1
0
Fork 0

Documentation: x86: convert boot.txt to reST

This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.

Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
hifive-unleashed-5.2
Changbin Du 2019-05-08 23:21:16 +08:00 committed by Jonathan Corbet
parent e5def4c603
commit f1f238a9f1
2 changed files with 319 additions and 195 deletions

View File

@ -1,5 +1,8 @@
THE LINUX/x86 BOOT PROTOCOL .. SPDX-License-Identifier: GPL-2.0
---------------------------
===========================
The Linux/x86 Boot Protocol
===========================
On the x86 platform, the Linux kernel uses a rather complicated boot On the x86 platform, the Linux kernel uses a rather complicated boot
convention. This has evolved partially due to historical aspects, as convention. This has evolved partially due to historical aspects, as
@ -10,88 +13,91 @@ real-mode DOS as a mainstream operating system.
Currently, the following versions of the Linux/x86 boot protocol exist. Currently, the following versions of the Linux/x86 boot protocol exist.
Old kernels: zImage/Image support only. Some very early kernels ============= ============================================================
Old kernels zImage/Image support only. Some very early kernels
may not even support a command line. may not even support a command line.
Protocol 2.00: (Kernel 1.3.73) Added bzImage and initrd support, as Protocol 2.00 (Kernel 1.3.73) Added bzImage and initrd support, as
well as a formalized way to communicate between the well as a formalized way to communicate between the
boot loader and the kernel. setup.S made relocatable, boot loader and the kernel. setup.S made relocatable,
although the traditional setup area still assumed although the traditional setup area still assumed
writable. writable.
Protocol 2.01: (Kernel 1.3.76) Added a heap overrun warning. Protocol 2.01 (Kernel 1.3.76) Added a heap overrun warning.
Protocol 2.02: (Kernel 2.4.0-test3-pre3) New command line protocol. Protocol 2.02 (Kernel 2.4.0-test3-pre3) New command line protocol.
Lower the conventional memory ceiling. No overwrite Lower the conventional memory ceiling. No overwrite
of the traditional setup area, thus making booting of the traditional setup area, thus making booting
safe for systems which use the EBDA from SMM or 32-bit safe for systems which use the EBDA from SMM or 32-bit
BIOS entry points. zImage deprecated but still BIOS entry points. zImage deprecated but still
supported. supported.
Protocol 2.03: (Kernel 2.4.18-pre1) Explicitly makes the highest possible Protocol 2.03 (Kernel 2.4.18-pre1) Explicitly makes the highest possible
initrd address available to the bootloader. initrd address available to the bootloader.
Protocol 2.04: (Kernel 2.6.14) Extend the syssize field to four bytes. Protocol 2.04 (Kernel 2.6.14) Extend the syssize field to four bytes.
Protocol 2.05: (Kernel 2.6.20) Make protected mode kernel relocatable. Protocol 2.05 (Kernel 2.6.20) Make protected mode kernel relocatable.
Introduce relocatable_kernel and kernel_alignment fields. Introduce relocatable_kernel and kernel_alignment fields.
Protocol 2.06: (Kernel 2.6.22) Added a field that contains the size of Protocol 2.06 (Kernel 2.6.22) Added a field that contains the size of
the boot command line. the boot command line.
Protocol 2.07: (Kernel 2.6.24) Added paravirtualised boot protocol. Protocol 2.07 (Kernel 2.6.24) Added paravirtualised boot protocol.
Introduced hardware_subarch and hardware_subarch_data Introduced hardware_subarch and hardware_subarch_data
and KEEP_SEGMENTS flag in load_flags. and KEEP_SEGMENTS flag in load_flags.
Protocol 2.08: (Kernel 2.6.26) Added crc32 checksum and ELF format Protocol 2.08 (Kernel 2.6.26) Added crc32 checksum and ELF format
payload. Introduced payload_offset and payload_length payload. Introduced payload_offset and payload_length
fields to aid in locating the payload. fields to aid in locating the payload.
Protocol 2.09: (Kernel 2.6.26) Added a field of 64-bit physical Protocol 2.09 (Kernel 2.6.26) Added a field of 64-bit physical
pointer to single linked list of struct setup_data. pointer to single linked list of struct setup_data.
Protocol 2.10: (Kernel 2.6.31) Added a protocol for relaxed alignment Protocol 2.10 (Kernel 2.6.31) Added a protocol for relaxed alignment
beyond the kernel_alignment added, new init_size and beyond the kernel_alignment added, new init_size and
pref_address fields. Added extended boot loader IDs. pref_address fields. Added extended boot loader IDs.
Protocol 2.11: (Kernel 3.6) Added a field for offset of EFI handover Protocol 2.11 (Kernel 3.6) Added a field for offset of EFI handover
protocol entry point. protocol entry point.
Protocol 2.12: (Kernel 3.8) Added the xloadflags field and extension fields Protocol 2.12 (Kernel 3.8) Added the xloadflags field and extension fields
to struct boot_params for loading bzImage and ramdisk to struct boot_params for loading bzImage and ramdisk
above 4G in 64bit. above 4G in 64bit.
Protocol 2.13: (Kernel 3.14) Support 32- and 64-bit flags being set in Protocol 2.13 (Kernel 3.14) Support 32- and 64-bit flags being set in
xloadflags to support booting a 64-bit kernel from 32-bit xloadflags to support booting a 64-bit kernel from 32-bit
EFI EFI
============= ============================================================
**** MEMORY LAYOUT
Memory Layout
=============
The traditional memory map for the kernel loader, used for Image or The traditional memory map for the kernel loader, used for Image or
zImage kernels, typically looks like: zImage kernels, typically looks like::
| | | |
0A0000 +------------------------+ 0A0000 +------------------------+
| Reserved for BIOS | Do not use. Reserved for BIOS EBDA. | Reserved for BIOS | Do not use. Reserved for BIOS EBDA.
09A000 +------------------------+ 09A000 +------------------------+
| Command line | | Command line |
| Stack/heap | For use by the kernel real-mode code. | Stack/heap | For use by the kernel real-mode code.
098000 +------------------------+ 098000 +------------------------+
| Kernel setup | The kernel real-mode code. | Kernel setup | The kernel real-mode code.
090200 +------------------------+ 090200 +------------------------+
| Kernel boot sector | The kernel legacy boot sector. | Kernel boot sector | The kernel legacy boot sector.
090000 +------------------------+ 090000 +------------------------+
| Protected-mode kernel | The bulk of the kernel image. | Protected-mode kernel | The bulk of the kernel image.
