[media] dvb_usb_v2: update header dvb_usb.h comments

Comment briefly all used structures and variables.

Signed-off-by: Antti Palosaari <crope@iki.fi>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
This commit is contained in:
Antti Palosaari 2012-06-20 22:22:14 -03:00 committed by Mauro Carvalho Chehab
parent 1162c7b383
commit f93c802887

View file

@ -4,8 +4,6 @@
* see dvb-usb-init.c for copyright information.
*
* the headerfile, all dvb-usb-drivers have to include.
*
* TODO: clean-up the structures for unused fields and update the comments
*/
#ifndef DVB_USB_H
#define DVB_USB_H
@ -20,6 +18,28 @@
#include "dmxdev.h"
#include "dvb-usb-ids.h"
/*
* device file: /dev/dvb/adapter[0-1]/frontend[0-2]
*
* |-- device
* | |-- adapter0
* | | |-- frontend0
* | | |-- frontend1
* | | `-- frontend2
* | `-- adapter1
* | |-- frontend0
* | |-- frontend1
* | `-- frontend2
*
*
* Commonly used variable names:
* d = pointer to device (struct dvb_usb_device *)
* adap = pointer to adapter (struct dvb_usb_adapter *)
* fe = pointer to frontend (struct dvb_frontend *)
*
* Use macros defined in that file to resolve needed pointers.
*/
/* helper macros for every DVB USB driver use */
#define adap_to_d(adap) (container_of(adap, struct dvb_usb_device, \
adapter[adap->id]))
@ -66,6 +86,13 @@
struct dvb_usb_device;
struct dvb_usb_adapter;
/**
* structure for carrying all needed data from the device driver to the general
* dvb usb routines
* @name: device name
* @rc_map: name of rc codes table
* @props: structure containing all device properties
*/
struct dvb_usb_driver_info {
const char *name;
const char *rc_map;
@ -73,15 +100,14 @@ struct dvb_usb_driver_info {
};
/**
* struct dvb_rc properties of remote controller, using rc-core
* @rc_codes: name of rc codes table
* @protocol: type of protocol(s) currently used by the driver
* structure for remote controller configuration
* @map_name: name of rc codes table
* @allowed_protos: protocol(s) supported by the driver
* @driver_type: Used to point if a device supports raw mode
* @change_protocol: callback to change protocol
* @rc_query: called to query an event event.
* @rc_interval: time in ms between two queries.
* @bulk_mode: device supports bulk mode for RC (disable polling mode)
* @query: called to query an event from the device
* @interval: time in ms between two queries
* @driver_type: used to point if a device supports raw mode
* @bulk_mode: device supports bulk mode for rc (disable polling mode)
*/
struct dvb_usb_rc {
char *map_name;
@ -94,9 +120,10 @@ struct dvb_usb_rc {
};
/**
* Properties of USB streaming - TODO this structure should be somewhere else
* describes the kind of USB transfer used for data-streaming.
* (BULK or ISOC)
* usb streaming configration for adapter
* @type: urb type
* @count: count of used urbs
* @endpoint: stream usb endpoint number
*/
struct usb_data_stream_properties {
#define USB_BULK 1
@ -118,25 +145,13 @@ struct usb_data_stream_properties {
};
/**
* struct dvb_usb_adapter_properties - properties of a dvb-usb-adapter.
* A DVB-USB-Adapter is basically a dvb_adapter which is present on a
* USB-device.
* @caps: capabilities of the DVB USB device.
* @pid_filter_count: number of PID filter position in the optional hardware
* PID-filter.
* @num_frontends: number of frontends of the DVB USB adapter.
* @frontend_ctrl: called to power on/off active frontend.
* @streaming_ctrl: called to start and stop the MPEG2-TS streaming of the
* device (not URB submitting/killing).
* @pid_filter_ctrl: called to en/disable the PID filter, if any.
* @pid_filter: called to set/unset a PID for filtering.
* @frontend_attach: called to attach the possible frontends (fill fe-field
* of struct dvb_usb_device).
* @tuner_attach: called to attach the correct tuner and to fill pll_addr,
* pll_desc and pll_init_buf of struct dvb_usb_device).
