last_prp = PAGE_SIZE / 8 - 1;
int i;
dma_addr_t prp_dma;
if (!prps)
return;
prp_dma = prps->first_dma;
for (i = 0; i < prps->npages; i++) {
__le64 *prp_list = prps->list[i];
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
dma_free_coherent(nvmeq->q_dmadev, PAGE_SIZE, prp_list,
prp_dma);
prp_dma = next_prp_dma;
}
kfree(prps);
}
struct nvme_req_info {
struct bio *bio;
int nents;
struct nvme_prps *prps;
struct scatterlist sg[0];
};
/* XXX: use a mempool */
static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
{
return kmalloc(sizeof(struct nvme_req_info) +
return kzalloc(sizeof(struct nvme_req_info) +
sizeof(struct scatterlist) * nseg, gfp);
}
static void free_info(struct nvme_req_info *info)
static void free_info(struct nvme_queue *nvmeq, struct nvme_req_info *info)
{
nvme_free_prps(nvmeq, info->prps);
kfree(info);
}
@ -274,7 +308,7 @@ static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
free_info(info);
free_info(nvmeq, info);
bio_endio(bio, status ? -EIO : 0);
bio = bio_list_pop(&nvmeq->sq_cong);
if (bio)
@ -282,17 +316,22 @@ static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
}
/* length is in bytes */
static void nvme_setup_prps(struct nvme_common_command *cmd,
static struct nvme_prps *nvme_setup_prps(struct nvme_queue *nvmeq,
struct nvme_common_command *cmd,
struct scatterlist *sg, int length)
{
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
int offset = offset_in_page(dma_addr);
__le64 *prp_list;
dma_addr_t prp_dma;
int nprps, npages, i, prp_page;
struct nvme_prps *prps = NULL;
cmd->prp1 = cpu_to_le64(dma_addr);
length -= (PAGE_SIZE - offset);
if (length <= 0)
return;
return prps;
dma_len -= (PAGE_SIZE - offset);
if (dma_len) {
@ -305,10 +344,42 @@ static void nvme_setup_prps(struct nvme_common_command *cmd,
if (length <= PAGE_SIZE) {
cmd->prp2 = cpu_to_le64(dma_addr);
return;
return prps;
}
/* XXX: support PRP lists */
nprps = DIV_ROUND_UP(length, PAGE_SIZE);
npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
prps->npages = npages;
prp_page = 0;
prp_list = alloc_prp_list(nvmeq, length, &prp_dma);
prps->list[prp_page++] = prp_list;
prps->first_dma = prp_dma;
cmd->prp2 = cpu_to_le64(prp_dma);
i = 0;
for (;;) {
if (i == PAGE_SIZE / 8 - 1) {
__le64 *old_prp_list = prp_list;
prp_list = alloc_prp_list(nvmeq, length, &prp_dma);
prps->list[prp_page++] = prp_list;
old_prp_list[i] = cpu_to_le64(prp_dma);
i = 0;
}
prp_list[i++] = cpu_to_le64(dma_addr);
dma_len -= PAGE_SIZE;
dma_addr += PAGE_SIZE;
length -= PAGE_SIZE;
if (length <= 0)
break;
if (dma_len > 0)
continue;
BUG_ON(dma_len < 0);
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
return prps;
}
static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
@ -378,7 +449,8 @@ static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
cmnd->rw.flags = 1;
cmnd->rw.command_id = cmdid;
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
info->prps = nvme_setup_prps(nvmeq, &cmnd->common, info->sg,
bio->bi_size);
cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
cmnd->rw.control = cpu_to_le16(control);
@ -393,7 +465,7 @@ static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
return 0;
free_info:
free_info(info);
free_info(nvmeq, info);
congestion:
return -EBUSY;
}
@ -852,13 +924,15 @@ static int nvme_submit_user_admin_command(struct nvme_dev *dev,
{
int err, nents;
struct scatterlist *sg;
struct nvme_prps *prps;
nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
if (nents < 0)
return nents;
nvme_setup_prps(&cmd->common, sg, length);
prps = nvme_setup_prps(dev->queues[0], &cmd->common, sg, length);
err = nvme_submit_admin_cmd(dev, cmd, NULL);
nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
nvme_free_prps(dev->queues[0], prps);
return err ? -EIO : 0;
}
@ -896,6 +970,7 @@ static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
u32 result;
int nents, status;
struct scatterlist *sg;
struct nvme_prps *prps;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
@ -915,10 +990,10 @@ static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
/* XXX: metadata */
nvme_setup_prps(&c.common, sg, length);
nvmeq = get_nvmeq(ns);
/* XXX: metadata */
prps = nvme_setup_prps(nvmeq, &c.common, sg, length);
/* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
* disabled. We may be preempted at any point, and be rescheduled
* to a different CPU. That will cause cacheline bouncing, but no
@ -928,6 +1003,7 @@ static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
nvme_free_prps(nvmeq, prps);
put_user(result, &uio->result);
return status;
}
@ -940,6 +1016,7 @@ static int nvme_download_firmware(struct nvme_ns *ns,
struct nvme_command c;
int nents, status;
struct scatterlist *sg;
struct nvme_prps *prps;
if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
return -EFAULT;
@ -954,10 +1031,11 @@ static int nvme_download_firmware(struct nvme_ns *ns,
c.dlfw.opcode = nvme_admin_download_fw;
c.dlfw.numd = cpu_to_le32(dlfw.length);
c.dlfw.offset = cpu_to_le32(dlfw.offset);
nvme_setup_prps(&c.common, sg, dlfw.length * 4);
prps = nvme_setup_prps(dev->queues[0], &c.common, sg, dlfw.length * 4);
status = nvme_submit_admin_cmd(dev, &c, NULL);
nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
nvme_free_prps(dev->queues[0], prps);
return status;
}