010000 +------------------------+ 010000 +------------------------+
| Boot loader | <- Boot sector entry point 0000:7C00 | Boot loader | <- Boot sector entry point 0000:7C00
001000 +------------------------+ 001000 +------------------------+
| Reserved for MBR/BIOS | | Reserved for MBR/BIOS |
000800 +------------------------+ 000800 +------------------------+
| Typically used by MBR | | Typically used by MBR |
000600 +------------------------+ 000600 +------------------------+
| BIOS use only | | BIOS use only |
000000 +------------------------+ 000000 +------------------------+
When using bzImage, the protected-mode kernel was relocated to When using bzImage, the protected-mode kernel was relocated to
0x100000 ("high memory"), and the kernel real-mode block (boot sector, 0x100000 ("high memory"), and the kernel real-mode block (boot sector,
@ -116,36 +122,36 @@ zImage or old bzImage kernels, which need data written into the
above the 0x9A000 point; too many BIOSes will break above that point. above the 0x9A000 point; too many BIOSes will break above that point.
For a modern bzImage kernel with boot protocol version >= 2.02, a For a modern bzImage kernel with boot protocol version >= 2.02, a
memory layout like the following is suggested: memory layout like the following is suggested::
~ ~ ~ ~
| Protected-mode kernel | | Protected-mode kernel |
100000 +------------------------+ 100000 +------------------------+
| I/O memory hole | | I/O memory hole |
0A0000 +------------------------+ 0A0000 +------------------------+
| Reserved for BIOS | Leave as much as possible unused | Reserved for BIOS | Leave as much as possible unused
~ ~ ~ ~
| Command line | (Can also be below the X+10000 mark) | Command line | (Can also be below the X+10000 mark)
X+10000 +------------------------+ X+10000 +------------------------+
| Stack/heap | For use by the kernel real-mode code. | Stack/heap | For use by the kernel real-mode code.
X+08000 +------------------------+ X+08000 +------------------------+
| Kernel setup | The kernel real-mode code. | Kernel setup | The kernel real-mode code.
| Kernel boot sector | The kernel legacy boot sector. | Kernel boot sector | The kernel legacy boot sector.
X +------------------------+ X +------------------------+
| Boot loader | <- Boot sector entry point 0000:7C00 | Boot loader | <- Boot sector entry point 0000:7C00
001000 +------------------------+ 001000 +------------------------+
| Reserved for MBR/BIOS | | Reserved for MBR/BIOS |
000800 +------------------------+ 000800 +------------------------+
| Typically used by MBR | | Typically used by MBR |
000600 +------------------------+ 000600 +------------------------+
| BIOS use only | | BIOS use only |
000000 +------------------------+ 000000 +------------------------+
... where the address X is as low as the design of the boot loader ... where the address X is as low as the design of the boot loader permits.
permits.
**** THE REAL-MODE KERNEL HEADER The Real-Mode Kernel Header
===========================
In the following text, and anywhere in the kernel boot sequence, "a In the following text, and anywhere in the kernel boot sequence, "a
sector" refers to 512 bytes. It is independent of the actual sector sector" refers to 512 bytes. It is independent of the actual sector
@ -159,12 +165,12 @@ sectors (1K) and then examine the bootup sector size.
The header looks like: The header looks like:
Offset Proto Name Meaning =========== ======== ===================== ============================================
/Size Offset/Size Proto Name Meaning
=========== ======== ===================== ============================================
01F1/1 ALL(1 setup_sects The size of the setup in sectors 01F1/1 ALL(1) setup_sects The size of the setup in sectors
01F2/2 ALL root_flags If set, the root is mounted readonly 01F2/2 ALL root_flags If set, the root is mounted readonly
01F4/4 2.04+(2 syssize The size of the 32-bit code in 16-byte paras 01F4/4 2.04+(2) syssize The size of the 32-bit code in 16-byte paras
01F8/2 ALL ram_size DO NOT USE - for bootsect.S use only 01F8/2 ALL ram_size DO NOT USE - for bootsect.S use only
01FA/2 ALL vid_mode Video mode control 01FA/2 ALL vid_mode Video mode control
01FC/2 ALL root_dev Default root device number 01FC/2 ALL root_dev Default root device number
@ -183,8 +189,8 @@ Offset Proto Name Meaning
021C/4 2.00+ ramdisk_size initrd size (set by boot loader) 021C/4 2.00+ ramdisk_size initrd size (set by boot loader)
0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only 0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only
0224/2 2.01+ heap_end_ptr Free memory after setup end 0224/2 2.01+ heap_end_ptr Free memory after setup end
0226/1 2.02+(3 ext_loader_ver Extended boot loader version 0226/1 2.02+(3) ext_loader_ver Extended boot loader version
0227/1 2.02+(3 ext_loader_type Extended boot loader ID 0227/1 2.02+(3) ext_loader_type Extended boot loader ID
0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line 0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line
022C/4 2.03+ initrd_addr_max Highest legal initrd address 022C/4 2.03+ initrd_addr_max Highest legal initrd address
0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel 0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel
@ -201,19 +207,21 @@ Offset Proto Name Meaning
0258/8 2.10+ pref_address Preferred loading address 0258/8 2.10+ pref_address Preferred loading address
0260/4 2.10+ init_size Linear memory required during initialization 0260/4 2.10+ init_size Linear memory required during initialization
0264/4 2.11+ handover_offset Offset of handover entry point 0264/4 2.11+ handover_offset Offset of handover entry point
=========== ======== ===================== ============================================
(1) For backwards compatibility, if the setup_sects field contains 0, the .. note::
(1) For backwards compatibility, if the setup_sects field contains 0, the
real value is 4. real value is 4.
(2) For boot protocol prior to 2.04, the upper two bytes of the syssize (2) For boot protocol prior to 2.04, the upper two bytes of the syssize
field are unusable, which means the size of a bzImage kernel field are unusable, which means the size of a bzImage kernel
cannot be determined. cannot be determined.
(3) Ignored, but safe to set, for boot protocols 2.02-2.09. (3) Ignored, but safe to set, for boot protocols 2.02-2.09.
If the "HdrS" (0x53726448) magic number is not found at offset 0x202, If the "HdrS" (0x53726448) magic number is not found at offset 0x202,
the boot protocol version is "old". Loading an old kernel, the the boot protocol version is "old". Loading an old kernel, the
following parameters should be assumed: following parameters should be assumed::
Image type = zImage Image type = zImage
initrd not supported initrd not supported
@ -225,7 +233,8 @@ setting fields in the header, you must make sure only to set fields
supported by the protocol version in use. supported by the protocol version in use.
