1
0
Fork 0
Commit Graph

130 Commits (48c834be170bb1060e14092ff1c7967ea72b2e97)

Author SHA1 Message Date
Jérôme Glisse fb1522e099 KVM: update to new mmu_notifier semantic v2
Calls to mmu_notifier_invalidate_page() were replaced by calls to
mmu_notifier_invalidate_range() and are now bracketed by calls to
mmu_notifier_invalidate_range_start()/end()

Remove now useless invalidate_page callback.

Changed since v1 (Linus Torvalds)
    - remove now useless kvm_arch_mmu_notifier_invalidate_page()

Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Tested-by: Adam Borowski <kilobyte@angband.pl>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-31 16:13:00 -07:00
Paolo Bonzini 4b4357e025 kvm: make KVM_COALESCED_MMIO_PAGE_OFFSET public
Its value has never changed; we might as well make it part of the ABI instead
of using the return value of KVM_CHECK_EXTENSION(KVM_CAP_COALESCED_MMIO).

Because PPC does not always make MMIO available, the code has to be made
dependent on CONFIG_KVM_MMIO rather than KVM_COALESCED_MMIO_PAGE_OFFSET.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-04-07 16:49:01 +02:00
James Hogan f4474d50c7 KVM: MIPS/VZ: Support hardware guest timer
Transfer timer state to the VZ guest context (CP0_GTOffset & guest
CP0_Count) when entering guest mode, enabling direct guest access to it,
and transfer back to soft timer when saving guest register state.

This usually allows guest code to directly read CP0_Count (via MFC0 and
RDHWR) and read/write CP0_Compare, without trapping to the hypervisor
for it to emulate the guest timer. Writing to CP0_Count or CP0_Cause.DC
is much less common and still triggers a hypervisor GPSI exception, in
which case the timer state is transferred back to an hrtimer before
emulating the write.

We are careful to prevent small amounts of drift from building up due to
undeterministic time intervals between reading of the ktime and reading
of CP0_Count. Some drift is expected however, since the system
clocksource may use a different timer to the local CP0_Count timer used
by VZ. This is permitted to prevent guest CP0_Count from appearing to go
backwards.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:59 +01:00
James Hogan d42a008f86 KVM: MIPS/VZ: Emulate MAARs when necessary
Add emulation of Memory Accessibility Attribute Registers (MAARs) when
necessary. We can't actually do anything with whatever the guest
provides, but it may not be possible to clear Guest.Config5.MRP so we
have to emulate at least a pair of MAARs.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:58 +01:00
James Hogan 5a2f352f34 KVM: MIPS/VZ: Support guest hardware page table walker
Add support for VZ guest CP0_PWBase, CP0_PWField, CP0_PWSize, and
CP0_PWCtl registers for controlling the guest hardware page table walker
(HTW) present on P5600 and P6600 cores. These guest registers need
initialising on R6, context switching, and exposing via the KVM ioctl
API when they are present.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:57 +01:00
James Hogan 4b7de028e6 KVM: MIPS/VZ: Support guest segmentation control
Add support for VZ guest CP0_SegCtl0, CP0_SegCtl1, and CP0_SegCtl2
registers, as found on P5600 and P6600 cores. These guest registers need
initialising, context switching, and exposing via the KVM ioctl API when
they are present.

They also require the GVA -> GPA translation code for handling a GVA
root exception to be updated to interpret the segmentation registers and
decode the faulting instruction enough to detect EVA memory access
instructions.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:56 +01:00
James Hogan dffe042fd8 KVM: MIPS/VZ: Support guest CP0_[X]ContextConfig
Add support for VZ guest CP0_ContextConfig and CP0_XContextConfig
(MIPS64 only) registers, as found on P5600 and P6600 cores. These guest
registers need initialising, context switching, and exposing via the KVM
ioctl API when they are present.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:56 +01:00
James Hogan edc89260d4 KVM: MIPS/VZ: Support guest CP0_BadInstr[P]
Add support for VZ guest CP0_BadInstr and CP0_BadInstrP registers, as
found on most VZ capable cores. These guest registers need context
switching, and exposing via the KVM ioctl API when they are present.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:55 +01:00
James Hogan c992a4f6a9 KVM: MIPS: Implement VZ support
Add the main support for the MIPS Virtualization ASE (A.K.A. VZ) to MIPS
KVM. The bulk of this work is in vz.c, with various new state and
definitions elsewhere.

