1
0
Fork 0
Commit Graph

22 Commits (341924049558e5f7c1a148a2c461a417933d35d9)

Author SHA1 Message Date
Thomas Gleixner d2912cb15b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation #

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 4122 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:55 +02:00
Vineet Gupta 3032f0c900 ARCv2: spinlock: remove the extra smp_mb before lock, after unlock
- ARCv2 LLSC spinlocks have smp_mb() both before and after the LLSC
   instructions, which is not required per lkmm ACQ/REL semantics.
   smp_mb() is only needed _after_ lock and _before_ unlock.
   So remove the extra barriers.
   The reason they were there was mainly historical. At the time of
   initial SMP Linux bringup on HS38 cores, I was too conservative,
   given the fluidity of both hw and sw. The last attempt to ditch the
   extra barrier showed some hackbench regression which is apparently
   not the case now (atleast for LLSC case, read on...)

 - EX based spinlocks (!CONFIG_ARC_HAS_LLSC) still needs the extra
   smp_mb(), not due to lkmm, but due to some hardware shenanigans.
   W/o that, hackbench triggers RCU stall splat so extra DMB is retained
   !LLSC based systems are not realistic Linux sstem anyways so they can
   afford to be a nit suboptimal ;-)

   | [ARCLinux]# for i in (seq 1 1 5) ; do hackbench; done
   | Running with 10 groups 400 process
   | INFO: task hackbench:158 blocked for more than 10 seconds.
   |       Not tainted 4.20.0-00005-g96b18288a88e-dirty #117
   | "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
   | hackbench       D    0   158    135 0x00000000
   |
   | Stack Trace:
   | watchdog: BUG: soft lockup - CPU#3 stuck for 59s! [hackbench:469]
   | Modules linked in:
   | Path: (null)
   | CPU: 3 PID: 469 Comm: hackbench Not tainted 4.20.0-00005-g96b18288a88e-dirty
   |
   | [ECR   ]: 0x00000000 => Check Programmer's Manual
   | [EFA   ]: 0x00000000
   | [BLINK ]: do_exit+0x4a6/0x7d0
   | [ERET  ]: _raw_write_unlock_irq+0x44/0x5c

 - And while at it, remove the extar smp_mb() from EX based
   arch_read_trylock() since the spin lock there guarantees a full
   barrier anyways

 - For LLSC case, hackbench threads improves with this patch (HAPS @ 50MHz)

   ---- before ----
   |
   | [ARCLinux]# for i in 1 2 3 4 5; do hackbench 10 thread; done
   | Running with 10 groups 400 threads
   | Time: 16.253
   | Time: 16.445
   | Time: 16.590
   | Time: 16.721
   | Time: 16.544

   ---- after ----
   |
   | [ARCLinux]# for i in 1 2 3 4 5; do hackbench 10 thread; done
   | Running with 10 groups 400 threads
   | Time: 15.638
   | Time: 15.730
   | Time: 15.870
   | Time: 15.842
   | Time: 15.729

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2019-03-08 11:17:49 -08:00
Will Deacon a4c1887d4c locking/arch: Remove dummy arch_{read,spin,write}_lock_flags() implementations
The arch_{read,spin,write}_lock_flags() macros are simply mapped to the
non-flags versions by the majority of architectures, so do this in core
code and remove the dummy implementations. Also remove the implementation
in spinlock_up.h, since all callers of do_raw_spin_lock_flags() call
local_irq_save(flags) anyway.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1507055129-12300-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:50:19 +02:00
Will Deacon 0160fb177d locking/arch: Remove dummy arch_{read,spin,write}_relax() implementations
arch_{read,spin,write}_relax() are defined as cpu_relax() by the core
code, so architectures that can't do better (i.e. most of them) don't
need to bother with the dummy definitions.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1507055129-12300-3-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:50:18 +02:00
Will Deacon a8a217c221 locking/core: Remove {read,spin,write}_can_lock()
Outside of the locking code itself, {read,spin,write}_can_lock() have no
users in tree. Apparmor (the last remaining user of write_can_lock()) got
moved over to lockdep by the previous patch.