**** DETAILS OF HEADER FIELDS Details of Harder Fileds
========================
For each field, some are information from the kernel to the bootloader For each field, some are information from the kernel to the bootloader
("read"), some are expected to be filled out by the bootloader ("read"), some are expected to be filled out by the bootloader
@ -239,106 +248,132 @@ boot loaders can ignore those fields.
The byte order of all fields is littleendian (this is x86, after all.) The byte order of all fields is littleendian (this is x86, after all.)
============ ===========
Field name: setup_sects Field name: setup_sects
Type: read Type: read
Offset/size: 0x1f1/1 Offset/size: 0x1f1/1
Protocol: ALL Protocol: ALL
============ ===========
The size of the setup code in 512-byte sectors. If this field is The size of the setup code in 512-byte sectors. If this field is
0, the real value is 4. The real-mode code consists of the boot 0, the real value is 4. The real-mode code consists of the boot
sector (always one 512-byte sector) plus the setup code. sector (always one 512-byte sector) plus the setup code.
============ =================
Field name: root_flags Field name: root_flags
Type: modify (optional) Type: modify (optional)
Offset/size: 0x1f2/2 Offset/size: 0x1f2/2
Protocol: ALL Protocol: ALL
============ =================
If this field is nonzero, the root defaults to readonly. The use of If this field is nonzero, the root defaults to readonly. The use of
this field is deprecated; use the "ro" or "rw" options on the this field is deprecated; use the "ro" or "rw" options on the
command line instead. command line instead.
============ ===============================================
Field name: syssize Field name: syssize
Type: read Type: read
Offset/size: 0x1f4/4 (protocol 2.04+) 0x1f4/2 (protocol ALL) Offset/size: 0x1f4/4 (protocol 2.04+) 0x1f4/2 (protocol ALL)
Protocol: 2.04+ Protocol: 2.04+
============ ===============================================
The size of the protected-mode code in units of 16-byte paragraphs. The size of the protected-mode code in units of 16-byte paragraphs.
For protocol versions older than 2.04 this field is only two bytes For protocol versions older than 2.04 this field is only two bytes
wide, and therefore cannot be trusted for the size of a kernel if wide, and therefore cannot be trusted for the size of a kernel if
the LOAD_HIGH flag is set. the LOAD_HIGH flag is set.
============ ===============
Field name: ram_size Field name: ram_size
Type: kernel internal Type: kernel internal
Offset/size: 0x1f8/2 Offset/size: 0x1f8/2
Protocol: ALL Protocol: ALL
============ ===============
This field is obsolete. This field is obsolete.
============ ===================
Field name: vid_mode Field name: vid_mode
Type: modify (obligatory) Type: modify (obligatory)
Offset/size: 0x1fa/2 Offset/size: 0x1fa/2
============ ===================
Please see the section on SPECIAL COMMAND LINE OPTIONS. Please see the section on SPECIAL COMMAND LINE OPTIONS.
============ =================
Field name: root_dev Field name: root_dev
Type: modify (optional) Type: modify (optional)
Offset/size: 0x1fc/2 Offset/size: 0x1fc/2
Protocol: ALL Protocol: ALL
============ =================
The default root device device number. The use of this field is The default root device device number. The use of this field is
deprecated, use the "root=" option on the command line instead. deprecated, use the "root=" option on the command line instead.
============ =========
Field name: boot_flag Field name: boot_flag
Type: read Type: read
Offset/size: 0x1fe/2 Offset/size: 0x1fe/2
Protocol: ALL Protocol: ALL
============ =========
Contains 0xAA55. This is the closest thing old Linux kernels have Contains 0xAA55. This is the closest thing old Linux kernels have
to a magic number. to a magic number.
============ =======
Field name: jump Field name: jump
Type: read Type: read
Offset/size: 0x200/2 Offset/size: 0x200/2
Protocol: 2.00+ Protocol: 2.00+
============ =======
Contains an x86 jump instruction, 0xEB followed by a signed offset Contains an x86 jump instruction, 0xEB followed by a signed offset
relative to byte 0x202. This can be used to determine the size of relative to byte 0x202. This can be used to determine the size of
the header. the header.
============ =======
Field name: header Field name: header
Type: read Type: read
Offset/size: 0x202/4 Offset/size: 0x202/4
Protocol: 2.00+ Protocol: 2.00+
============ =======
Contains the magic number "HdrS" (0x53726448). Contains the magic number "HdrS" (0x53726448).
============ =======
Field name: version Field name: version
Type: read Type: read
Offset/size: 0x206/2 Offset/size: 0x206/2
Protocol: 2.00+ Protocol: 2.00+
============ =======
Contains the boot protocol version, in (major << 8)+minor format, Contains the boot protocol version, in (major << 8)+minor format,
e.g. 0x0204 for version 2.04, and 0x0a11 for a hypothetical version e.g. 0x0204 for version 2.04, and 0x0a11 for a hypothetical version
10.17. 10.17.
============ =================
Field name: realmode_swtch Field name: realmode_swtch
Type: modify (optional) Type: modify (optional)
Offset/size: 0x208/4 Offset/size: 0x208/4
Protocol: 2.00+ Protocol: 2.00+
============ =================
Boot loader hook (see ADVANCED BOOT LOADER HOOKS below.) Boot loader hook (see ADVANCED BOOT LOADER HOOKS below.)
============ =============
Field name: start_sys_seg Field name: start_sys_seg
Type: read Type: read
Offset/size: 0x20c/2 Offset/size: 0x20c/2
Protocol: 2.00+ Protocol: 2.00+
============ =============
The load low segment (0x1000). Obsolete. The load low segment (0x1000). Obsolete.
============ ==============
Field name: kernel_version Field name: kernel_version
Type: read Type: read
Offset/size: 0x20e/2 Offset/size: 0x20e/2
Protocol: 2.00+ Protocol: 2.00+
============ ==============
If set to a nonzero value, contains a pointer to a NUL-terminated If set to a nonzero value, contains a pointer to a NUL-terminated
human-readable kernel version number string, less 0x200. This can human-readable kernel version number string, less 0x200. This can
@ -348,17 +383,19 @@ Protocol: 2.00+
For example, if this value is set to 0x1c00, the kernel version For example, if this value is set to 0x1c00, the kernel version
number string can be found at offset 0x1e00 in the kernel file. number string can be found at offset 0x1e00 in the kernel file.
This is a valid value if and only if the "setup_sects" field This is a valid value if and only if the "setup_sects" field
contains the value 15 or higher, as: contains the value 15 or higher, as::
0x1c00 < 15*0x200 (= 0x1e00) but 0x1c00 < 15*0x200 (= 0x1e00) but
0x1c00 >= 14*0x200 (= 0x1c00) 0x1c00 >= 14*0x200 (= 0x1c00)
0x1c00 >> 9 = 14, so the minimum value for setup_secs is 15. 0x1c00 >> 9 = 14, So the minimum value for setup_secs is 15.