Enough is implemented to be able to run on a minimal VZ core. Further
patches will fill out support for guest features which are optional or
can be disabled.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:54 +01:00
James Hogan 372582a6c6 KVM: MIPS/TLB: Add VZ TLB management
Add functions for MIPS VZ TLB management to tlb.c.

kvm_vz_host_tlb_inv() will be used for invalidating root TLB entries
after GPA page tables have been modified due to a KVM page fault. It
arranges for a root GPA mapping to be flushed from the TLB, using the
gpa_mm ASID or the current GuestID to do the probe.

kvm_vz_local_flush_roottlb_all_guests() and
kvm_vz_local_flush_guesttlb_all() flush all TLB entries in the
corresponding TLB for guest mappings (GPA->RPA for root TLB with
GuestID, and all entries for guest TLB). They will be used when starting
a new GuestID cycle, when VZ hardware is enabled/disabled, and also when
switching to a guest when the guest TLB contents may be stale or belong
to a different VM.

kvm_vz_guest_tlb_lookup() converts a guest virtual address to a guest
physical address using the guest TLB. This will be used to decode guest
virtual addresses which are sometimes provided by VZ hardware in
CP0_BadVAddr for certain exceptions when the guest physical address is
unavailable.

kvm_vz_save_guesttlb() and kvm_vz_load_guesttlb() will be used to
preserve wired guest VTLB entries while a guest isn't running.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:51 +01:00
James Hogan 1934a3ad09 KVM: MIPS/Entry: Update entry code to support VZ
Update MIPS KVM entry code to support VZ:

 - We need to set GuestCtl0.GM while in guest mode.

 - For cores supporting GuestID, we need to set the root GuestID to
   match the main GuestID while in guest mode so that the root TLB
   refill handler writes the correct GuestID into the TLB.

 - For cores without GuestID where the root ASID dealiases RVA/GPA
   mappings, we need to load that ASID from the gpa_mm rather than the
   per-VCPU guest_kernel_mm or guest_user_mm, since the root TLB maps
   guest physical addresses. We also need to restore the normal process
   ASID on exit.

 - The normal linux process pgd needs restoring on exit, as we can't
   leave the GPA mappings active for kernel code.

 - GuestCtl0 needs saving on exit for the GExcCode field, as it may be
   clobbered if a preemption occurs.

We also need to move the TLB refill handler to the XTLB vector at offset
0x80 on 64-bit VZ kernels, as hardware will use Root.Status.KX to
determine whether a TLB refill or XTLB Refill exception is to be taken
on a root TLB miss from guest mode, and KX needs to be set for kernel
code to be able to access the 64-bit segments.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:51 +01:00
James Hogan a27660f3e4 KVM: MIPS: Abstract guest CP0 register access for VZ
Abstract the MIPS KVM guest CP0 register access macros into inline
functions which are generated by macros. This allows them to be
generated differently for VZ, where they will usually need to access the
hardware guest CP0 context rather than the saved values in RAM.

Accessors for each individual register are generated using these macros:

 - __BUILD_KVM_*_SW() for registers which are not present in the VZ
   hardware guest context, so kvm_{read,write}_c0_guest_##name() will
   access the saved value in RAM regardless of whether VZ is enabled.

 - __BUILD_KVM_*_HW() for registers which are present in the VZ hardware
   guest context, so kvm_{read,write}_c0_guest_##name() will access the
   hardware register when VZ is enabled.

These build the underlying accessors using further macros:

 - __BUILD_KVM_*_SAVED() builds e.g. kvm_{read,write}_sw_gc0_##name()
   functions for accessing the saved versions of the registers in RAM.
   This is used for implementing the common
   kvm_{read,write}_c0_guest_##name() accessors with T&E where registers
   are always stored in RAM, but are also available with VZ HW registers
   to allow them to be accessed while saved.

