1
0
Fork 0
Commit Graph

26 Commits (028db3e290f15ac509084c0fc3b9d021f668f877)

Author SHA1 Message Date
Linus Torvalds 028db3e290 Revert "Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs"
This reverts merge 0f75ef6a9c (and thus
effectively commits

   7a1ade8475 ("keys: Provide KEYCTL_GRANT_PERMISSION")
   2e12256b9a ("keys: Replace uid/gid/perm permissions checking with an ACL")

that the merge brought in).

It turns out that it breaks booting with an encrypted volume, and Eric
biggers reports that it also breaks the fscrypt tests [1] and loading of
in-kernel X.509 certificates [2].

The root cause of all the breakage is likely the same, but David Howells
is off email so rather than try to work it out it's getting reverted in
order to not impact the rest of the merge window.

 [1] https://lore.kernel.org/lkml/20190710011559.GA7973@sol.localdomain/
 [2] https://lore.kernel.org/lkml/20190710013225.GB7973@sol.localdomain/

Link: https://lore.kernel.org/lkml/CAHk-=wjxoeMJfeBahnWH=9zShKp2bsVy527vo3_y8HfOdhwAAw@mail.gmail.com/
Reported-by: Eric Biggers <ebiggers@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-10 18:43:43 -07:00
Linus Torvalds 0f75ef6a9c Keyrings ACL
-----BEGIN PGP SIGNATURE-----
 
 iQIVAwUAXRyyVvu3V2unywtrAQL3xQ//eifjlELkRAPm2EReWwwahdM+9QL/0bAy
 e8eAzP9EaphQGUhpIzM9Y7Cx+a8XW2xACljY8hEFGyxXhDMoLa35oSoJOeay6vQt
 QcgWnDYsET8Z7HOsFCP3ZQqlbbqfsB6CbIKtZoEkZ8ib7eXpYcy1qTydu7wqrl4A
 AaJalAhlUKKUx9hkGGJTh2xvgmxgSJkxx3cNEWJQ2uGgY/ustBpqqT4iwFDsgA/q
 fcYTQFfNQBsC8/SmvQgxJSc+reUdQdp0z1vd8qjpSdFFcTq1qOtK0qDdz1Bbyl24
 hAxvNM1KKav83C8aF7oHhEwLrkD+XiYKixdEiCJJp+A2i+vy2v8JnfgtFTpTgLNK
 5xu2VmaiWmee9SLCiDIBKE4Ghtkr8DQ/5cKFCwthT8GXgQUtdsdwAaT3bWdCNfRm
 DqgU/AyyXhoHXrUM25tPeF3hZuDn2yy6b1TbKA9GCpu5TtznZIHju40Px/XMIpQH
 8d6s/pg+u/SnkhjYWaTvTcvsQ2FB/vZY/UzAVyosnoMBkVfL4UtAHGbb8FBVj1nf
 Dv5VjSjl4vFjgOr3jygEAeD2cJ7L6jyKbtC/jo4dnOmPrSRShIjvfSU04L3z7FZS
 XFjMmGb2Jj8a7vAGFmsJdwmIXZ1uoTwX56DbpNL88eCgZWFPGKU7TisdIWAmJj8U
 N9wholjHJgw=
 =E3bF
 -----END PGP SIGNATURE-----

Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull keyring ACL support from David Howells:
 "This changes the permissions model used by keys and keyrings to be
  based on an internal ACL by the following means:

   - Replace the permissions mask internally with an ACL that contains a
     list of ACEs, each with a specific subject with a permissions mask.
     Potted default ACLs are available for new keys and keyrings.

     ACE subjects can be macroised to indicate the UID and GID specified
     on the key (which remain). Future commits will be able to add
     additional subject types, such as specific UIDs or domain
     tags/namespaces.

     Also split a number of permissions to give finer control. Examples
     include splitting the revocation permit from the change-attributes
     permit, thereby allowing someone to be granted permission to revoke
     a key without allowing them to change the owner; also the ability
     to join a keyring is split from the ability to link to it, thereby
     stopping a process accessing a keyring by joining it and thus
     acquiring use of possessor permits.