============ ==================
Field name: type_of_loader Field name: type_of_loader
Type: write (obligatory) Type: write (obligatory)
Offset/size: 0x210/1 Offset/size: 0x210/1
Protocol: 2.00+ Protocol: 2.00+
============ ==================
If your boot loader has an assigned id (see table below), enter If your boot loader has an assigned id (see table below), enter
0xTV here, where T is an identifier for the boot loader and V is 0xTV here, where T is an identifier for the boot loader and V is
@ -369,7 +406,7 @@ Protocol: 2.00+
Similarly, the ext_loader_ver field can be used to provide more than Similarly, the ext_loader_ver field can be used to provide more than
four bits for the bootloader version. four bits for the bootloader version.
For example, for T = 0x15, V = 0x234, write: For example, for T = 0x15, V = 0x234, write::
type_of_loader <- 0xE4 type_of_loader <- 0xE4
ext_loader_type <- 0x05 ext_loader_type <- 0x05
@ -377,9 +414,12 @@ Protocol: 2.00+
Assigned boot loader ids (hexadecimal): Assigned boot loader ids (hexadecimal):
0 LILO (0x00 reserved for pre-2.00 bootloader) == =======================================
0 LILO
(0x00 reserved for pre-2.00 bootloader)
1 Loadlin 1 Loadlin
2 bootsect-loader (0x20, all other values reserved) 2 bootsect-loader
(0x20, all other values reserved)
3 Syslinux 3 Syslinux
4 Etherboot/gPXE/iPXE 4 Etherboot/gPXE/iPXE
5 ELILO 5 ELILO
@ -393,52 +433,67 @@ Protocol: 2.00+
E Extended (see ext_loader_type) E Extended (see ext_loader_type)
F Special (0xFF = undefined) F Special (0xFF = undefined)
10 Reserved 10 Reserved
11 Minimal Linux Bootloader <http://sebastian-plotz.blogspot.de> 11 Minimal Linux Bootloader
<http://sebastian-plotz.blogspot.de>
12 OVMF UEFI virtualization stack 12 OVMF UEFI virtualization stack
== =======================================
Please contact <hpa@zytor.com> if you need a bootloader ID Please contact <hpa@zytor.com> if you need a bootloader ID value assigned.
value assigned.
============ ===================
Field name: loadflags Field name: loadflags
Type: modify (obligatory) Type: modify (obligatory)
Offset/size: 0x211/1 Offset/size: 0x211/1
Protocol: 2.00+ Protocol: 2.00+
============ ===================
This field is a bitmask. This field is a bitmask.
Bit 0 (read): LOADED_HIGH Bit 0 (read): LOADED_HIGH
- If 0, the protected-mode code is loaded at 0x10000. - If 0, the protected-mode code is loaded at 0x10000.
- If 1, the protected-mode code is loaded at 0x100000. - If 1, the protected-mode code is loaded at 0x100000.
Bit 1 (kernel internal): KASLR_FLAG Bit 1 (kernel internal): KASLR_FLAG
- Used internally by the compressed kernel to communicate - Used internally by the compressed kernel to communicate
KASLR status to kernel proper. KASLR status to kernel proper.
If 1, KASLR enabled.
If 0, KASLR disabled. - If 1, KASLR enabled.
- If 0, KASLR disabled.
Bit 5 (write): QUIET_FLAG Bit 5 (write): QUIET_FLAG
- If 0, print early messages. - If 0, print early messages.
- If 1, suppress early messages. - If 1, suppress early messages.
This requests to the kernel (decompressor and early This requests to the kernel (decompressor and early
kernel) to not write early messages that require kernel) to not write early messages that require
accessing the display hardware directly. accessing the display hardware directly.
Bit 6 (write): KEEP_SEGMENTS Bit 6 (write): KEEP_SEGMENTS
Protocol: 2.07+ Protocol: 2.07+
- If 0, reload the segment registers in the 32bit entry point. - If 0, reload the segment registers in the 32bit entry point.
- If 1, do not reload the segment registers in the 32bit entry point. - If 1, do not reload the segment registers in the 32bit entry point.
Assume that %cs %ds %ss %es are all set to flat segments with Assume that %cs %ds %ss %es are all set to flat segments with
a base of 0 (or the equivalent for their environment). a base of 0 (or the equivalent for their environment).
Bit 7 (write): CAN_USE_HEAP Bit 7 (write): CAN_USE_HEAP
Set this bit to 1 to indicate that the value entered in the Set this bit to 1 to indicate that the value entered in the
heap_end_ptr is valid. If this field is clear, some setup code heap_end_ptr is valid. If this field is clear, some setup code
functionality will be disabled. functionality will be disabled.
============ ===================
Field name: setup_move_size Field name: setup_move_size
Type: modify (obligatory) Type: modify (obligatory)
Offset/size: 0x212/2 Offset/size: 0x212/2
Protocol: 2.00-2.01 Protocol: 2.00-2.01
============ ===================
When using protocol 2.00 or 2.01, if the real mode kernel is not When using protocol 2.00 or 2.01, if the real mode kernel is not
loaded at 0x90000, it gets moved there later in the loading loaded at 0x90000, it gets moved there later in the loading
@ -451,10 +506,12 @@ Protocol: 2.00-2.01
This field is can be ignored when the protocol is 2.02 or higher, or This field is can be ignored when the protocol is 2.02 or higher, or
if the real-mode code is loaded at 0x90000. if the real-mode code is loaded at 0x90000.
============ ========================
Field name: code32_start Field name: code32_start
Type: modify (optional, reloc) Type: modify (optional, reloc)
Offset/size: 0x214/4 Offset/size: 0x214/4
Protocol: 2.00+ Protocol: 2.00+
============ ========================
The address to jump to in protected mode. This defaults to the load The address to jump to in protected mode. This defaults to the load
address of the kernel, and can be used by the boot loader to address of the kernel, and can be used by the boot loader to
@ -462,47 +519,57 @@ Protocol: 2.00+
This field can be modified for two purposes: This field can be modified for two purposes:
1. as a boot loader hook (see ADVANCED BOOT LOADER HOOKS below.) 1. as a boot loader hook (see Advanced Boot Loader Hooks below.)
2. if a bootloader which does not install a hook loads a 2. if a bootloader which does not install a hook loads a
relocatable kernel at a nonstandard address it will have to modify relocatable kernel at a nonstandard address it will have to modify
this field to point to the load address. this field to point to the load address.