 - __BUILD_KVM_*_VZ() builds e.g. kvm_{read,write}_vz_gc0_##name()
   functions for accessing the VZ hardware guest context registers
   directly. This is used for implementing the common
   kvm_{read,write}_c0_guest_##name() accessors with VZ.

 - __BUILD_KVM_*_WRAP() builds wrappers with different names, which
   allows the common kvm_{read,write}_c0_guest_##name() functions to be
   implemented using the VZ accessors while still having the SAVED
   accessors available too.

 - __BUILD_KVM_SAVE_VZ() builds functions for saving and restoring VZ
   hardware guest context register state to RAM, improving conciseness
   of VZ context saving and restoring.

Similar macros exist for generating modifiers (set, clear, change),
either with a normal unlocked read/modify/write, or using atomic LL/SC
sequences.

These changes change the types of 32-bit registers to u32 instead of
unsigned long, which requires some changes to printk() functions in MIPS
KVM.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:50 +01:00
James Hogan 28c1e762b0 KVM: MIPS: Add guest exit exception callback
Add a callback for MIPS KVM implementations to handle the VZ guest
exit exception. Currently the trap & emulate implementation contains a
stub which reports an internal error, but the callback will be used
properly by the VZ implementation.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:49 +01:00
James Hogan edab4fe1f6 KVM: MIPS: Add hardware_{enable,disable} callback
Add an implementation callback for the kvm_arch_hardware_enable() and
kvm_arch_hardware_disable() architecture functions, with simple stubs
for trap & emulate. This is in preparation for VZ which will make use of
them.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:49 +01:00
James Hogan 607ef2fdeb KVM: MIPS: Add callback to check extension
Add an implementation callback for checking presence of KVM extensions.
This allows implementation specific extensions to be provided without
ifdefs in mips.c.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:48 +01:00
James Hogan a517c1ad65 KVM: MIPS: Init timer frequency from callback
Currently the software emulated timer is initialised to a frequency of
100MHz by kvm_mips_init_count(), but this isn't suitable for VZ where
the frequency of the guest timer matches that of the host.

Add a count_hz argument so the caller can specify the default frequency,
and move the call from kvm_arch_vcpu_create() to the implementation
specific vcpu_setup() callback, so that VZ can specify a different
frequency.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:48 +01:00
James Hogan a7244920d1 KVM: MIPS: Extend counters & events for VZ GExcCodes
Extend MIPS KVM stats counters and kvm_transition trace event codes to
cover hypervisor exceptions, which have their own GExcCode field in
CP0_GuestCtl0 with up to 32 hypervisor exception cause codes.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-03-28 14:53:46 +01:00
James Hogan 955d8dc3ee KVM: MIPS: Implement HYPCALL emulation
Emulate the HYPCALL instruction added in the VZ ASE and used by the MIPS
paravirtualised guest support that is already merged. The new hypcall.c
handles arguments and the return value. No actual hypercalls are yet
supported, but this still allows us to safely step over hypercalls and
set an error code in the return value for forward compatibility.

Non-zero HYPCALL codes are not handled.

We also document the hypercall ABI which asm/kvm_para.h uses.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
2017-03-28 14:53:33 +01:00
James Hogan 12ed1faece KVM: MIPS: Allow multiple VCPUs to be created
Increase the maximum number of MIPS KVM VCPUs to 8, and implement the
KVM_CAP_NR_VCPUS and KVM_CAP_MAX_CPUS capabilities which expose the
recommended and maximum number of VCPUs to userland. The previous
maximum of 1 didn't allow for any form of SMP guests.

We calculate the values similarly to ARM, recommending as many VCPUs as
there are CPUs online in the system. This will allow userland to know
how many VCPUs it is possible to create.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:34 +00:00
James Hogan ad58d4d4a2 KVM: MIPS/T&E: Expose read-only CP0_IntCtl register
Expose the CP0_IntCtl register through the KVM register access API,
which is a required register since MIPS32r2. It is currently read-only
since the VS field isn't implemented due to lack of Config3.VInt or
Config3.VEIC.

