1
0
Fork 0
Commit Graph

8 Commits (redonkable)

Author SHA1 Message Date
Masahiro Yamada 21bfc8309c reiserfs: remove workaround code for GCC 3.x
cafa0010cd ("Raise the minimum required gcc version to 4.6") bumped the
minimum GCC version to 4.6 for all architectures.

The workaround code in fs/reiserfs/Makefile is obsolete now.

Link: http://lkml.kernel.org/r/1535337230-13222-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:14 -07:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
matt mooney 0ccd234ca0 fs: change to new flag variable
Replace EXTRA_CFLAGS with ccflags-y. And change ntfs-objs to ntfs-y
for cleaner conditional inclusion.

Signed-off-by: matt mooney <mfm@muteddisk.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
2011-03-17 14:02:57 +01:00
Alexey Dobriyan e3c96f53ac reiserfs: don't compile procfs.o at all if no support
* small define cleanup in header
* fix #ifdeffery in procfs.c via Kconfig

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-16 07:20:06 -08:00
Frederic Weisbecker 8ebc423238 reiserfs: kill-the-BKL
This patch is an attempt to remove the Bkl based locking scheme from
reiserfs and is intended.

It is a bit inspired from an old attempt by Peter Zijlstra:

   http://lkml.indiana.edu/hypermail/linux/kernel/0704.2/2174.html

The bkl is heavily used in this filesystem to prevent from
concurrent write accesses on the filesystem.

Reiserfs makes a deep use of the specific properties of the Bkl:

- It can be acqquired recursively by a same task
- It is released on the schedule() calls and reacquired when schedule() returns

The two properties above are a roadmap for the reiserfs write locking so it's
very hard to simply replace it with a common mutex.

- We need a recursive-able locking unless we want to restructure several blocks
  of the code.
- We need to identify the sites where the bkl was implictly relaxed
  (schedule, wait, sync, etc...) so that we can in turn release and
  reacquire our new lock explicitly.
  Such implicit releases of the lock are often required to let other
  resources producer/consumer do their job or we can suffer unexpected
  starvations or deadlocks.

So the new lock that replaces the bkl here is a per superblock mutex with a
specific property: it can be acquired recursively by a same task, like the
bkl.

For such purpose, we integrate a lock owner and a lock depth field on the
superblock information structure.

The first axis on this patch is to turn reiserfs_write_(un)lock() function
into a wrapper to manage this mutex. Also some explicit calls to
lock_kernel() have been converted to reiserfs_write_lock() helpers.

The second axis is to find the important blocking sites (schedule...(),
wait_on_buffer(), sync_dirty_buffer(), etc...) and then apply an explicit
release of the write lock on these locations before blocking. Then we can
safely wait for those who can give us resources or those who need some.
Typically this is a fight between the current writer, the reiserfs workqueue
(aka the async commiter) and the pdflush threads.

The third axis is a consequence of the second. The write lock is usually
on top of a lock dependency chain which can include the journal lock, the
flush lock or the commit lock. So it's dangerous to release and trying to
reacquire the write lock while we still hold other locks.

This is fine with the bkl:

      T1                       T2

lock_kernel()
    mutex_lock(A)
    unlock_kernel()
    // do something
                            lock_kernel()
                                mutex_lock(A) -> already locked by T1
                                schedule() (and then unlock_kernel())
    lock_kernel()
    mutex_unlock(A)
    ....

This is not fine with a mutex:

      T1                       T2

mutex_lock(write)
    mutex_lock(A)
    mutex_unlock(write)
    // do something
                           mutex_lock(write)
                              mutex_lock(A) -> already locked by T1
                              schedule()

    mutex_lock(write) -> already locked by T2
    deadlock

The solution in this patch is to provide a helper which releases the write
lock and sleep a bit if we can't lock a mutex that depend on it. It's another
simulation of the bkl behaviour.

The last axis is to locate the fs callbacks that are called with the bkl held,
according to Documentation/filesystem/Locking.

Those are:

- reiserfs_remount
- reiserfs_fill_super
- reiserfs_put_super

Reiserfs didn't need to explicitly lock because of the context of these callbacks.
But now we must take care of that with the new locking.

After this patch, reiserfs suffers from a slight performance regression (for now).
On UP, a high volume write with dd reports an average of 27 MB/s instead
of 30 MB/s without the patch applied.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Bron Gondwana <brong@fastmail.fm>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
LKML-Reference: <1239070789-13354-1-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-14 07:17:59 +02:00
Jeff Mahoney a72bdb1cd2 reiserfs: Clean up xattrs when REISERFS_FS_XATTR is unset
The current reiserfs xattr implementation will not clean up old xattr
files if files are deleted when REISERFS_FS_XATTR is unset.  This
results in inaccessible lost files, wasting space.

This patch compiles in basic xattr knowledge, such as how to delete them
and change ownership for quota tracking.  If the file system has never
used xattrs, then the operation is quite fast: it returns immediately
when it sees there is no .reiserfs_priv directory.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-30 12:16:37 -07:00
Olaf Hering 42012cc4a2 [PATCH] use gcc -O1 in fs/reiserfs only for ancient gcc versions
Only compile with -O1 if the (very old) compiler is broken.  We use
reiserfs alot since SLES9 on ppc64, and it was never seen with gcc33.
Assume the broken gcc is gcc-3.4 or older.

Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:18:07 -07:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00