1
0
Fork 0
Commit Graph

708 Commits (8a1cd01bee30bd1033a452035f66be127728d4fd)

Author SHA1 Message Date
Sean Christopherson 8a1cd01bee KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM
[ Upstream commit 736c291c9f ]

Convert a plethora of parameters and variables in the MMU and page fault
flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM.

Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical
addresses.  When TDP is enabled, the fault address is a guest physical
address and thus can be a 64-bit value, even when both KVM and its guest
are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a
64-bit field, not a natural width field.

Using a gva_t for the fault address means KVM will incorrectly drop the
upper 32-bits of the GPA.  Ditto for gva_to_gpa() when it is used to
translate L2 GPAs to L1 GPAs.

Opportunistically rename variables and parameters to better reflect the
dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain
"addr" instead of "vaddr" when the address may be either a GVA or an L2
GPA.  Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid
a confusing "gpa_t gva" declaration; this also sets the stage for a
future patch to combing nonpaging_page_fault() and tdp_page_fault() with
minimal churn.

Sprinkle in a few comments to document flows where an address is known
to be a GVA and thus can be safely truncated to a 32-bit value.  Add
WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help
document such cases and detect bugs.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-11 04:35:53 -08:00
Boris Ostrovsky 2aebc6ed84 x86/KVM: Clean up host's steal time structure
commit a6bd811f12 upstream.

Now that we are mapping kvm_steal_time from the guest directly we
don't need keep a copy of it in kvm_vcpu_arch.st. The same is true
for the stime field.

This is part of CVE-2019-3016.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:40 -08:00
Boris Ostrovsky f7c1a6c67f x86/kvm: Cache gfn to pfn translation
commit 917248144d upstream.

__kvm_map_gfn()'s call to gfn_to_pfn_memslot() is
* relatively expensive
* in certain cases (such as when done from atomic context) cannot be called

Stashing gfn-to-pfn mapping should help with both cases.

This is part of CVE-2019-3016.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:40 -08:00
John Allen d0671151c2 kvm/svm: PKU not currently supported
commit a47970ed74 upstream.

Current SVM implementation does not have support for handling PKU. Guests
running on a host with future AMD cpus that support the feature will read
garbage from the PKRU register and will hit segmentation faults on boot as
memory is getting marked as protected that should not be. Ensure that cpuid
from SVM does not advertise the feature.

Signed-off-by: John Allen <john.allen@amd.com>
Cc: stable@vger.kernel.org
Fixes: 0556cbdc2f ("x86/pkeys: Don't check if PKRU is zero before writing it")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:40 -08:00
Junaid Shahid 1aa9b9572b kvm: x86: mmu: Recovery of shattered NX large pages
The page table pages corresponding to broken down large pages are zapped in
FIFO order, so that the large page can potentially be recovered, if it is
not longer being used for execution.  This removes the performance penalty
for walking deeper EPT page tables.

By default, one large page will last about one hour once the guest
reaches a steady state.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 20:26:00 +01:00
Paolo Bonzini b8e8c8303f kvm: mmu: ITLB_MULTIHIT mitigation
With some Intel processors, putting the same virtual address in the TLB
as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit
and cause the processor to issue a machine check resulting in a CPU lockup.

Unfortunately when EPT page tables use huge pages, it is possible for a
malicious guest to cause this situation.

Add a knob to mark huge pages as non-executable. When the nx_huge_pages
parameter is enabled (and we are using EPT), all huge pages are marked as
NX. If the guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.

This is not an issue for shadow paging (except nested EPT), because then
the host is in control of TLB flushes and the problematic situation cannot
happen.  With nested EPT, again the nested guest can cause problems shadow
and direct EPT is treated in the same way.

[ tglx: Fixup default to auto and massage wording a bit ]

Originally-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 12:22:02 +01:00
Jim Mattson 671ddc700f KVM: nVMX: Don't leak L1 MMIO regions to L2
If the "virtualize APIC accesses" VM-execution control is set in the
VMCS, the APIC virtualization hardware is triggered when a page walk
in VMX non-root mode terminates at a PTE wherein the address of the 4k
page frame matches the APIC-access address specified in the VMCS. On
hardware, the APIC-access address may be any valid 4k-aligned physical
address.