It is implemented in trap_emul.c so that a VZ implementation can allow
writes.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:33 +00:00
James Hogan 013044cc65 KVM: MIPS/T&E: Expose CP0_EntryLo0/1 registers
Expose the CP0_EntryLo0 and CP0_EntryLo1 registers through the KVM
register access API. This is fairly straightforward for trap & emulate
since we don't support the RI and XI bits. For the sake of future
proofing (particularly for VZ) it is explicitly specified that the API
always exposes the 64-bit version of these registers (i.e. with the RI
and XI bits in bit positions 63 and 62 respectively), and they are
implemented in trap_emul.c rather than mips.c to allow them to be
implemented differently for VZ.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:32 +00:00
James Hogan 7801bbe1bd KVM: MIPS/T&E: Implement CP0_EBase register
The CP0_EBase register is a standard feature of MIPS32r2, so we should
always have been implementing it properly. However the register value
was ignored and wasn't exposed to userland.

Fix the emulation of exceptions and interrupts to use the value stored
in guest CP0_EBase, and fix the masks so that the top 3 bits (rather
than the standard 2) are fixed, so that it is always in the guest KSeg0
segment.

Also add CP0_EBASE to the KVM one_reg interface so it can be accessed by
userland, also allowing the CPU number field to be written (which isn't
permitted by the guest).

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:30 +00:00
James Hogan 654229a024 KVM: MIPS/T&E: Move CP0 register access into T&E
Access to various CP0 registers via the KVM register access API needs to
be implementation specific to allow restrictions to be made on changes,
for example when VZ guest registers aren't present, so move them all
into trap_emul.c in preparation for VZ.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:30 +00:00
James Hogan 411740f542 KVM: MIPS/MMU: Implement KVM_CAP_SYNC_MMU
Implement the SYNC_MMU capability for KVM MIPS, allowing changes in the
underlying user host virtual address (HVA) mappings to be promptly
reflected in the corresponding guest physical address (GPA) mappings.

This allows for several features to work with guest RAM which require
mappings to be altered or protected, such as copy-on-write, KSM (Kernel
Samepage Merging), idle page tracking, memory swapping, and guest memory
ballooning.

There are two main aspects of this change, described below.

The KVM MMU notifier architecture callbacks are implemented so we can be
notified of changes in the HVA mappings. These arrange for the guest
physical address (GPA) page tables to be modified and possibly for
derived mappings (GVA page tables and TLBs) to be flushed.

 - kvm_unmap_hva[_range]() - These deal with HVA mappings being removed,
   for example before a copy-on-write takes place, which requires the
   corresponding GPA page table mappings to be removed too.

 - kvm_set_spte_hva() - These update a GPA page table entry to match the
   new HVA entry, but must be careful to respect KVM specific
   configuration such as not dirtying a clean guest page which is dirty
   to the host, and write protecting writable pages in read only
   memslots (which will soon be supported).

 - kvm[_test]_age_hva() - These update GPA page table entries to be old
   (invalid) so that access can be tracked, making them young again.

The GPA page fault handling (kvm_mips_map_page) is updated to use
gfn_to_pfn_prot() (which may provide read-only pages), to handle
asynchronous page table invalidation from MMU notifier callbacks, and to
handle more cases in the fast path.

 - mmu_notifier_seq is used to detect asynchronous page table
   invalidations while we're holding a pfn from gfn_to_pfn_prot()
   outside of kvm->mmu_lock, retrying if invalidations have taken place,
   e.g. a COW or a KSM page merge.

 - The fast path (_kvm_mips_map_page_fast) now handles marking old pages
   as young / accessed, and disallowing dirtying of clean pages that
   aren't actually writable (e.g. shared pages that should COW, and
   read-only memory regions when they are enabled in a future patch).

 - Due to the use of MMU notifications we no longer need to keep the
   page references after we've updated the GPA page tables.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:28 +00:00
James Hogan f0c0c330f7 KVM: MIPS/MMU: Add GPA PT mkclean helper
Add a helper function to make a range of guest physical address (GPA)
mappings in the GPA page table clean so that writes can be caught. This
will be used in a few places to manage dirty page logging.

Note that until the dirty bit is transferred from GPA page table entries
to GVA page table entries in an upcoming patch this won't trigger a TLB
modified exception on write.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:22 +00:00
James Hogan 64ebc9e240 KVM: MIPS/T&E: Handle read only GPA in TLB mod
Rewrite TLB modified exception handling to handle read only GPA memory
regions, instead of unconditionally passing the exception to the guest.