   - Provide a keyctl to allow the granting or denial of one or more
     permits to a specific subject. Direct access to the ACL is not
     granted, and the ACL cannot be viewed"

* tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  keys: Provide KEYCTL_GRANT_PERMISSION
  keys: Replace uid/gid/perm permissions checking with an ACL
2019-07-08 19:56:57 -07:00
David Howells 7a1ade8475 keys: Provide KEYCTL_GRANT_PERMISSION
Provide a keyctl() operation to grant/remove permissions.  The grant
operation, wrapped by libkeyutils, looks like:

	int ret = keyctl_grant_permission(key_serial_t key,
					  enum key_ace_subject_type type,
					  unsigned int subject,
					  unsigned int perm);

Where key is the key to be modified, type and subject represent the subject
to which permission is to be granted (or removed) and perm is the set of
permissions to be granted.  0 is returned on success.  SET_SECURITY
permission is required for this.

The subject type currently must be KEY_ACE_SUBJ_STANDARD for the moment
(other subject types will come along later).

For subject type KEY_ACE_SUBJ_STANDARD, the following subject values are
available:

	KEY_ACE_POSSESSOR	The possessor of the key
	KEY_ACE_OWNER		The owner of the key
	KEY_ACE_GROUP		The key's group
	KEY_ACE_EVERYONE	Everyone

perm lists the permissions to be granted:

	KEY_ACE_VIEW		Can view the key metadata
	KEY_ACE_READ		Can read the key content
	KEY_ACE_WRITE		Can update/modify the key content
	KEY_ACE_SEARCH		Can find the key by searching/requesting
	KEY_ACE_LINK		Can make a link to the key
	KEY_ACE_SET_SECURITY	Can set security
	KEY_ACE_INVAL		Can invalidate
	KEY_ACE_REVOKE		Can revoke
	KEY_ACE_JOIN		Can join this keyring
	KEY_ACE_CLEAR		Can clear this keyring

If an ACE already exists for the subject, then the permissions mask will be
overwritten; if perm is 0, it will be deleted.

Currently, the internal ACL is limited to a maximum of 16 entries.

For example:

	int ret = keyctl_grant_permission(key,
					  KEY_ACE_SUBJ_STANDARD,
					  KEY_ACE_OWNER,
					  KEY_ACE_VIEW | KEY_ACE_READ);

Signed-off-by: David Howells <dhowells@redhat.com>
2019-07-03 13:05:22 +01:00
David Howells 2e12256b9a keys: Replace uid/gid/perm permissions checking with an ACL
Replace the uid/gid/perm permissions checking on a key with an ACL to allow
the SETATTR and SEARCH permissions to be split.  This will also allow a
greater range of subjects to represented.

============
WHY DO THIS?
============

The problem is that SETATTR and SEARCH cover a slew of actions, not all of
which should be grouped together.

For SETATTR, this includes actions that are about controlling access to a
key:

 (1) Changing a key's ownership.

 (2) Changing a key's security information.

 (3) Setting a keyring's restriction.

And actions that are about managing a key's lifetime:

 (4) Setting an expiry time.

 (5) Revoking a key.

and (proposed) managing a key as part of a cache:

 (6) Invalidating a key.

Managing a key's lifetime doesn't really have anything to do with
controlling access to that key.

Expiry time is awkward since it's more about the lifetime of the content
and so, in some ways goes better with WRITE permission.  It can, however,
be set unconditionally by a process with an appropriate authorisation token
for instantiating a key, and can also be set by the key type driver when a
key is instantiated, so lumping it with the access-controlling actions is
probably okay.

As for SEARCH permission, that currently covers:

 (1) Finding keys in a keyring tree during a search.

 (2) Permitting keyrings to be joined.

 (3) Invalidation.

But these don't really belong together either, since these actions really
need to be controlled separately.