This patch removes the use of {read,spin,write}_can_lock() from the
BUILD_LOCK_OPS macro, deferring to the trylock operation for testing the
lock status, and subsequently removes the unused macros altogether. They
aren't guaranteed to work in a concurrent environment and can give
incorrect results in the case of qrwlock.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1507055129-12300-2-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10 11:50:18 +02:00
Linus Torvalds ee89252b9e ARC changes for 4.14-rc1
- support for HSDK board hosting a Quad core HS38x4 based SoC running @ 1 GHz
    (and some prerrquisite changes such as ability to scoot the kernel code/data
     from start of memory map etc)
 
  - Quite a few updates for EZChip (Mellanox) platform
 
  - Fixes to fault/exception printing
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZstaxAAoJEGnX8d3iisJe5I0QAIExIdU5/V/bgJ7EJJaa6qW4
 VxB5HXzbwOuIx/3i/uv4AwBIoeZIzuRQnjwf2dzTJms5vjT2zR08DGYIBmtSAA23
 ZUmpZVd865IItLCRM7WOerP6B6gaHaObzNlZoo2d8rVnz0fruc5Td4PDC1Esfs7D
 vA4aITbiG6FsJMYFeYR6IKJbM8D1CmB2Gm1gEPIifniJ9dy/V9Xi5ttvISpVJSNx
 QMb6PDHVEpkOBypUEJKeoClFZlkeqscejjXmZ3QrhoeHM//3hX8MdvyvFBmoCY4t
 YpmmrfmoCupwFFn7+XDwYqDyYvJk/H84n64tUcpM7PLqCuw4BaMhd3KTjkTwvsnN
 H5NAhqbHIW3r4a9esn53yvgY8zk9i6U7qmhKpEwkUQTtUZ7XrdfL1H1t08cqtxPX
 /eFBkeKNshJy8EU02MewtxvWXON3RoJC3qgHoLkrj+iq5HTQjaDEahbQNm+rnXFI
 EdRMBwPX2sXOvB/m/jQYjz6QM1QTl6zHy+tXbBpATIqgRxsp6SIInqGmq7fC032a
 K7zPWo2Vf2LLl4ifhFJaYwbrQotqDGe/F72K1C5RcWKLnhMPdLgZ4Lwf0NcJTeDt
 DjmqUFXwNdQ2Ydw0B9JxeTddVCzdLHPQqxOOvvBI0vvgsF8AFmAmx2QhMdQTsZJr
 73mD3udrQN48yYzAIZQf
 =w8CJ
 -----END PGP SIGNATURE-----

Merge tag 'arc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc

Pull ARC updates from Vineet Gupta:

 - Support for HSDK board hosting a Quad core HS38x4 based SoC running
   @1GHz (and some prerrquisite changes such as ability to scoot the
   kernel code/data from start of memory map etc)

 - Quite a few updates for EZChip (Mellanox) platform

 - Fixes to fault/exception printing

* tag 'arc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc: (26 commits)
  ARC: Re-enable MMU upon Machine Check exception
  ARC: Show fault information passed to show_kernel_fault_diag()
  ARC: [plat-hsdk] initial port for HSDK board
  ARC: mm: Decouple RAM base address from kernel link address
  ARCv2: IOC: Tighten up the contraints (specifically base / size alignment)
  ARC: [plat-axs103] refactor the DT fudging code
  ARC: [plat-axs103] use clk driver #2: Add core pll node to DT to manage cpu clk
  ARC: [plat-axs103] use clk driver #1: Get rid of platform specific cpu clk setting
  ARCv2: SLC: provide a line based flush routine for debugging
  ARC: Hardcode ARCH_DMA_MINALIGN to max line length we may have
  ARC: [plat-eznps] handle extra aux regs #2: kernel/entry exit
  ARC: [plat-eznps] handle extra aux regs #1: save/restore on context switch
  ARC: [plat-eznps] avoid toggling of DPC register
  ARC: [plat-eznps] Update the init sequence of aux regs per cpu.
  ARC: [plat-eznps] new command line argument for HW scheduler at MTM
  ARC: set boot print log level to PR_INFO
  ARC: [plat-eznps] Handle user memory error same in simulation and silicon
  ARC: [plat-eznps] use schd.wft instruction instead of sleep at idle task
  ARC: create cpu specific version of arch_cpu_idle()
  ARC: [plat-eznps] spinlock aware for MTM
  ...
2017-09-08 16:02:18 -07:00
Noam Camus 1112c3b2ce ARC: [plat-eznps] spinlock aware for MTM
This way when we execute "ex" during trying to hold lock we can switch to
other HW thread and utilize the core intead of just spinning on a lock.