If the guest TLB is not the cause of the exception we call into the
normal TLB fault handling depending on the memory segment, which will
soon attempt to remap the physical page to be writable (handling dirty
page tracking or copy on write in the process).

Failing that we fall back to treating it as MMIO, due to a read only
memory region. Once the capability is enabled, this will allow read only
memory regions (such as the Malta boot flash as emulated by QEMU) to
have writes treated as MMIO, while still allowing reads to run
untrapped.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:22 +00:00
James Hogan 577ed7f71e KVM: MIPS: Pass type of fault down to kvm_mips_map_page()
kvm_mips_map_page() will need to know whether the fault was due to a
read or a write in order to support dirty page tracking,
KVM_CAP_SYNC_MMU, and read only memory regions, so get that information
passed down to it via new bool write_fault arguments to various
functions.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:19 +00:00
James Hogan b620911086 KVM: MIPS: Implement kvm_arch_flush_shadow_all/memslot
Implement the kvm_arch_flush_shadow_all() and
kvm_arch_flush_shadow_memslot() KVM functions for MIPS to allow guest
physical mappings to be safely changed.

The general MIPS KVM code takes care of flushing of GPA page table
entries. kvm_arch_flush_shadow_all() flushes the whole GPA page table,
and is always called on the cleanup path so there is no need to acquire
the kvm->mmu_lock. kvm_arch_flush_shadow_memslot() flushes only the
range of mappings in the GPA page table corresponding to the slot being
flushed, and happens when memory regions are moved or deleted.

MIPS KVM implementation callbacks are added for handling the
implementation specific flushing of mappings derived from the GPA page
tables. These are implemented for trap_emul.c using
kvm_flush_remote_tlbs() which should now be functional, and will flush
the per-VCPU GVA page tables and ASIDS synchronously (before next
entering guest mode or directly accessing GVA space).

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:17 +00:00
James Hogan 4cf74c9c83 KVM: MIPS/Emulate: Use lockless GVA helpers for cache emulation
Use the lockless GVA helpers to implement the reading of guest
instructions for emulation. This will allow it to handle asynchronous
TLB flushes when they are implemented.

This is a little more complicated than the other two cases (get_inst()
and dynamic translation) due to the need to emulate the appropriate
guest TLB exception when the address isn't present or isn't valid in the
guest TLB.

Since there are several protected cache ops that may need to be
performed safely, this is abstracted by kvm_mips_guest_cache_op() which
is passed a protected cache op function pointer and takes care of the
lockless operation and fault handling / retry if the op should fail,
taking advantage of the new errors which the protected cache ops can now
return. This allows the existing advance fault handling which relied on
host TLB lookups to be removed, along with the now unused
kvm_mips_host_tlb_lookup(),

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:15 +00:00
James Hogan 1880afd605 KVM: MIPS/T&E: Add lockless GVA access helpers
Add helpers to allow for lockless direct access to the GVA space, by
changing the VCPU mode to READING_SHADOW_PAGE_TABLES for the duration of
the access. This allows asynchronous TLB flush requests in future
patches to safely trigger either a TLB flush before the direct GVA space
access, or a delay until the in-progress lockless direct access is
complete.

The kvm_trap_emul_gva_lockless_begin() and
kvm_trap_emul_gva_lockless_end() helpers take care of guarding the
direct GVA accesses, and kvm_trap_emul_gva_fault() tries to handle a
uaccess fault resulting from a flush having taken place.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:11 +00:00
James Hogan 06c158c96e KVM: MIPS/MMU: Convert guest physical map to page table
Current guest physical memory is mapped to host physical addresses using
a single linear array (guest_pmap of length guest_pmap_npages). This was
only really meant to be temporary, and isn't sparse, so its wasteful of
memory. A small amount of RAM at GPA 0 and a small boot exception vector
at GPA 0x1fc00000 cannot be represented without a full 128KiB guest_pmap
allocation (MIPS32 with 16KiB pages), which is one reason why QEMU
currently runs its boot code at the top of RAM instead of the usual boot
exception vector address.