============ ==================
Field name: ramdisk_image Field name: ramdisk_image
Type: write (obligatory) Type: write (obligatory)
Offset/size: 0x218/4 Offset/size: 0x218/4
Protocol: 2.00+ Protocol: 2.00+
============ ==================
The 32-bit linear address of the initial ramdisk or ramfs. Leave at The 32-bit linear address of the initial ramdisk or ramfs. Leave at
zero if there is no initial ramdisk/ramfs. zero if there is no initial ramdisk/ramfs.
============ ==================
Field name: ramdisk_size Field name: ramdisk_size
Type: write (obligatory) Type: write (obligatory)
Offset/size: 0x21c/4 Offset/size: 0x21c/4
Protocol: 2.00+ Protocol: 2.00+
============ ==================
Size of the initial ramdisk or ramfs. Leave at zero if there is no Size of the initial ramdisk or ramfs. Leave at zero if there is no
initial ramdisk/ramfs. initial ramdisk/ramfs.
============ ===============
Field name: bootsect_kludge Field name: bootsect_kludge
Type: kernel internal Type: kernel internal
Offset/size: 0x220/4 Offset/size: 0x220/4
Protocol: 2.00+ Protocol: 2.00+
============ ===============
This field is obsolete. This field is obsolete.
============ ==================
Field name: heap_end_ptr Field name: heap_end_ptr
Type: write (obligatory) Type: write (obligatory)
Offset/size: 0x224/2 Offset/size: 0x224/2
Protocol: 2.01+ Protocol: 2.01+
============ ==================
Set this field to the offset (from the beginning of the real-mode Set this field to the offset (from the beginning of the real-mode
code) of the end of the setup stack/heap, minus 0x0200. code) of the end of the setup stack/heap, minus 0x0200.
============ ================
Field name: ext_loader_ver Field name: ext_loader_ver
Type: write (optional) Type: write (optional)
Offset/size: 0x226/1 Offset/size: 0x226/1
Protocol: 2.02+ Protocol: 2.02+
============ ================
This field is used as an extension of the version number in the This field is used as an extension of the version number in the
type_of_loader field. The total version number is considered to be type_of_loader field. The total version number is considered to be
@ -514,10 +581,12 @@ Protocol: 2.02+
Kernels prior to 2.6.31 did not recognize this field, but it is safe Kernels prior to 2.6.31 did not recognize this field, but it is safe
to write for protocol version 2.02 or higher. to write for protocol version 2.02 or higher.
============ =====================================================
Field name: ext_loader_type Field name: ext_loader_type
Type: write (obligatory if (type_of_loader & 0xf0) == 0xe0) Type: write (obligatory if (type_of_loader & 0xf0) == 0xe0)
Offset/size: 0x227/1 Offset/size: 0x227/1
Protocol: 2.02+ Protocol: 2.02+
============ =====================================================
This field is used as an extension of the type number in This field is used as an extension of the type number in
type_of_loader field. If the type in type_of_loader is 0xE, then type_of_loader field. If the type in type_of_loader is 0xE, then
@ -528,10 +597,12 @@ Protocol: 2.02+
Kernels prior to 2.6.31 did not recognize this field, but it is safe Kernels prior to 2.6.31 did not recognize this field, but it is safe
to write for protocol version 2.02 or higher. to write for protocol version 2.02 or higher.
============ ==================
Field name: cmd_line_ptr Field name: cmd_line_ptr
Type: write (obligatory) Type: write (obligatory)
Offset/size: 0x228/4 Offset/size: 0x228/4
Protocol: 2.02+ Protocol: 2.02+
============ ==================
Set this field to the linear address of the kernel command line. Set this field to the linear address of the kernel command line.
The kernel command line can be located anywhere between the end of The kernel command line can be located anywhere between the end of
@ -544,10 +615,12 @@ Protocol: 2.02+
zero, the kernel will assume that your boot loader does not support zero, the kernel will assume that your boot loader does not support
the 2.02+ protocol. the 2.02+ protocol.
============ ===============
Field name: initrd_addr_max Field name: initrd_addr_max
Type: read Type: read
Offset/size: 0x22c/4 Offset/size: 0x22c/4
Protocol: 2.03+ Protocol: 2.03+
============ ===============
The maximum address that may be occupied by the initial The maximum address that may be occupied by the initial
ramdisk/ramfs contents. For boot protocols 2.02 or earlier, this ramdisk/ramfs contents. For boot protocols 2.02 or earlier, this
@ -556,10 +629,12 @@ Protocol: 2.03+
your ramdisk is exactly 131072 bytes long and this field is your ramdisk is exactly 131072 bytes long and this field is
0x37FFFFFF, you can start your ramdisk at 0x37FE0000.) 0x37FFFFFF, you can start your ramdisk at 0x37FE0000.)
============ ============================
Field name: kernel_alignment Field name: kernel_alignment
Type: read/modify (reloc) Type: read/modify (reloc)
Offset/size: 0x230/4 Offset/size: 0x230/4
Protocol: 2.05+ (read), 2.10+ (modify) Protocol: 2.05+ (read), 2.10+ (modify)
============ ============================
Alignment unit required by the kernel (if relocatable_kernel is Alignment unit required by the kernel (if relocatable_kernel is
true.) A relocatable kernel that is loaded at an alignment true.) A relocatable kernel that is loaded at an alignment
@ -571,25 +646,29 @@ Protocol: 2.05+ (read), 2.10+ (modify)
loader to modify this field to permit a lesser alignment. See the loader to modify this field to permit a lesser alignment. See the
min_alignment and pref_address field below. min_alignment and pref_address field below.
============ ==================
Field name: relocatable_kernel Field name: relocatable_kernel
Type: read (reloc) Type: read (reloc)
Offset/size: 0x234/1 Offset/size: 0x234/1
Protocol: 2.05+ Protocol: 2.05+
============ ==================
If this field is nonzero, the protected-mode part of the kernel can If this field is nonzero, the protected-mode part of the kernel can
be loaded at any address that satisfies the kernel_alignment field. be loaded at any address that satisfies the kernel_alignment field.
After loading, the boot loader must set the code32_start field to After loading, the boot loader must set the code32_start field to
point to the loaded code, or to a boot loader hook. point to the loaded code, or to a boot loader hook.
============ =============
Field name: min_alignment Field name: min_alignment
Type: read (reloc) Type: read (reloc)
Offset/size: 0x235/1 Offset/size: 0x235/1
Protocol: 2.10+ Protocol: 2.10+
============ =============
This field, if nonzero, indicates as a power of two the minimum This field, if nonzero, indicates as a power of two the minimum
alignment required, as opposed to preferred, by the kernel to boot. alignment required, as opposed to preferred, by the kernel to boot.