We noticed about 10% improvement of execution time with hackbench test.

Signed-off-by: Noam Camus <noamca@mellanox.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2017-08-28 15:17:36 -07:00
Vineet Gupta c2bdac146b ARC: spinlock: Document the EX based spin_unlock
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2017-08-28 15:17:36 -07:00
Paul E. McKenney 952111d7db arch: Remove spin_unlock_wait() arch-specific definitions
There is no agreed-upon definition of spin_unlock_wait()'s semantics,
and it appears that all callers could do just as well with a lock/unlock
pair.  This commit therefore removes the underlying arch-specific
arch_spin_unlock_wait() for all architectures providing them.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Boqun Feng <boqun.feng@gmail.com>
2017-08-17 08:08:59 -07:00
Peter Zijlstra 726328d92a locking/spinlock, arch: Update and fix spin_unlock_wait() implementations
This patch updates/fixes all spin_unlock_wait() implementations.

The update is in semantics; where it previously was only a control
dependency, we now upgrade to a full load-acquire to match the
store-release from the spin_unlock() we waited on. This ensures that
when spin_unlock_wait() returns, we're guaranteed to observe the full
critical section we waited on.

This fixes a number of spin_unlock_wait() users that (not
unreasonably) rely on this.

I also fixed a number of ticket lock versions to only wait on the
current lock holder, instead of for a full unlock, as this is
sufficient.

Furthermore; again for ticket locks; I added an smp_rmb() in between
the initial ticket load and the spin loop testing the current value
because I could not convince myself the address dependency is
sufficient, esp. if the loads are of different sizes.

I'm more than happy to remove this smp_rmb() again if people are
certain the address dependency does indeed work as expected.

Note: PPC32 will be fixed independently

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chris@zankel.net
Cc: cmetcalf@mellanox.com
Cc: davem@davemloft.net
Cc: dhowells@redhat.com
Cc: james.hogan@imgtec.com
Cc: jejb@parisc-linux.org
Cc: linux@armlinux.org.uk
Cc: mpe@ellerman.id.au
Cc: ralf@linux-mips.org
Cc: realmz6@gmail.com
Cc: rkuo@codeaurora.org
Cc: rth@twiddle.net
Cc: schwidefsky@de.ibm.com
Cc: tony.luck@intel.com
Cc: vgupta@synopsys.com
Cc: ysato@users.sourceforge.jp
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-14 11:55:15 +02:00
Vineet Gupta ed6aefed72 Revert "ARCv2: spinlock/rwlock/atomics: Delayed retry of failed SCOND with exponential backoff"
This reverts commit e78fdfef84.

The issue was fixed in hardware in HS2.1C release and there are no known
external users of affected RTL so revert the whole delayed retry series !

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2016-06-02 10:59:23 +05:30
Vineet Gupta 819f3602dc Revert "ARCv2: spinlock/rwlock: Reset retry delay when starting a new spin-wait cycle"
This reverts commit b89aa12c17.

The issue was fixed in hardware in HS2.1C release and there are no known
external users of affected RTL so revert the whole delayed retry series !

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2016-06-02 10:59:23 +05:30
Vineet Gupta 42316a201a Revert "ARCv2: spinlock/rwlock/atomics: reduce 1 instruction in exponential backoff"
This reverts commit 1097163870.