Instead use the existing infrastructure for host virtual page table
management to allocate a page table for guest physical memory too. This
should be sufficient for now, assuming the size of physical memory
doesn't exceed the size of virtual memory. It may need extending in
future to handle XPA (eXtended Physical Addressing) in 32-bit guests, as
supported by VZ guests on P5600.

Some of this code is based loosely on Cavium's VZ KVM implementation.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:08 +00:00
James Hogan 6a97c775ff KVM: MIPS: Use CP0_BadInstr[P] for emulation
When exiting from the guest, store the values of the CP0_BadInstr and
CP0_BadInstrP registers if they exist, which contain the encodings of
the instructions which caused the last synchronous exception.

When the instruction is needed for emulation, kvm_get_badinstr() and
kvm_get_badinstrp() are used instead of calling kvm_get_inst() directly,
to decide whether to read the saved CP0_BadInstr/CP0_BadInstrP registers
(if they exist), or read the instruction from memory (if not).

The use of these registers should be more robust than using
kvm_get_inst(), as it actually gives the instruction encoding seen by
the hardware rather than relying on user accessors after the fact, which
can be fooled by incoherent icache or a racing code modification. It
will also work with VZ, where the guest virtual memory isn't directly
accessible by the host with user accessors.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:07 +00:00
James Hogan 122e51d474 KVM: MIPS: Improve kvm_get_inst() error return
Currently kvm_get_inst() returns KVM_INVALID_INST in the event of a
fault reading the guest instruction. This has the rather arbitrary magic
value 0xdeadbeef. This API isn't very robust, and in fact 0xdeadbeef is
a valid MIPS64 instruction encoding, namely "ld t1,-16657(s5)".

Therefore change the kvm_get_inst() API to return 0 or -EFAULT, and to
return the instruction via a u32 *out argument. We can then drop the
KVM_INVALID_INST definition entirely.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:06 +00:00
James Hogan a1ecc54d7e KVM: MIPS/T&E: Don't treat code fetch faults as MMIO
In order to make use of the CP0_BadInstr & CP0_BadInstrP registers we
need to be a bit more careful not to treat code fetch faults as MMIO,
lest we hit an UNPREDICTABLE register value when we try to emulate the
MMIO load instruction but there was no valid instruction word available
to the hardware.

Add a kvm_is_ifetch_fault() helper to try to figure out whether a load
fault was due to a code fetch, and prevent MMIO instruction emulation in
that case.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:05 +00:00
James Hogan a98dd74103 KVM: MIPS/MMU: Drop kvm_get_new_mmu_context()
MIPS KVM uses its own variation of get_new_mmu_context() which takes an
extra vcpu pointer (unused) and does exactly the same thing.

Switch to just using get_new_mmu_context() directly and drop KVM's
version of it as it doesn't really serve any purpose.

The nearby declarations of kvm_mips_alloc_new_mmu_context(),
kvm_mips_vcpu_load() and kvm_mips_vcpu_put() are also removed from
kvm_host.h, as no definitions or users exist.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:04 +00:00
James Hogan 7071a8859b KVM: MIPS/Emulate: Drop redundant TLB flushes on exceptions
When exceptions are injected into the MIPS KVM guest, the whole host TLB
is flushed (except any entries in the guest KSeg0 range). This is
certainly not mandated by the architecture when exceptions are taken
(userland can't directly change TLB mappings anyway), and is a pretty
heavyweight operation:

 - There may be hundreds of TLB entries especially when a 512 entry FTLB
   is present. These are walked and read and conditionally invalidated,
   so the TLBINV feature can't be used either.

 - It'll indiscriminately wipe out entries belonging to other memory
   spaces. A simple ASID regeneration would be much faster to perform,
   although it'd wipe out the guest KSeg0 mappings too.

My suspicion is that this was simply to plaster over the fact that
kvm_mips_host_tlb_inv() incorrectly only invalidated TLB entries in the
ASID for guest usermode, and not the ASID for guest kernelmode.

