1
0
Fork 0

clocksource/drivers/fttmr010: Use state container

This converts the Faraday FTTMR010 to use the state container
design pattern. Take some care to handle the state container
and free:ing of resources as has been done in the Moxa driver.

Cc: Joel Stanley <joel@jms.id.au>
Tested-by: Jonas Jensen <jonas.jensen@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
hifive-unleashed-5.1
Linus Walleij 2017-05-18 22:17:01 +02:00 committed by Daniel Lezcano
parent dd98442e17
commit e7bad212ca
1 changed files with 116 additions and 74 deletions

View File

@ -15,6 +15,7 @@
#include <linux/clocksource.h> #include <linux/clocksource.h>
#include <linux/sched_clock.h> #include <linux/sched_clock.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/slab.h>
/* /*
* Register definitions for the timers * Register definitions for the timers
@ -62,23 +63,35 @@
#define TIMER_3_INT_OVERFLOW (1 << 8) #define TIMER_3_INT_OVERFLOW (1 << 8)
#define TIMER_INT_ALL_MASK 0x1ff #define TIMER_INT_ALL_MASK 0x1ff
static unsigned int tick_rate; struct fttmr010 {
static void __iomem *base; void __iomem *base;
unsigned int tick_rate;
struct clock_event_device clkevt;
};
/* A local singleton used by sched_clock, which is stateless */
static struct fttmr010 *local_fttmr;
static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
return container_of(evt, struct fttmr010, clkevt);
}
static u64 notrace fttmr010_read_sched_clock(void) static u64 notrace fttmr010_read_sched_clock(void)
{ {
return readl(base + TIMER3_COUNT); return readl(local_fttmr->base + TIMER3_COUNT);
} }
static int fttmr010_timer_set_next_event(unsigned long cycles, static int fttmr010_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt) struct clock_event_device *evt)
{ {
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr; u32 cr;
/* Setup the match register */ /* Setup the match register */
cr = readl(base + TIMER1_COUNT); cr = readl(fttmr010->base + TIMER1_COUNT);
writel(cr + cycles, base + TIMER1_MATCH1); writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
if (readl(base + TIMER1_COUNT) - cr > cycles) if (readl(fttmr010->base + TIMER1_COUNT) - cr > cycles)
return -ETIME; return -ETIME;
return 0; return 0;
@ -86,99 +99,90 @@ static int fttmr010_timer_set_next_event(unsigned long cycles,
static int fttmr010_timer_shutdown(struct clock_event_device *evt) static int fttmr010_timer_shutdown(struct clock_event_device *evt)
{ {
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr; u32 cr;
/*
* Disable also for oneshot: the set_next() call will arm the timer
* instead.
*/
/* Stop timer and interrupt. */ /* Stop timer and interrupt. */
cr = readl(base + TIMER_CR); cr = readl(fttmr010->base + TIMER_CR);
cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
writel(cr, base + TIMER_CR); writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop timer and interrupt. */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
writel(cr, fttmr010->base + TIMER_CR);
/* Setup counter start from 0 */ /* Setup counter start from 0 */
writel(0, base + TIMER1_COUNT); writel(0, fttmr010->base + TIMER1_COUNT);
writel(0, base + TIMER1_LOAD); writel(0, fttmr010->base + TIMER1_LOAD);
/* enable interrupt */ /* Enable interrupt */
cr = readl(base + TIMER_INTR_MASK); cr = readl(fttmr010->base + TIMER_INTR_MASK);
cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2); cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
cr |= TIMER_1_INT_MATCH1; cr |= TIMER_1_INT_MATCH1;
writel(cr, base + TIMER_INTR_MASK); writel(cr, fttmr010->base + TIMER_INTR_MASK);
/* start the timer */ /* Start the timer */
cr = readl(base + TIMER_CR); cr = readl(fttmr010->base + TIMER_CR);
cr |= TIMER_1_CR_ENABLE; cr |= TIMER_1_CR_ENABLE;
writel(cr, base + TIMER_CR); writel(cr, fttmr010->base + TIMER_CR);
return 0; return 0;
} }
static int fttmr010_timer_set_periodic(struct clock_event_device *evt) static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
{ {
u32 period = DIV_ROUND_CLOSEST(tick_rate, HZ); struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
u32 cr; u32 cr;
/* Stop timer and interrupt */ /* Stop timer and interrupt */
cr = readl(base + TIMER_CR); cr = readl(fttmr010->base + TIMER_CR);
cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT);
writel(cr, base + TIMER_CR); writel(cr, fttmr010->base + TIMER_CR);
/* Setup timer to fire at 1/HT intervals. */ /* Setup timer to fire at 1/HT intervals. */
cr = 0xffffffff - (period - 1); cr = 0xffffffff - (period - 1);
writel(cr, base + TIMER1_COUNT); writel(cr, fttmr010->base + TIMER1_COUNT);
writel(cr, base + TIMER1_LOAD); writel(cr, fttmr010->base + TIMER1_LOAD);
/* enable interrupt on overflow */ /* enable interrupt on overflow */
cr = readl(base + TIMER_INTR_MASK); cr = readl(fttmr010->base + TIMER_INTR_MASK);
cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2); cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
cr |= TIMER_1_INT_OVERFLOW; cr |= TIMER_1_INT_OVERFLOW;
writel(cr, base + TIMER_INTR_MASK); writel(cr, fttmr010->base + TIMER_INTR_MASK);