If a boot loader makes use of this field, it should update the If a boot loader makes use of this field, it should update the
kernel_alignment field with the alignment unit desired; typically: kernel_alignment field with the alignment unit desired; typically::
kernel_alignment = 1 << min_alignment kernel_alignment = 1 << min_alignment
@ -597,44 +676,56 @@ Protocol: 2.10+
misaligned kernel. Therefore, a loader should typically try each misaligned kernel. Therefore, a loader should typically try each
power-of-two alignment from kernel_alignment down to this alignment. power-of-two alignment from kernel_alignment down to this alignment.
============ ==========
Field name: xloadflags Field name: xloadflags
Type: read Type: read
Offset/size: 0x236/2 Offset/size: 0x236/2
Protocol: 2.12+ Protocol: 2.12+
============ ==========
This field is a bitmask. This field is a bitmask.
Bit 0 (read): XLF_KERNEL_64 Bit 0 (read): XLF_KERNEL_64
- If 1, this kernel has the legacy 64-bit entry point at 0x200. - If 1, this kernel has the legacy 64-bit entry point at 0x200.
Bit 1 (read): XLF_CAN_BE_LOADED_ABOVE_4G Bit 1 (read): XLF_CAN_BE_LOADED_ABOVE_4G
- If 1, kernel/boot_params/cmdline/ramdisk can be above 4G. - If 1, kernel/boot_params/cmdline/ramdisk can be above 4G.
Bit 2 (read): XLF_EFI_HANDOVER_32 Bit 2 (read): XLF_EFI_HANDOVER_32
- If 1, the kernel supports the 32-bit EFI handoff entry point - If 1, the kernel supports the 32-bit EFI handoff entry point
given at handover_offset. given at handover_offset.
Bit 3 (read): XLF_EFI_HANDOVER_64 Bit 3 (read): XLF_EFI_HANDOVER_64
- If 1, the kernel supports the 64-bit EFI handoff entry point - If 1, the kernel supports the 64-bit EFI handoff entry point
given at handover_offset + 0x200. given at handover_offset + 0x200.
Bit 4 (read): XLF_EFI_KEXEC Bit 4 (read): XLF_EFI_KEXEC
- If 1, the kernel supports kexec EFI boot with EFI runtime support. - If 1, the kernel supports kexec EFI boot with EFI runtime support.
============ ============
Field name: cmdline_size Field name: cmdline_size
Type: read Type: read
Offset/size: 0x238/4 Offset/size: 0x238/4
Protocol: 2.06+ Protocol: 2.06+
============ ============
The maximum size of the command line without the terminating The maximum size of the command line without the terminating
zero. This means that the command line can contain at most zero. This means that the command line can contain at most
cmdline_size characters. With protocol version 2.05 and earlier, the cmdline_size characters. With protocol version 2.05 and earlier, the
maximum size was 255. maximum size was 255.
============ ====================================
Field name: hardware_subarch Field name: hardware_subarch
Type: write (optional, defaults to x86/PC) Type: write (optional, defaults to x86/PC)
Offset/size: 0x23c/4 Offset/size: 0x23c/4
Protocol: 2.07+ Protocol: 2.07+
============ ====================================
In a paravirtualized environment the hardware low level architectural In a paravirtualized environment the hardware low level architectural
pieces such as interrupt handling, page table handling, and pieces such as interrupt handling, page table handling, and
@ -643,25 +734,31 @@ Protocol: 2.07+
This field allows the bootloader to inform the kernel we are in one This field allows the bootloader to inform the kernel we are in one
one of those environments. one of those environments.
========== ==============================
0x00000000 The default x86/PC environment 0x00000000 The default x86/PC environment
0x00000001 lguest 0x00000001 lguest
0x00000002 Xen 0x00000002 Xen
0x00000003 Moorestown MID 0x00000003 Moorestown MID
0x00000004 CE4100 TV Platform 0x00000004 CE4100 TV Platform
========== ==============================
============ =========================
Field name: hardware_subarch_data Field name: hardware_subarch_data
Type: write (subarch-dependent) Type: write (subarch-dependent)
Offset/size: 0x240/8 Offset/size: 0x240/8
Protocol: 2.07+ Protocol: 2.07+
============ =========================
A pointer to data that is specific to hardware subarch A pointer to data that is specific to hardware subarch
This field is currently unused for the default x86/PC environment, This field is currently unused for the default x86/PC environment,
do not modify. do not modify.
============ ==============
Field name: payload_offset Field name: payload_offset
Type: read Type: read
Offset/size: 0x248/4 Offset/size: 0x248/4
Protocol: 2.08+ Protocol: 2.08+
============ ==============
If non-zero then this field contains the offset from the beginning If non-zero then this field contains the offset from the beginning
of the protected-mode code to the payload. of the protected-mode code to the payload.
@ -674,22 +771,26 @@ Protocol: 2.08+
02 21). The uncompressed payload is currently always ELF (magic 02 21). The uncompressed payload is currently always ELF (magic
number 7F 45 4C 46). number 7F 45 4C 46).
============ ==============
Field name: payload_length Field name: payload_length
Type: read Type: read
Offset/size: 0x24c/4 Offset/size: 0x24c/4
Protocol: 2.08+ Protocol: 2.08+
============ ==============
The length of the payload. The length of the payload.
============ ===============
Field name: setup_data Field name: setup_data
Type: write (special) Type: write (special)
Offset/size: 0x250/8 Offset/size: 0x250/8
Protocol: 2.09+ Protocol: 2.09+
============ ===============
The 64-bit physical pointer to NULL terminated single linked list of The 64-bit physical pointer to NULL terminated single linked list of
struct setup_data. This is used to define a more extensible boot struct setup_data. This is used to define a more extensible boot
parameters passing mechanism. The definition of struct setup_data is parameters passing mechanism. The definition of struct setup_data is
as follow: as follow::
struct setup_data { struct setup_data {
u64 next; u64 next;
@ -708,10 +809,12 @@ Protocol: 2.09+
sure to consider the case where the linked list already contains sure to consider the case where the linked list already contains
entries. entries.
============ ============
Field name: pref_address Field name: pref_address
Type: read (reloc) Type: read (reloc)
Offset/size: 0x258/8 Offset/size: 0x258/8
Protocol: 2.10+ Protocol: 2.10+
============ ============
This field, if nonzero, represents a preferred load address for the This field, if nonzero, represents a preferred load address for the
kernel. A relocating bootloader should attempt to load at this kernel. A relocating bootloader should attempt to load at this
@ -720,9 +823,11 @@ Protocol: 2.10+
A non-relocatable kernel will unconditionally move itself and to run A non-relocatable kernel will unconditionally move itself and to run
at this address. at this address.