Finally, there are number of special cases to do with granting the
administrator special rights to invalidate or clear keys that I would like
to handle with the ACL rather than key flags and special checks.


===============
WHAT IS CHANGED
===============

The SETATTR permission is split to create two new permissions:

 (1) SET_SECURITY - which allows the key's owner, group and ACL to be
     changed and a restriction to be placed on a keyring.

 (2) REVOKE - which allows a key to be revoked.

The SEARCH permission is split to create:

 (1) SEARCH - which allows a keyring to be search and a key to be found.

 (2) JOIN - which allows a keyring to be joined as a session keyring.

 (3) INVAL - which allows a key to be invalidated.

The WRITE permission is also split to create:

 (1) WRITE - which allows a key's content to be altered and links to be
     added, removed and replaced in a keyring.

 (2) CLEAR - which allows a keyring to be cleared completely.  This is
     split out to make it possible to give just this to an administrator.

 (3) REVOKE - see above.


Keys acquire ACLs which consist of a series of ACEs, and all that apply are
unioned together.  An ACE specifies a subject, such as:

 (*) Possessor - permitted to anyone who 'possesses' a key
 (*) Owner - permitted to the key owner
 (*) Group - permitted to the key group
 (*) Everyone - permitted to everyone

Note that 'Other' has been replaced with 'Everyone' on the assumption that
you wouldn't grant a permit to 'Other' that you wouldn't also grant to
everyone else.

Further subjects may be made available by later patches.

The ACE also specifies a permissions mask.  The set of permissions is now:

	VIEW		Can view the key metadata
	READ		Can read the key content
	WRITE		Can update/modify the key content
	SEARCH		Can find the key by searching/requesting
	LINK		Can make a link to the key
	SET_SECURITY	Can change owner, ACL, expiry
	INVAL		Can invalidate
	REVOKE		Can revoke
	JOIN		Can join this keyring
	CLEAR		Can clear this keyring


The KEYCTL_SETPERM function is then deprecated.

The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set,
or if the caller has a valid instantiation auth token.

The KEYCTL_INVALIDATE function then requires INVAL.

The KEYCTL_REVOKE function then requires REVOKE.

The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an
existing keyring.

The JOIN permission is enabled by default for session keyrings and manually
created keyrings only.


======================
BACKWARD COMPATIBILITY
======================

To maintain backward compatibility, KEYCTL_SETPERM will translate the
permissions mask it is given into a new ACL for a key - unless
KEYCTL_SET_ACL has been called on that key, in which case an error will be
returned.

It will convert possessor, owner, group and other permissions into separate
ACEs, if each portion of the mask is non-zero.

SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY.  WRITE
permission turns on WRITE, REVOKE and, if a keyring, CLEAR.  JOIN is turned
on if a keyring is being altered.

The KEYCTL_DESCRIBE function translates the ACL back into a permissions
mask to return depending on possessor, owner, group and everyone ACEs.

It will make the following mappings:

 (1) INVAL, JOIN -> SEARCH

 (2) SET_SECURITY -> SETATTR

 (3) REVOKE -> WRITE if SETATTR isn't already set

 (4) CLEAR -> WRITE

Note that the value subsequently returned by KEYCTL_DESCRIBE may not match
the value set with KEYCTL_SETATTR.


=======
TESTING
=======

This passes the keyutils testsuite for all but a couple of tests:

 (1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now
     returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed
     if the type doesn't have ->read().  You still can't actually read the
     key.

 (2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't
     work as Other has been replaced with Everyone in the ACL.

Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-27 23:03:07 +01:00
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
Paul Gortmaker 876979c930 security: audit and remove any unnecessary uses of module.h
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends.  That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig.

The advantage in removing such instances is that module.h itself
sources about 15 other headers; adding significantly to what we feed
cpp, and it can obscure what headers we are effectively using.

Since module.h might have been the implicit source for init.h
(for __init) and for export.h (for EXPORT_SYMBOL) we consider each
instance for the presence of either and replace as needed.

Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: linux-security-module@vger.kernel.org
Cc: linux-integrity@vger.kernel.org
Cc: keyrings@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
2018-12-12 14:58:51 -08:00
Baolin Wang 074d589895 security: keys: Replace time_t/timespec with time64_t
The 'struct key' will use 'time_t' which we try to remove in the
kernel, since 'time_t' is not year 2038 safe on 32bit systems.
Also the 'struct keyring_search_context' will use 'timespec' type
to record current time, which is also not year 2038 safe on 32bit
systems.

Thus this patch replaces 'time_t' with 'time64_t' which is year 2038
safe for 'struct key', and replace 'timespec' with 'time64_t' for the
'struct keyring_search_context', since we only look at the the seconds
part of 'timespec' variable. Moreover we also change the codes where
using the 'time_t' and 'timespec', and we can get current time by
ktime_get_real_seconds() instead of current_kernel_time(), and use
'TIME64_MAX' macro to initialize the 'time64_t' type variable.

Especially in proc.c file, we have replaced 'unsigned long' and 'timespec'
type with 'u64' and 'time64_t' type to save the timeout value, which means
user will get one 'u64' type timeout value by issuing proc_keys_show()
function.

Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-11-15 16:38:45 +00:00
Eric Biggers 1823d475a5 KEYS: load key flags and expiry time atomically in key_validate()
In key_validate(), load the flags and expiry time once atomically, since
these can change concurrently if key_validate() is called without the
key semaphore held.  And we don't want to get inconsistent results if a
variable is referenced multiple times.  For example, key->expiry was
referenced in both 'if (key->expiry)' and in 'if (now.tv_sec >=
key->expiry)', making it theoretically possible to see a spurious
EKEYEXPIRED while the expiration time was being removed, i.e. set to 0.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-18 09:12:41 +01:00
David Howells f5895943d9 KEYS: Move the flags representing required permission to linux/key.h
Move the flags representing required permission to linux/key.h as the perm
parameter of security_key_permission() is in terms of them - and not the
permissions mask flags used in key->perm.

Whilst we're at it:

 (1) Rename them to be KEY_NEED_xxx rather than KEY_xxx to avoid collisions
     with symbols in uapi/linux/input.h.

 (2) Don't use key_perm_t for a mask of required permissions, but rather limit
     it to the permissions mask attached to the key and arguments related
     directly to that.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
2014-03-14 17:44:49 +00:00
Eric W. Biederman 9a56c2db49 userns: Convert security/keys to the new userns infrastructure
- Replace key_user ->user_ns equality checks with kuid_has_mapping checks.
- Use from_kuid to generate key descriptions
- Use kuid_t and kgid_t and the associated helpers instead of uid_t and gid_t
- Avoid potential problems with file descriptor passing by displaying
  keys in the user namespace of the opener of key status proc files.

Cc: linux-security-module@vger.kernel.org
Cc: keyrings@linux-nfs.org
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-09-13 18:28:02 -07:00
Linus Torvalds 644473e9c6 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace enhancements from Eric Biederman:
 "This is a course correction for the user namespace, so that we can
  reach an inexpensive, maintainable, and reasonably complete
  implementation.

  Highlights:
   - Config guards make it impossible to enable the user namespace and
     code that has not been converted to be user namespace safe.

   - Use of the new kuid_t type ensures the if you somehow get past the
     config guards the kernel will encounter type errors if you enable
     user namespaces and attempt to compile in code whose permission
     checks have not been updated to be user namespace safe.

   - All uids from child user namespaces are mapped into the initial
     user namespace before they are processed.  Removing the need to add
     an additional check to see if the user namespace of the compared
     uids remains the same.

   - With the user namespaces compiled out the performance is as good or
     better than it is today.

   - For most operations absolutely nothing changes performance or
     operationally with the user namespace enabled.

   - The worst case performance I could come up with was timing 1
     billion cache cold stat operations with the user namespace code
     enabled.  This went from 156s to 164s on my laptop (or 156ns to
     164ns per stat operation).

   - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value.
     Most uid/gid setting system calls treat these value specially
     anyway so attempting to use -1 as a uid would likely cause
     entertaining failures in userspace.

   - If setuid is called with a uid that can not be mapped setuid fails.
     I have looked at sendmail, login, ssh and every other program I
     could think of that would call setuid and they all check for and
     handle the case where setuid fails.

   - If stat or a similar system call is called from a context in which
     we can not map a uid we lie and return overflowuid.  The LFS
     experience suggests not lying and returning an error code might be
     better, but the historical precedent with uids is different and I
     can not think of anything that would break by lying about a uid we
     can't map.

   - Capabilities are localized to the current user namespace making it
     safe to give the initial user in a user namespace all capabilities.

  My git tree covers all of the modifications needed to convert the core
  kernel and enough changes to make a system bootable to runlevel 1."

Fix up trivial conflicts due to nearby independent changes in fs/stat.c

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
  userns:  Silence silly gcc warning.
  cred: use correct cred accessor with regards to rcu read lock
  userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
  userns: Convert cgroup permission checks to use uid_eq
  userns: Convert tmpfs to use kuid and kgid where appropriate
  userns: Convert sysfs to use kgid/kuid where appropriate
  userns: Convert sysctl permission checks to use kuid and kgids.
  userns: Convert proc to use kuid/kgid where appropriate
  userns: Convert ext4 to user kuid/kgid where appropriate
  userns: Convert ext3 to use kuid/kgid where appropriate
  userns: Convert ext2 to use kuid/kgid where appropriate.
  userns: Convert devpts to use kuid/kgid where appropriate
  userns: Convert binary formats to use kuid/kgid where appropriate
  userns: Add negative depends on entries to avoid building code that is userns unsafe
  userns: signal remove unnecessary map_cred_ns
  userns: Teach inode_capable to understand inodes whose uids map to other namespaces.
  userns: Fail exec for suid and sgid binaries with ids outside our user namespace.
  userns: Convert stat to return values mapped from kuids and kgids
  userns: Convert user specfied uids and gids in chown into kuids and kgid
  userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs
  ...
2012-05-23 17:42:39 -07:00
David Howells b404aef72f KEYS: Don't check for NULL key pointer in key_validate()
Don't bother checking for NULL key pointer in key_validate() as all of the
places that call it will crash anyway if the relevant key pointer is NULL by
the time they call key_validate().  Therefore, the checking must be done prior
to calling here.

Whilst we're at it, simplify the key_validate() function a bit and mark its
argument const.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-05-16 00:54:33 +10:00
David Howells fd75815f72 KEYS: Add invalidation support
Add support for invalidating a key - which renders it immediately invisible to
further searches and causes the garbage collector to immediately wake up,
remove it from keyrings and then destroy it when it's no longer referenced.

It's better not to do this with keyctl_revoke() as that marks the key to start
returning -EKEYREVOKED to searches when what is actually desired is to have the
key refetched.

To invalidate a key the caller must be granted SEARCH permission by the key.
This may be too strict.  It may be better to also permit invalidation if the
caller has any of READ, WRITE or SETATTR permission.

The primary use for this is to evict keys that are cached in special keyrings,
such as the DNS resolver or an ID mapper.

Signed-off-by: David Howells <dhowells@redhat.com>
2012-05-11 10:56:56 +01:00
Eric W. Biederman ae2975bc34 userns: Convert group_info values from gid_t to kgid_t.
As a first step to converting struct cred to be all kuid_t and kgid_t
values convert the group values stored in group_info to always be
kgid_t values.   Unless user namespaces are used this change should
have no effect.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-05-03 03:27:21 -07:00
Eric W. Biederman c4a4d60379 userns: Use cred->user_ns instead of cred->user->user_ns
Optimize performance and prepare for the removal of the user_ns reference
from user_struct.  Remove the slow long walk through cred->user->user_ns and
instead go straight to cred->user_ns.

Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-04-07 16:55:51 -07:00
David Howells 973c9f4f49 KEYS: Fix up comments in key management code
Fix up comments in the key management code.  No functional changes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-21 14:59:30 -08:00
David Howells a8b17ed019 KEYS: Do some style cleanup in the key management code.
Do a bit of a style clean up in the key management code.  No functional
changes.

Done using:

  perl -p -i -e 's!^/[*]*/\n!!' security/keys/*.c
  perl -p -i -e 's!} /[*] end [a-z0-9_]*[(][)] [*]/\n!}\n!' security/keys/*.c
  sed -i -s -e ": next" -e N -e 's/^\n[}]$/}/' -e t -e P -e 's/^.*\n//' -e "b next" security/keys/*.c

To remove /*****/ lines, remove comments on the closing brace of a
function to name the function and remove blank lines before the closing
brace of a function.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-21 14:59:29 -08:00
Justin P. Mattock c5b60b5e67 security: whitespace coding style fixes
Whitespace coding style fixes.

Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-23 10:10:23 +10:00
Serge E. Hallyn 8ff3bc3138 keys: consider user namespace in key_permission
If a key is owned by another user namespace, then treat the
key as though it is owned by both another uid and gid.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-02-27 12:35:09 +11:00
David Howells d84f4f992c CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management.  This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.

A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().

With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:

	struct cred *new = prepare_creds();
	int ret = blah(new);
	if (ret < 0) {
		abort_creds(new);
		return ret;
	}
	return commit_creds(new);

There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.

To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const.  The purpose of this is compile-time
discouragement of altering credentials through those pointers.  Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:

  (1) Its reference count may incremented and decremented.

  (2) The keyrings to which it points may be modified, but not replaced.

The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     This now prepares and commits credentials in various places in the
     security code rather than altering the current creds directly.

 (2) Temporary credential overrides.

     do_coredump() and sys_faccessat() now prepare their own credentials and
     temporarily override the ones currently on the acting thread, whilst
     preventing interference from other threads by holding cred_replace_mutex
     on the thread being dumped.

     This will be replaced in a future patch by something that hands down the
     credentials directly to the functions being called, rather than altering
     the task's objective credentials.

 (3) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_capset_check(), ->capset_check()
     (*) security_capset_set(), ->capset_set()

     	 Removed in favour of security_capset().

     (*) security_capset(), ->capset()

     	 New.  This is passed a pointer to the new creds, a pointer to the old
     	 creds and the proposed capability sets.  It should fill in the new
     	 creds or return an error.  All pointers, barring the pointer to the
     	 new creds, are now const.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()

     	 Changed; now returns a value, which will cause the process to be
     	 killed if it's an error.

     (*) security_task_alloc(), ->task_alloc_security()

     	 Removed in favour of security_prepare_creds().

     (*) security_cred_free(), ->cred_free()

     	 New.  Free security data attached to cred->security.

     (*) security_prepare_creds(), ->cred_prepare()

     	 New. Duplicate any security data attached to cred->security.

     (*) security_commit_creds(), ->cred_commit()

     	 New. Apply any security effects for the upcoming installation of new
     	 security by commit_creds().

     (*) security_task_post_setuid(), ->task_post_setuid()

     	 Removed in favour of security_task_fix_setuid().

     (*) security_task_fix_setuid(), ->task_fix_setuid()

     	 Fix up the proposed new credentials for setuid().  This is used by
     	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
     	 setuid() changes.  Changes are made to the new credentials, rather
     	 than the task itself as in security_task_post_setuid().

     (*) security_task_reparent_to_init(), ->task_reparent_to_init()

     	 Removed.  Instead the task being reparented to init is referred
     	 directly to init's credentials.

	 NOTE!  This results in the loss of some state: SELinux's osid no
	 longer records the sid of the thread that forked it.

     (*) security_key_alloc(), ->key_alloc()
     (*) security_key_permission(), ->key_permission()

     	 Changed.  These now take cred pointers rather than task pointers to
     	 refer to the security context.