Now that the recent commit "KVM: MIPS/TLB: Flush host TLB entry in
kernel ASID" fixes kvm_mips_host_tlb_inv() to flush TLB entries in the
kernelmode ASID when the guest TLB changes, lets drop these calls and
the otherwise unused kvm_mips_flush_host_tlb().

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:03 +00:00
James Hogan 49ec508e3b KVM: MIPS/TLB: Drop kvm_local_flush_tlb_all()
Now that KVM no longer uses wired entries we can safely use
local_flush_tlb_all() when we need to flush the entire TLB (on the start
of a new ASID cycle). This doesn't flush wired entries, which allows
other code to use them without KVM clobbering them all the time. It also
is more up to date, knowing about the tlbinv architectural feature,
flushing of micro TLB on cores where that is necessary (Loongson I
believe), and knows to stop the HTW while doing so.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:02 +00:00
James Hogan dacc3ed1dd KVM: MIPS: Use uaccess to read/modify guest instructions
Now that we have GVA page tables, use standard user accesses with page
faults disabled to read & modify guest instructions. This should be more
robust (than the rather dodgy method of accessing guest mapped segments
by just directly addressing them) and will also work with Enhanced
Virtual Addressing (EVA) host kernel configurations where dedicated
instructions are needed for accessing user mode memory.

For simplicity and speed we do this regardless of the guest segment the
address resides in, rather than handling guest KSeg0 specially with
kmap_atomic() as before.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:01 +00:00
James Hogan 7a156e9f82 KVM: MIPS: Drop vm_init() callback
Now that the commpage doesn't use wired TLB entries, the per-CPU
vm_init() callback is the only work done by kvm_mips_init_vm_percpu().

The trap & emulate implementation doesn't actually need to do anything
from vm_init(), and the future VZ implementation would be better served
by a kvm_arch_hardware_enable callback anyway.

Therefore drop the vm_init() callback entirely, allowing the
kvm_mips_init_vm_percpu() function to also be dropped, along with the
kvm_mips_instance atomic counter.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:21:00 +00:00
James Hogan 4c86460cbc KVM: MIPS/MMU: Convert commpage fault handling to page tables
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of commpage faults from the guest kernel to
fill the GVA page table and invalidate the TLB entry, rather than
filling the wired TLB entry directly.

For simplicity we no longer use a wired entry for the commpage (refill
should be much cheaper with the fast-path handler anyway). Since we
don't need to manipulate the TLB directly any longer, move the function
from tlb.c to mmu.c. This puts it closer to the similar functions
handling KSeg0 and TLB mapped page faults from the guest.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:59 +00:00
James Hogan 7e3d2a750b KVM: MIPS/MMU: Convert TLB mapped faults to page tables
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of page faults in TLB mapped segment from
the guest to fill a single GVA page table entry and invalidate the TLB
entry, rather than filling a TLB entry pair directly.

Also remove the now unused kvm_mips_get_{kernel,user}_asid() functions
in mmu.c and kvm_mips_host_tlb_write() in tlb.c.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:58 +00:00
James Hogan aba8592950 KVM: MIPS/MMU: Invalidate stale GVA PTEs on TLBW
Implement invalidation of specific pairs of GVA page table entries in
one or both of the GVA page tables. This is used when existing mappings
are replaced in the guest TLB by emulated TLBWI/TLBWR instructions. Due
to the sharing of page tables in the host kernel range, we should be
careful not to allow host pages to be invalidated.

Add a helper kvm_mips_walk_pgd() which can be used when walking of
either GPA (future patches) or GVA page tables is needed, optionally
with allocation of page tables along the way when they don't exist.

GPA page table walking will need to be protected by the kvm->mmu_lock,
so we also add a small MMU page cache in each KVM VCPU, like that found
for other architectures but smaller. This allows enough pages to be
pre-allocated to handle a single fault without holding the lock,
allowing the helper to run with the lock held without having to handle
allocation failures.

Using the same mechanism for GVA allows the same code to be used, and
allows it to use the same cache of allocated pages if the GPA walk
didn't need to allocate any new tables.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:56 +00:00
James Hogan a31b50d741 KVM: MIPS/MMU: Invalidate GVA PTs on ASID changes
Implement invalidation of large ranges of virtual addresses from GVA
page tables in response to a guest ASID change (immediately for guest
kernel page table, lazily for guest user page table).