* @stream: configuration of the USB streaming
* properties of dvb usb device adapter
* @caps: adapter capabilities
* @pid_filter_count: pid count of adapter pid-filter
* @pid_filter_ctrl: called to enable/disable pid-filter
* @pid_filter: called to set/unset pid for filtering
* @stream: adapter usb stream configuration
*/
#define MAX_NO_OF_FE_PER_ADAP 3
struct dvb_usb_adapter_properties {
#define DVB_USB_ADAP_HAS_PID_FILTER 0x01
@ -153,39 +168,38 @@ struct dvb_usb_adapter_properties {
/**
* struct dvb_usb_device_properties - properties of a dvb-usb-device
* @driver_name: name of the owning driver module
* @owner: owner of the dvb_adapter
* @usb_ctrl: which USB device-side controller is in use. Needed for firmware
* download.
* @firmware: name of the firmware file.
* @download_firmware: called to download the firmware when the usb_ctrl is
* DEVICE_SPECIFIC.
* @no_reconnect: device doesn't do a reconnect after downloading the firmware,
* so do the warm initialization right after it
*
* @size_of_priv: how many bytes shall be allocated for the private field
* of struct dvb_usb_device.
*
* @power_ctrl: called to enable/disable power of the device.
* @read_mac_address: called to read the MAC address of the device.
* @identify_state: called to determine the state (cold or warm), when it
* is not distinguishable by the USB IDs.
* @adapter_nr: values from the DVB_DEFINE_MOD_OPT_ADAPTER_NR() macro
* @bInterfaceNumber: usb interface number driver binds
* @size_of_priv: bytes allocated for the driver private data
* @generic_bulk_ctrl_endpoint: bulk control endpoint number for sent
* @generic_bulk_ctrl_endpoint_response: bulk control endpoint number for
* receive
* @generic_bulk_ctrl_delay: delay between bulk control sent and receive message
* @identify_state: called to determine the firmware state (cold or warm) and
* return possible firmware file name to be loaded
* @firmware: name of the firmware file to be loaded
* @download_firmware: called to download the firmware
* @i2c_algo: i2c_algorithm if the device has i2c-adapter
* @num_adapters: dvb usb device adapter count
* @get_adapter_count: called to resolve adapter count
* @adapter: array of all adapter properties of device
* @power_ctrl: called to enable/disable power of the device
* @read_config: called to resolve device configuration
* @read_mac_address: called to resolve adapter mac-address
* @frontend_attach: called to attach the possible frontends
* @tuner_attach: called to attach the possible tuners
* @frontend_ctrl: called to power on/off active frontend
* @streaming_ctrl: called to start/stop the usb streaming of adapter
* @fe_ioctl_override: frontend ioctl override. avoid using that is possible
* @init: called after adapters are created in order to finalize device
* configuration.
*
* @rc: remote controller properties
*
* @i2c_algo: i2c_algorithm if the device has I2CoverUSB.
*
* @generic_bulk_ctrl_endpoint: most of the DVB USB devices have a generic
* endpoint which received control messages with bulk transfers. When this
* is non-zero, one can use dvb_usb_generic_rw and dvb_usb_generic_write-
* helper functions.
*
* @generic_bulk_ctrl_endpoint_response: some DVB USB devices use a separate
* endpoint for responses to control messages sent with bulk transfers via
* the generic_bulk_ctrl_endpoint. When this is non-zero, this will be used
* instead of the generic_bulk_ctrl_endpoint when reading usb responses in
* the dvb_usb_generic_rw helper function.
* configuration
* @exit: called when driver is unloaded
* @get_rc_config: called to resolve used remote controller configuration
* @get_stream_config: called to resolve input and output stream configuration
* of the adapter just before streaming is started. input stream is transport
* stream from the demodulator and output stream is usb stream to host.
*/
#define MAX_NO_OF_ADAPTER_PER_DEVICE 2
struct dvb_usb_device_properties {
@ -210,8 +224,8 @@ struct dvb_usb_device_properties {
struct i2c_algorithm *i2c_algo;
unsigned int num_adapters;
struct dvb_usb_adapter_properties adapter[MAX_NO_OF_ADAPTER_PER_DEVICE];
int (*get_adapter_count) (struct dvb_usb_device *);
struct dvb_usb_adapter_properties adapter[MAX_NO_OF_ADAPTER_PER_DEVICE];
int (*power_ctrl) (struct dvb_usb_device *, int);
int (*read_config) (struct dvb_usb_device *d);
int (*read_mac_address) (struct dvb_usb_adapter *, u8 []);
@ -232,14 +246,14 @@ struct dvb_usb_device_properties {
};
/**
* struct usb_data_stream - generic object of an USB stream
* @buf_num: number of buffer allocated.