The issue was fixed in hardware in HS2.1C release and there are no known
external users of affected RTL - so revert thw whole delayed retry
series !

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2016-06-02 10:59:22 +05:30
Noam Camus 2a1021fce8 ARC: rwlock: disable interrupts in !LLSC variant
If we hold rwlock and interrupt occures we may
end up spinning on it for ever during softirq.
Note that this lock is an internal lock
and since the lock is free to be used from any context,
the lock needs to be IRQ-safe.

Below you may see an example for interrupt we get while
nl_table_lock is holding its rw->lock_mutex and we spinned
on it for ever.

The concept for the fix was taken from SPARC.

[2015-05-12 19:16:12] Stack Trace:
[2015-05-12 19:16:12]   arc_unwind_core+0xb8/0x11c
[2015-05-12 19:16:12]   dump_stack+0x68/0xac
[2015-05-12 19:16:12]   _raw_read_lock+0xa8/0xac
[2015-05-12 19:16:12]   netlink_broadcast_filtered+0x56/0x35c
[2015-05-12 19:16:12]   nlmsg_notify+0x42/0xa4
[2015-05-12 19:16:13]   neigh_update+0x1fe/0x44c
[2015-05-12 19:16:13]   neigh_event_ns+0x40/0xa4
[2015-05-12 19:16:13]   arp_process+0x46e/0x5a8
[2015-05-12 19:16:13]   __netif_receive_skb_core+0x358/0x500
[2015-05-12 19:16:13]   process_backlog+0x92/0x154
[2015-05-12 19:16:13]   net_rx_action+0xb8/0x188
[2015-05-12 19:16:13]   __do_softirq+0xda/0x1d8
[2015-05-12 19:16:14]   irq_exit+0x8a/0x8c
[2015-05-12 19:16:14]   arch_do_IRQ+0x6c/0xa8
[2015-05-12 19:16:14]   handle_interrupt_level1+0xe4/0xf0

Signed-off-by: Noam Camus <noamc@ezchip.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
2016-05-09 09:32:32 +05:30
Vineet Gupta 1097163870 ARCv2: spinlock/rwlock/atomics: reduce 1 instruction in exponential backoff
The increment of delay counter was 2 instructions:
Arithmatic Shfit Left (ASL) + set to 1 on overflow

This can be done in 1 using ROtate Left (ROL)

Suggested-by: Nigel Topham <ntopham@synopsys.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-08-07 13:56:16 +05:30
Vineet Gupta b89aa12c17 ARCv2: spinlock/rwlock: Reset retry delay when starting a new spin-wait cycle
The previous commit for delayed retry of SCOND needs some fine tuning
for spin locks.

The backoff from delayed retry in conjunction with spin looping of lock
itself can potentially cause the delay counter to reach high values.
So to provide fairness to any lock operation, after a lock "seems"
available (i.e. just before first SCOND try0, reset the delay counter
back to starting value of 1

Essentially reset delay to 1 for a new spin-wait-loop-acquire cycle.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-08-04 09:26:35 +05:30
Vineet Gupta e78fdfef84 ARCv2: spinlock/rwlock/atomics: Delayed retry of failed SCOND with exponential backoff
This is to workaround the llock/scond livelock

HS38x4 could get into a LLOCK/SCOND livelock in case of multiple overlapping
coherency transactions in the SCU. The exclusive line state keeps rotating
among contenting cores leading to a never ending cycle. So break the cycle
by deferring the retry of failed exclusive access (SCOND). The actual delay
needed is function of number of contending cores as well as the unrelated
coherency traffic from other cores. To keep the code simple, start off with
small delay of 1 which would suffice most cases and in case of contention
double the delay. Eventually the delay is sufficient such that the coherency
pipeline is drained, thus a subsequent exclusive access would succeed.

Link: http://lkml.kernel.org/r/1438612568-28265-1-git-send-email-vgupta@synopsys.com
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-08-04 09:26:34 +05:30
Vineet Gupta 69cbe630f5 ARC: LLOCK/SCOND based rwlock
With LLOCK/SCOND, the rwlock counter can be atomically updated w/o need
for a guarding spin lock.