 (4) sys_capset().

     This has been simplified and uses less locking.  The LSM functions it
     calls have been merged.

 (5) reparent_to_kthreadd().

     This gives the current thread the same credentials as init by simply using
     commit_thread() to point that way.

 (6) __sigqueue_alloc() and switch_uid()

     __sigqueue_alloc() can't stop the target task from changing its creds
     beneath it, so this function gets a reference to the currently applicable
     user_struct which it then passes into the sigqueue struct it returns if
     successful.

     switch_uid() is now called from commit_creds(), and possibly should be
     folded into that.  commit_creds() should take care of protecting
     __sigqueue_alloc().

 (7) [sg]et[ug]id() and co and [sg]et_current_groups.

     The set functions now all use prepare_creds(), commit_creds() and
     abort_creds() to build and check a new set of credentials before applying
     it.

     security_task_set[ug]id() is called inside the prepared section.  This
     guarantees that nothing else will affect the creds until we've finished.

     The calling of set_dumpable() has been moved into commit_creds().

     Much of the functionality of set_user() has been moved into
     commit_creds().

     The get functions all simply access the data directly.

 (8) security_task_prctl() and cap_task_prctl().

     security_task_prctl() has been modified to return -ENOSYS if it doesn't
     want to handle a function, or otherwise return the return value directly
     rather than through an argument.

     Additionally, cap_task_prctl() now prepares a new set of credentials, even
     if it doesn't end up using it.

 (9) Keyrings.

     A number of changes have been made to the keyrings code:

     (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
     	 all been dropped and built in to the credentials functions directly.
     	 They may want separating out again later.

     (b) key_alloc() and search_process_keyrings() now take a cred pointer
     	 rather than a task pointer to specify the security context.

     (c) copy_creds() gives a new thread within the same thread group a new
     	 thread keyring if its parent had one, otherwise it discards the thread
     	 keyring.

     (d) The authorisation key now points directly to the credentials to extend
     	 the search into rather pointing to the task that carries them.

     (e) Installing thread, process or session keyrings causes a new set of
     	 credentials to be created, even though it's not strictly necessary for
     	 process or session keyrings (they're shared).

(10) Usermode helper.

     The usermode helper code now carries a cred struct pointer in its
     subprocess_info struct instead of a new session keyring pointer.  This set
     of credentials is derived from init_cred and installed on the new process
     after it has been cloned.

     call_usermodehelper_setup() allocates the new credentials and
     call_usermodehelper_freeinfo() discards them if they haven't been used.  A
     special cred function (prepare_usermodeinfo_creds()) is provided
     specifically for call_usermodehelper_setup() to call.

     call_usermodehelper_setkeys() adjusts the credentials to sport the
     supplied keyring as the new session keyring.

(11) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) selinux_setprocattr() no longer does its check for whether the
     	 current ptracer can access processes with the new SID inside the lock
     	 that covers getting the ptracer's SID.  Whilst this lock ensures that
     	 the check is done with the ptracer pinned, the result is only valid
     	 until the lock is released, so there's no point doing it inside the
     	 lock.

(12) is_single_threaded().

     This function has been extracted from selinux_setprocattr() and put into
     a file of its own in the lib/ directory as join_session_keyring() now
     wants to use it too.

     The code in SELinux just checked to see whether a task shared mm_structs
     with other tasks (CLONE_VM), but that isn't good enough.  We really want
     to know if they're part of the same thread group (CLONE_THREAD).

(13) nfsd.

     The NFS server daemon now has to use the COW credentials to set the
     credentials it is going to use.  It really needs to pass the credentials
     down to the functions it calls, but it can't do that until other patches
     in this series have been applied.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:23 +11:00
David Howells c69e8d9c01 CRED: Use RCU to access another task's creds and to release a task's own creds
Use RCU to access another task's creds and to release a task's own creds.
This means that it will be possible for the credentials of a task to be
replaced without another task (a) requiring a full lock to read them, and (b)
seeing deallocated memory.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:19 +11:00
David Howells b6dff3ec5e CRED: Separate task security context from task_struct
Separate the task security context from task_struct.  At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.

Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.

With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:16 +11:00
David Howells b5f545c880 [PATCH] keys: Permit running process to instantiate keys
Make it possible for a running process (such as gssapid) to be able to
instantiate a key, as was requested by Trond Myklebust for NFS4.

The patch makes the following changes:

 (1) A new, optional key type method has been added. This permits a key type
     to intercept requests at the point /sbin/request-key is about to be
     spawned and do something else with them - passing them over the
     rpc_pipefs files or netlink sockets for instance.

     The uninstantiated key, the authorisation key and the intended operation
     name are passed to the method.

 (2) The callout_info is no longer passed as an argument to /sbin/request-key
     to prevent unauthorised viewing of this data using ps or by looking in
     /proc/pid/cmdline.

     This means that the old /sbin/request-key program will not work with the
     patched kernel as it will expect to see an extra argument that is no
     longer there.

     A revised keyutils package will be made available tomorrow.

 (3) The callout_info is now attached to the authorisation key. Reading this
     key will retrieve the information.

 (4) A new field has been added to the task_struct. This holds the
     authorisation key currently active for a thread. Searches now look here
     for the caller's set of keys rather than looking for an auth key in the
     lowest level of the session keyring.

     This permits a thread to be servicing multiple requests at once and to
     switch between them. Note that this is per-thread, not per-process, and
     so is usable in multithreaded programs.

     The setting of this field is inherited across fork and exec.

 (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that
     permits a thread to assume the authority to deal with an uninstantiated
     key. Assumption is only permitted if the authorisation key associated
     with the uninstantiated key is somewhere in the thread's keyrings.

     This function can also clear the assumption.

 (6) A new magic key specifier has been added to refer to the currently
     assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY).

 (7) Instantiation will only proceed if the appropriate authorisation key is
     assumed first. The assumed authorisation key is discarded if
     instantiation is successful.

 (8) key_validate() is moved from the file of request_key functions to the
     file of permissions functions.

 (9) The documentation is updated.

From: <Valdis.Kletnieks@vt.edu>

    Build fix.

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08 20:13:53 -08:00
David Howells 29db919063 [PATCH] Keys: Add LSM hooks for key management [try #3]
The attached patch adds LSM hooks for key management facilities. The notable
changes are:

 (1) The key struct now supports a security pointer for the use of security
     modules. This will permit key labelling and restrictions on which
     programs may access a key.

 (2) Security modules get a chance to note (or abort) the allocation of a key.

 (3) The key permission checking can now be enhanced by the security modules;
     the permissions check consults LSM if all other checks bear out.

 (4) The key permissions checking functions now return an error code rather
     than a boolean value.

 (5) An extra permission has been added to govern the modification of
     attributes (UID, GID, permissions).

Note that there isn't an LSM hook specifically for each keyctl() operation,
but rather the permissions hook allows control of individual operations based
on the permission request bits.

Key management access control through LSM is enabled by automatically if both
CONFIG_KEYS and CONFIG_SECURITY are enabled.

This should be applied on top of the patch ensubjected:

	[PATCH] Keys: Possessor permissions should be additive

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:23 -08:00
David Howells 7ab501db8c [PATCH] Keys: Possessor permissions should be additive
This patch makes the possessor permissions on a key additive with
user/group/other permissions on the same key.

This permits extra rights to be granted to the possessor of a key without
taking away any rights conferred by them owning the key or having common group
membership.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08 14:54:48 -07:00
David Howells 468ed2b0c8 [PATCH] Keys: Split key permissions checking into a .c file
The attached patch splits key permissions checking out of key-ui.h and
moves it into a .c file.  It's quite large and called quite a lot, and
it's about to get bigger with the addition of LSM support for keys...

key_any_permission() is also discarded as it's no longer used.

Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-08 14:53:31 -07:00