============ =======
Field name: init_size Field name: init_size
Type: read Type: read
Offset/size: 0x260/4 Offset/size: 0x260/4
============ =======
This field indicates the amount of linear contiguous memory starting This field indicates the amount of linear contiguous memory starting
at the kernel runtime start address that the kernel needs before it at the kernel runtime start address that the kernel needs before it
@ -731,16 +836,18 @@ Offset/size: 0x260/4
be used by a relocating boot loader to help select a safe load be used by a relocating boot loader to help select a safe load
address for the kernel. address for the kernel.
The kernel runtime start address is determined by the following algorithm: The kernel runtime start address is determined by the following algorithm::
if (relocatable_kernel) if (relocatable_kernel)
runtime_start = align_up(load_address, kernel_alignment) runtime_start = align_up(load_address, kernel_alignment)
else else
runtime_start = pref_address runtime_start = pref_address
============ ===============
Field name: handover_offset Field name: handover_offset
Type: read Type: read
Offset/size: 0x264/4 Offset/size: 0x264/4
============ ===============
This field is the offset from the beginning of the kernel image to This field is the offset from the beginning of the kernel image to
the EFI handover protocol entry point. Boot loaders using the EFI the EFI handover protocol entry point. Boot loaders using the EFI
@ -749,7 +856,8 @@ Offset/size: 0x264/4
See EFI HANDOVER PROTOCOL below for more details. See EFI HANDOVER PROTOCOL below for more details.
**** THE IMAGE CHECKSUM The Image Checksum
==================
From boot protocol version 2.08 onwards the CRC-32 is calculated over From boot protocol version 2.08 onwards the CRC-32 is calculated over
the entire file using the characteristic polynomial 0x04C11DB7 and an the entire file using the characteristic polynomial 0x04C11DB7 and an
@ -758,7 +866,8 @@ file; therefore the CRC of the file up to the limit specified in the
syssize field of the header is always 0. syssize field of the header is always 0.
**** THE KERNEL COMMAND LINE The Kernel Command Line
=======================
The kernel command line has become an important way for the boot The kernel command line has become an important way for the boot
loader to communicate with the kernel. Some of its options are also loader to communicate with the kernel. Some of its options are also
@ -778,19 +887,20 @@ heap and 0xA0000.
If the protocol version is *not* 2.02 or higher, the kernel If the protocol version is *not* 2.02 or higher, the kernel
command line is entered using the following protocol: command line is entered using the following protocol:
At offset 0x0020 (word), "cmd_line_magic", enter the magic - At offset 0x0020 (word), "cmd_line_magic", enter the magic
number 0xA33F. number 0xA33F.
At offset 0x0022 (word), "cmd_line_offset", enter the offset - At offset 0x0022 (word), "cmd_line_offset", enter the offset
of the kernel command line (relative to the start of the of the kernel command line (relative to the start of the
real-mode kernel). real-mode kernel).
The kernel command line *must* be within the memory region - The kernel command line *must* be within the memory region
covered by setup_move_size, so you may need to adjust this covered by setup_move_size, so you may need to adjust this
field. field.
**** MEMORY LAYOUT OF THE REAL-MODE CODE Memory Layout of The Real-Mode Code
===================================
The real-mode code requires a stack/heap to be set up, as well as The real-mode code requires a stack/heap to be set up, as well as
memory allocated for the kernel command line. This needs to be done memory allocated for the kernel command line. This needs to be done
@ -806,7 +916,8 @@ segment has to be used:
- When loading a zImage kernel ((loadflags & 0x01) == 0). - When loading a zImage kernel ((loadflags & 0x01) == 0).
- When loading a 2.01 or earlier boot protocol kernel. - When loading a 2.01 or earlier boot protocol kernel.
-> For the 2.00 and 2.01 boot protocols, the real-mode code .. note::
For the 2.00 and 2.01 boot protocols, the real-mode code
can be loaded at another address, but it is internally can be loaded at another address, but it is internally
relocated to 0x90000. For the "old" protocol, the relocated to 0x90000. For the "old" protocol, the
real-mode code must be loaded at 0x90000. real-mode code must be loaded at 0x90000.
@ -822,24 +933,29 @@ The kernel command line should not be located below the real-mode
code, nor should it be located in high memory. code, nor should it be located in high memory.
**** SAMPLE BOOT CONFIGURATION Sample Boot Configuartion
=========================
As a sample configuration, assume the following layout of the real As a sample configuration, assume the following layout of the real
mode segment: mode segment.
When loading below 0x90000, use the entire segment: When loading below 0x90000, use the entire segment:
============= ===================
0x0000-0x7fff Real mode kernel 0x0000-0x7fff Real mode kernel
0x8000-0xdfff Stack and heap 0x8000-0xdfff Stack and heap
0xe000-0xffff Kernel command line 0xe000-0xffff Kernel command line
============= ===================
When loading at 0x90000 OR the protocol version is 2.01 or earlier: When loading at 0x90000 OR the protocol version is 2.01 or earlier:
============= ===================
0x0000-0x7fff Real mode kernel 0x0000-0x7fff Real mode kernel
0x8000-0x97ff Stack and heap 0x8000-0x97ff Stack and heap
0x9800-0x9fff Kernel command line 0x9800-0x9fff Kernel command line
============= ===================
Such a boot loader should enter the following fields in the header: Such a boot loader should enter the following fields in the header::
unsigned long base_ptr; /* base address for real-mode segment */ unsigned long base_ptr; /* base address for real-mode segment */
@ -898,7 +1014,8 @@ Such a boot loader should enter the following fields in the header:
} }
**** LOADING THE REST OF THE KERNEL Loading The Rest of The Kernel
==============================
The 32-bit (non-real-mode) kernel starts at offset (setup_sects+1)*512 The 32-bit (non-real-mode) kernel starts at offset (setup_sects+1)*512
in the kernel file (again, if setup_sects == 0 the real value is 4.) in the kernel file (again, if setup_sects == 0 the real value is 4.)
@ -906,7 +1023,7 @@ It should be loaded at address 0x10000 for Image/zImage kernels and
0x100000 for bzImage kernels. 0x100000 for bzImage kernels.
The kernel is a bzImage kernel if the protocol >= 2.00 and the 0x01 The kernel is a bzImage kernel if the protocol >= 2.00 and the 0x01
bit (LOAD_HIGH) in the loadflags field is set: bit (LOAD_HIGH) in the loadflags field is set::
is_bzImage = (protocol >= 0x0200) && (loadflags & 0x01); is_bzImage = (protocol >= 0x0200) && (loadflags & 0x01);
load_address = is_bzImage ? 0x100000 : 0x10000; load_address = is_bzImage ? 0x100000 : 0x10000;
@ -916,8 +1033,8 @@ the entire 0x10000-0x90000 range of memory. This means it is pretty
much a requirement for these kernels to load the real-mode part at much a requirement for these kernels to load the real-mode part at
0x90000. bzImage kernels allow much more flexibility. 0x90000. bzImage kernels allow much more flexibility.