This in turn elides the EXchange instruction based spinning which causes
the cacheline transition to exclusive state and concurrent spinning
across cores would cause the line to keep bouncing around.
LLOCK/SCOND based implementation is superior as spinning on LLOCK keeps
the cacheline in shared state.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-08-04 09:26:33 +05:30
Vineet Gupta ae7eae9e03 ARC: LLOCK/SCOND based spin_lock
Current spin_lock uses EXchange instruction to implement the atomic test
and set of lock location (reads orig value and ST 1). This however forces
the cacheline into exclusive state (because of the ST) and concurrent
loops in multiple cores will bounce the line around between cores.

Instead, use LLOCK/SCOND to implement the atomic test and set which is
better as line is in shared state while lock is spinning on LLOCK

The real motivation of this change however is to make way for future
changes in atomics to implement delayed retry (with backoff).
Initial experiment with delayed retry in atomics combined with orig
EX based spinlock was a total disaster (broke even LMBench) as
struct sock has a cache line sharing an atomic_t and spinlock. The
tight spinning on lock, caused the atomic retry to keep backing off
such that it would never finish.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-08-04 09:26:33 +05:30
Vineet Gupta 2576c28e3f ARC: add smp barriers around atomics per Documentation/atomic_ops.txt
- arch_spin_lock/unlock were lacking the ACQUIRE/RELEASE barriers
   Since ARCv2 only provides load/load, store/store and all/all, we need
   the full barrier

 - LLOCK/SCOND based atomics, bitops, cmpxchg, which return modified
   values were lacking the explicit smp barriers.

 - Non LLOCK/SCOND varaints don't need the explicit barriers since that
   is implicity provided by the spin locks used to implement the
   critical section (the spin lock barriers in turn are also fixed in
   this commit as explained above

Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2015-06-25 06:00:16 +05:30
Vineet Gupta 6c00350b57 ARC: Workaround spinlock livelock in SMP SystemC simulation
Some ARC SMP systems lack native atomic R-M-W (LLOCK/SCOND) insns and
can only use atomic EX insn (reg with mem) to build higher level R-M-W
primitives. This includes a SystemC based SMP simulation model.

So rwlocks need to use a protecting spinlock for atomic cmp-n-exchange
operation to update reader(s)/writer count.

The spinlock operation itself looks as follows:

	mov reg, 1		; 1=locked, 0=unlocked
retry:
	EX reg, [lock]		; load existing, store 1, atomically
	BREQ reg, 1, rety	; if already locked, retry

In single-threaded simulation, SystemC alternates between the 2 cores
with "N" insn each based scheduling. Additionally for insn with global
side effect, such as EX writing to shared mem, a core switch is
enforced too.

Given that, 2 cores doing a repeated EX on same location, Linux often
got into a livelock e.g. when both cores were fiddling with tasklist
lock (gdbserver / hackbench) for read/write respectively as the
sequence diagram below shows:

           core1                                   core2
         --------                                --------
1. spin lock [EX r=0, w=1] - LOCKED
2. rwlock(Read)            - LOCKED
3. spin unlock  [ST 0]     - UNLOCKED
                                         spin lock [EX r=0,w=1] - LOCKED
                      -- resched core 1----

5. spin lock [EX r=1] - ALREADY-LOCKED

                      -- resched core 2----
6.                                       rwlock(Write) - READER-LOCKED
7.                                       spin unlock [ST 0]
8.                                       rwlock failed, retry again

9.                                       spin lock  [EX r=0, w=1]
                      -- resched core 1----

10  spinlock locked in #9, retry #5
11. spin lock [EX gets 1]
                      -- resched core 2----
...
...

The fix was to unlock using the EX insn too (step 7), to trigger another
SystemC scheduling pass which would let core1 proceed, eliding the
livelock.

Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
2013-09-27 16:28:48 +05:30
Vineet Gupta 6e35fa2d43 ARC: Spinlock/rwlock/mutex primitives
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2013-02-11 20:00:35 +05:30