/* Start the timer */ /* Start the timer */
cr = readl(base + TIMER_CR); cr = readl(fttmr010->base + TIMER_CR);
cr |= TIMER_1_CR_ENABLE; cr |= TIMER_1_CR_ENABLE;
cr |= TIMER_1_CR_INT; cr |= TIMER_1_CR_INT;
writel(cr, base + TIMER_CR); writel(cr, fttmr010->base + TIMER_CR);
return 0; return 0;
} }
/* Use TIMER1 as clock event */
static struct clock_event_device fttmr010_clockevent = {
.name = "TIMER1",
/* Reasonably fast and accurate clock event */
.rating = 300,
.shift = 32,
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.set_next_event = fttmr010_timer_set_next_event,
.set_state_shutdown = fttmr010_timer_shutdown,
.set_state_periodic = fttmr010_timer_set_periodic,
.set_state_oneshot = fttmr010_timer_shutdown,
.tick_resume = fttmr010_timer_shutdown,
};
/* /*
* IRQ handler for the timer * IRQ handler for the timer
*/ */
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id) static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
{ {
struct clock_event_device *evt = &fttmr010_clockevent; struct clock_event_device *evt = dev_id;
evt->event_handler(evt); evt->event_handler(evt);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static struct irqaction fttmr010_timer_irq = {
.name = "Faraday FTTMR010 Timer Tick",
.flags = IRQF_TIMER,
.handler = fttmr010_timer_interrupt,
};
static int __init fttmr010_timer_init(struct device_node *np) static int __init fttmr010_timer_init(struct device_node *np)
{ {
struct fttmr010 *fttmr010;
int irq; int irq;
struct clk *clk; struct clk *clk;
int ret; int ret;
@ -198,53 +202,91 @@ static int __init fttmr010_timer_init(struct device_node *np)
pr_err("failed to enable PCLK\n"); pr_err("failed to enable PCLK\n");
return ret; return ret;
} }
tick_rate = clk_get_rate(clk);
base = of_iomap(np, 0); fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
if (!base) { if (!fttmr010) {
ret = -ENOMEM;
goto out_disable_clock;
}
fttmr010->tick_rate = clk_get_rate(clk);
fttmr010->base = of_iomap(np, 0);
if (!fttmr010->base) {
pr_err("Can't remap registers"); pr_err("Can't remap registers");
return -ENXIO; ret = -ENXIO;
goto out_free;
} }
/* IRQ for timer 1 */ /* IRQ for timer 1 */
irq = irq_of_parse_and_map(np, 0); irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) { if (irq <= 0) {
pr_err("Can't parse IRQ"); pr_err("Can't parse IRQ");
return -EINVAL; ret = -EINVAL;
goto out_unmap;
} }
/* /*
* Reset the interrupt mask and status * Reset the interrupt mask and status
*/ */
writel(TIMER_INT_ALL_MASK, base + TIMER_INTR_MASK); writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
writel(0, base + TIMER_INTR_STATE); writel(0, fttmr010->base + TIMER_INTR_STATE);
writel(TIMER_DEFAULT_FLAGS, base + TIMER_CR); writel(TIMER_DEFAULT_FLAGS, fttmr010->base + TIMER_CR);
/* /*
* Setup free-running clocksource timer (interrupts * Setup free-running clocksource timer (interrupts
* disabled.) * disabled.)
*/ */
writel(0, base + TIMER3_COUNT); local_fttmr = fttmr010;
writel(0, base + TIMER3_LOAD); writel(0, fttmr010->base + TIMER3_COUNT);
writel(0, base + TIMER3_MATCH1); writel(0, fttmr010->base + TIMER3_LOAD);
writel(0, base + TIMER3_MATCH2); writel(0, fttmr010->base + TIMER3_MATCH1);
clocksource_mmio_init(base + TIMER3_COUNT, writel(0, fttmr010->base + TIMER3_MATCH2);
"fttmr010_clocksource", tick_rate, clocksource_mmio_init(fttmr010->base + TIMER3_COUNT,
"FTTMR010-TIMER3",
fttmr010->tick_rate,
300, 32, clocksource_mmio_readl_up); 300, 32, clocksource_mmio_readl_up);
sched_clock_register(fttmr010_read_sched_clock, 32, tick_rate); sched_clock_register(fttmr010_read_sched_clock, 32,
fttmr010->tick_rate);
/* /*
* Setup clockevent timer (interrupt-driven.) * Setup clockevent timer (interrupt-driven) on timer 1.
*/ */
writel(0, base + TIMER1_COUNT); writel(0, fttmr010->base + TIMER1_COUNT);
writel(0, base + TIMER1_LOAD); writel(0, fttmr010->base + TIMER1_LOAD);
writel(0, base + TIMER1_MATCH1); writel(0, fttmr010->base + TIMER1_MATCH1);
writel(0, base + TIMER1_MATCH2); writel(0, fttmr010->base + TIMER1_MATCH2);
setup_irq(irq, &fttmr010_timer_irq); ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
fttmr010_clockevent.cpumask = cpumask_of(0); "FTTMR010-TIMER1", &fttmr010->clkevt);
clockevents_config_and_register(&fttmr010_clockevent, tick_rate, if (ret) {
pr_err("FTTMR010-TIMER1 no IRQ\n");
goto out_unmap;
}
fttmr010->clkevt.name = "FTTMR010-TIMER1";
/* Reasonably fast and accurate clock event */
fttmr010->clkevt.rating = 300;
fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT;
fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
fttmr010->clkevt.cpumask = cpumask_of(0);
fttmr010->clkevt.irq = irq;
clockevents_config_and_register(&fttmr010->clkevt,
fttmr010->tick_rate,
1, 0xffffffff); 1, 0xffffffff);
return 0; return 0;
out_unmap:
iounmap(fttmr010->base);
out_free:
kfree(fttmr010);
out_disable_clock:
clk_disable_unprepare(clk);
return ret;
} }
CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init); CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init); CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);