Special Command Line Options
**** SPECIAL COMMAND LINE OPTIONS ============================
If the command line provided by the boot loader is entered by the If the command line provided by the boot loader is entered by the
user, the user may expect the following command line options to work. user, the user may expect the following command line options to work.
@ -966,7 +1083,8 @@ or configuration-specified command line. Otherwise, "init=/bin/sh"
gets confused by the "auto" option. gets confused by the "auto" option.
**** RUNNING THE KERNEL Running the Kernel
==================
The kernel is started by jumping to the kernel entry point, which is The kernel is started by jumping to the kernel entry point, which is
located at *segment* offset 0x20 from the start of the real mode located at *segment* offset 0x20 from the start of the real mode
@ -980,7 +1098,7 @@ interrupts should be disabled. Furthermore, to guard against bugs in
the kernel, it is recommended that the boot loader sets fs = gs = ds = the kernel, it is recommended that the boot loader sets fs = gs = ds =
es = ss. es = ss.
In our example from above, we would do: In our example from above, we would do::
/* Note: in the case of the "old" kernel protocol, base_ptr must /* Note: in the case of the "old" kernel protocol, base_ptr must
be == 0x90000 at this point; see the previous sample code */ be == 0x90000 at this point; see the previous sample code */
@ -1003,7 +1121,8 @@ switched off, especially if the loaded kernel has the floppy driver as
a demand-loaded module! a demand-loaded module!
**** ADVANCED BOOT LOADER HOOKS Advanced Boot Loader Hooks
==========================
If the boot loader runs in a particularly hostile environment (such as If the boot loader runs in a particularly hostile environment (such as
LOADLIN, which runs under DOS) it may be impossible to follow the LOADLIN, which runs under DOS) it may be impossible to follow the
@ -1032,7 +1151,8 @@ IMPORTANT: All the hooks are required to preserve %esp, %ebp, %esi and
(relocated, if appropriate.) (relocated, if appropriate.)
**** 32-bit BOOT PROTOCOL 32-bit Boot Protocol
====================
For machine with some new BIOS other than legacy BIOS, such as EFI, For machine with some new BIOS other than legacy BIOS, such as EFI,
LinuxBIOS, etc, and kexec, the 16-bit real mode setup code in kernel LinuxBIOS, etc, and kexec, the 16-bit real mode setup code in kernel
@ -1045,7 +1165,7 @@ traditionally known as "zero page"). The memory for struct boot_params
should be allocated and initialized to all zero. Then the setup header should be allocated and initialized to all zero. Then the setup header
from offset 0x01f1 of kernel image on should be loaded into struct from offset 0x01f1 of kernel image on should be loaded into struct
boot_params and examined. The end of setup header can be calculated as boot_params and examined. The end of setup header can be calculated as
follow: follow::
0x0202 + byte value at offset 0x0201 0x0202 + byte value at offset 0x0201
@ -1069,7 +1189,8 @@ must have read/write permission; CS must be __BOOT_CS and DS, ES, SS
must be __BOOT_DS; interrupt must be disabled; %esi must hold the base must be __BOOT_DS; interrupt must be disabled; %esi must hold the base
address of the struct boot_params; %ebp, %edi and %ebx must be zero. address of the struct boot_params; %ebp, %edi and %ebx must be zero.
**** 64-bit BOOT PROTOCOL 64-bit Boot Protocol
====================
For machine with 64bit cpus and 64bit kernel, we could use 64bit bootloader For machine with 64bit cpus and 64bit kernel, we could use 64bit bootloader
and we need a 64-bit boot protocol. and we need a 64-bit boot protocol.
@ -1080,7 +1201,7 @@ traditionally known as "zero page"). The memory for struct boot_params
could be allocated anywhere (even above 4G) and initialized to all zero. could be allocated anywhere (even above 4G) and initialized to all zero.
Then, the setup header at offset 0x01f1 of kernel image on should be Then, the setup header at offset 0x01f1 of kernel image on should be
loaded into struct boot_params and examined. The end of setup header loaded into struct boot_params and examined. The end of setup header
can be calculated as follows: can be calculated as follows::
0x0202 + byte value at offset 0x0201 0x0202 + byte value at offset 0x0201
@ -1107,7 +1228,8 @@ must have read/write permission; CS must be __BOOT_CS and DS, ES, SS
must be __BOOT_DS; interrupt must be disabled; %rsi must hold the base must be __BOOT_DS; interrupt must be disabled; %rsi must hold the base
address of the struct boot_params. address of the struct boot_params.
**** EFI HANDOVER PROTOCOL EFI Handover Protocol
=====================
This protocol allows boot loaders to defer initialisation to the EFI This protocol allows boot loaders to defer initialisation to the EFI
boot stub. The boot loader is required to load the kernel/initrd(s) boot stub. The boot loader is required to load the kernel/initrd(s)
@ -1115,7 +1237,7 @@ from the boot media and jump to the EFI handover protocol entry point
which is hdr->handover_offset bytes from the beginning of which is hdr->handover_offset bytes from the beginning of
startup_{32,64}. startup_{32,64}.
The function prototype for the handover entry point looks like this, The function prototype for the handover entry point looks like this::
efi_main(void *handle, efi_system_table_t *table, struct boot_params *bp) efi_main(void *handle, efi_system_table_t *table, struct boot_params *bp)
@ -1124,11 +1246,11 @@ firmware, 'table' is the EFI system table - these are the first two
arguments of the "handoff state" as described in section 2.3 of the arguments of the "handoff state" as described in section 2.3 of the
UEFI specification. 'bp' is the boot loader-allocated boot params. UEFI specification. 'bp' is the boot loader-allocated boot params.
The boot loader *must* fill out the following fields in bp, The boot loader *must* fill out the following fields in bp::
o hdr.code32_start - hdr.code32_start
o hdr.cmd_line_ptr - hdr.cmd_line_ptr
o hdr.ramdisk_image (if applicable) - hdr.ramdisk_image (if applicable)
o hdr.ramdisk_size (if applicable) - hdr.ramdisk_size (if applicable)
All other fields should be zero. All other fields should be zero.

View File

@ -7,3 +7,5 @@ x86-specific Documentation
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 2
:numbered: :numbered:
boot