We iterate through a range of page tables invalidating entries and
freeing fully invalidated tables. To minimise overhead the exact ranges
invalidated depends on the flags argument to kvm_mips_flush_gva_pt(),
which also allows it to be used in future KVM_CAP_SYNC_MMU patches in
response to GPA changes, which unlike guest TLB mapping changes affects
guest KSeg0 mappings.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:55 +00:00
James Hogan 57e3869cfa KVM: MIPS/TLB: Generalise host TLB invalidate to kernel ASID
Refactor kvm_mips_host_tlb_inv() to also be able to invalidate any
matching TLB entry in the kernel ASID rather than assuming only the TLB
entries in the user ASID can change. Two new bool user/kernel arguments
allow the caller to indicate whether the mapping should affect each of
the ASIDs for guest user/kernel mode.

- kvm_mips_invalidate_guest_tlb() (used by TLBWI/TLBWR emulation) can
  now invalidate any corresponding TLB entry in both the kernel ASID
  (guest kernel may have accessed any guest mapping), and the user ASID
  if the entry being replaced is in guest USeg (where guest user may
  also have accessed it).

- The tlbmod fault handler (and the KSeg0 / TLB mapped / commpage fault
  handlers in later patches) can now invalidate the corresponding TLB
  entry in whichever ASID is currently active, since only a single page
  table will have been updated anyway.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:54 +00:00
James Hogan a7cfa7ac12 KVM: MIPS: Add fast path TLB refill handler
Use functions from the general MIPS TLB exception vector generation code
(tlbex.c) to construct a fast path TLB refill handler similar to the
general one, but cut down and capable of preserving K0 and K1.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:53 +00:00
James Hogan 630766b369 KVM: MIPS: Wire up vcpu uninit
Wire up a vcpu uninit implementation callback. This will be used for the
clean up of GVA->HPA page tables.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:49 +00:00
James Hogan a7ebb2e410 KVM: MIPS/T&E: active_mm = init_mm in guest context
Set init_mm as the active_mm and update mm_cpumask(current->mm) to
reflect that it isn't active when in guest context. This prevents cache
management code from attempting cache flushes on host virtual addresses
while in guest context, for example due to a cache management IPIs or
later when writing of dynamically translated code hits copy on write.

We do this using helpers in static kernel code to avoid having to export
init_mm to modules.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:48 +00:00
James Hogan a2c046e40f KVM: MIPS: Add vcpu_run() & vcpu_reenter() callbacks
Add implementation callbacks for entering the guest (vcpu_run()) and
reentering the guest (vcpu_reenter()), allowing implementation specific
operations to be performed before entering the guest or after returning
to the host without cluttering kvm_arch_vcpu_ioctl_run().

This allows the T&E specific lazy user GVA flush to be moved into
trap_emul.c, along with disabling of the HTW. We also move
kvm_mips_deliver_interrupts() as VZ will need to restore the guest timer
state prior to delivering interrupts.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:46 +00:00
James Hogan c550d53934 KVM: MIPS: Remove duplicated ASIDs from vcpu
The kvm_vcpu_arch structure contains both mm_structs for allocating MMU
contexts (primarily the ASID) but it also copies the resulting ASIDs
into guest_{user,kernel}_asid[] arrays which are referenced from uasm
generated code.

This duplication doesn't seem to serve any purpose, and it gets in the
way of generalising the ASID handling across guest kernel/user modes, so
lets just extract the ASID straight out of the mm_struct on demand, and
in fact there are convenient cpu_context() and cpu_asid() macros for
doing so.

To reduce the verbosity of this code we do also add kern_mm and user_mm
local variables where the kernel and user mm_structs are used.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:45 +00:00
James Hogan a60b8438bd KVM: MIPS: Convert get/set_regs -> vcpu_load/put
Convert the get_regs() and set_regs() callbacks to vcpu_load() and
vcpu_put(), which provide a cpu argument and more closely match the
kvm_arch_vcpu_load() / kvm_arch_vcpu_put() that they are called by.

This is in preparation for moving ASID management into the
implementations.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
2017-02-03 15:20:44 +00:00