* @buf_size: size of each buffer in buf_list.
* @buf_list: array containing all allocate buffers for streaming.
* @dma_addr: list of dma_addr_t for each buffer in buf_list.
* generic object of an usb stream
* @buf_num: number of buffer allocated
* @buf_size: size of each buffer in buf_list
* @buf_list: array containing all allocate buffers for streaming
* @dma_addr: list of dma_addr_t for each buffer in buf_list
*
* @urbs_initialized: number of URBs initialized.
* @urbs_submitted: number of URBs submitted.
* @urbs_initialized: number of URBs initialized
* @urbs_submitted: number of URBs submitted
*/
#define MAX_NO_URBS_FOR_DATA_STREAM 10
struct usb_data_stream {
@ -265,30 +279,22 @@ struct usb_data_stream {
};
/**
* struct dvb_usb_adapter - a DVB adapter on a USB device
* @id: index of this adapter (starting with 0).
*
* @feedcount: number of reqested feeds (used for streaming-activation)
* @pid_filtering: is hardware pid_filtering used or not.
*
* @pll_addr: I2C address of the tuner for programming
* @pll_init: array containing the initialization buffer
* @pll_desc: pointer to the appropriate struct dvb_pll_desc
* @tuner_pass_ctrl: called to (de)activate tuner passthru of the demod or
* the board
*
* @dvb_adap: device's dvb_adapter.
* @dmxdev: device's dmxdev.
* @demux: device's software demuxer.
* @dvb_net: device's dvb_net interfaces.
* @dvb_frontend: device's frontend.
* @max_feed_count: how many feeds can be handled simultaneously by this
* device
*
* @fe_init: rerouted frontend-init (wakeup) function.
* @fe_sleep: rerouted frontend-sleep function.
*
* @stream: the usb data stream.
* dvb adapter object on dvb usb device
* @props: pointer to adapter properties
* @stream: adapter the usb data stream
* @id: index of this adapter (starting with 0)
* @ts_type: transport stream, input stream, type
* @pid_filtering: is hardware pid_filtering used or not
* @feed_count: current feed count
* @max_feed_count: maimum feed count device can handle
* @dvb_adap: adapter dvb_adapter
* @dmxdev: adapter dmxdev
* @demux: adapter software demuxer
* @dvb_net: adapter dvb_net interfaces
* @sync_mutex: mutex used to sync control and streaming of the adapter
* @fe: adapter frontends
* @fe_init: rerouted frontend-init function
* @fe_sleep: rerouted frontend-sleep function
*/
struct dvb_usb_adapter {
const struct dvb_usb_adapter_properties *props;
@ -313,26 +319,23 @@ struct dvb_usb_adapter {
};
/**
* struct dvb_usb_device - object of a DVB USB device
* @props: copy of the struct dvb_usb_properties this device belongs to.
* @desc: pointer to the device's struct dvb_usb_device_description.
* @state: initialization and runtime state of the device.
* dvb usb device object
* @props: device properties
* @name: device name
* @rc_map: name of rc codes table
* @udev: pointer to the device's struct usb_device
* @intf: pointer to the device's usb interface
* @rc: remote controller configuration
* @probe_work: work to defer .probe()
* @powered: indicated whether the device is power or not
* @usb_mutex: mutex for usb control messages
* @i2c_mutex: mutex for i2c-transfers
* @i2c_adap: device's i2c-adapter
*
* @powered: indicated whether the device is power or not.
* Powered is in/decremented for each call to modify the state.
* @udev: pointer to the device's struct usb_device.
*
* @usb_mutex: semaphore of USB control messages (reading needs two messages)
* @i2c_mutex: semaphore for i2c-transfers
*
* @i2c_adap: device's i2c_adapter if it uses I2CoverUSB
*
* @rc_dev: rc device for the remote control (rc-core mode)
* @rc_dev: rc device for the remote control
* @input_dev: input device for the remote control (legacy mode)
* @rc_query_work: struct work_struct frequent rc queries
* @last_event: last triggered event
* @last_state: last state (no, pressed, repeat)
* @priv: private data of the actual driver (allocate by dvb-usb, size defined
* @rc_query_work: work for polling remote
* @priv: private data of the actual driver (allocate by dvb usb, size defined
* in size_of_priv of dvb_usb_properties).
*/
struct dvb_usb_device {