KVM's nVMX implementation enforces the additional constraint that the
APIC-access address specified in the vmcs12 must be backed by
a "struct page" in L1. If not, L0 will simply clear the "virtualize
APIC accesses" VM-execution control in the vmcs02.

The problem with this approach is that the L1 guest has arranged the
vmcs12 EPT tables--or shadow page tables, if the "enable EPT"
VM-execution control is clear in the vmcs12--so that the L2 guest
physical address(es)--or L2 guest linear address(es)--that reference
the L2 APIC map to the APIC-access address specified in the
vmcs12. Without the "virtualize APIC accesses" VM-execution control in
the vmcs02, the APIC accesses in the L2 guest will directly access the
APIC-access page in L1.

When there is no mapping whatsoever for the APIC-access address in L1,
the L2 VM just loses the intended APIC virtualization. However, when
the APIC-access address is mapped to an MMIO region in L1, the L2
guest gets direct access to the L1 MMIO device. For example, if the
APIC-access address specified in the vmcs12 is 0xfee00000, then L2
gets direct access to L1's APIC.

Since this vmcs12 configuration is something that KVM cannot
faithfully emulate, the appropriate response is to exit to userspace
with KVM_INTERNAL_ERROR_EMULATION.

Fixes: fe3ef05c75 ("KVM: nVMX: Prepare vmcs02 from vmcs01 and vmcs12")
Reported-by: Dan Cross <dcross@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-22 19:04:40 +02:00
Paolo Bonzini 6eeb4ef049 KVM: x86: assign two bits to track SPTE kinds
Currently, we are overloading SPTE_SPECIAL_MASK to mean both
"A/D bits unavailable" and MMIO, where the difference between the
two is determined by mio_mask and mmio_value.

However, the next patch will need two bits to distinguish
availability of A/D bits from write protection.  So, while at
it give MMIO its own bit pattern, and move the two bits from
bit 62 to bits 52..53 since Intel is allocating EPT page table
bits from the top.

Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-27 13:13:24 +02:00
Sean Christopherson f209a26dd5 KVM: x86: Don't check kvm_rebooting in __kvm_handle_fault_on_reboot()
Remove the kvm_rebooting check from VMX/SVM instruction exception fixup
now that kvm_spurious_fault() conditions its BUG() on !kvm_rebooting.
Because the 'cleanup_insn' functionally is also gone, deferring to
kvm_spurious_fault() means __kvm_handle_fault_on_reboot() can eliminate
its .fixup code entirely and have its exception table entry branch
directly to the call to kvm_spurious_fault().

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:30:19 +02:00
Sean Christopherson 98cd382d50 KVM: x86: Drop ____kvm_handle_fault_on_reboot()
Remove the variation of __kvm_handle_fault_on_reboot() that accepts a
post-fault cleanup instruction now that its sole user (VMREAD) uses
a different method for handling faults.

Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:30:14 +02:00
Sean Christopherson 4b526de50e KVM: x86: Check kvm_rebooting in kvm_spurious_fault()
Explicitly check kvm_rebooting in kvm_spurious_fault() prior to invoking
BUG(), as opposed to assuming the caller has already done so.  Letting
kvm_spurious_fault() be called "directly" will allow VMX to better
optimize its low level assembly flows.

As a happy side effect, kvm_spurious_fault() no longer needs to be
marked as a dead end since it doesn't unconditionally BUG().

Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:23:33 +02:00
Sean Christopherson ca333add69 KVM: x86/mmu: Explicitly track only a single invalid mmu generation
Toggle mmu_valid_gen between '0' and '1' instead of blindly incrementing
the generation.  Because slots_lock is held for the entire duration of
zapping obsolete pages, it's impossible for there to be multiple invalid
generations associated with shadow pages at any given time.

Toggling between the two generations (valid vs. invalid) allows changing
mmu_valid_gen from an unsigned long to a u8, which reduces the size of
struct kvm_mmu_page from 160 to 152 bytes on 64-bit KVM, i.e. reduces
KVM's memory footprint by 8 bytes per shadow page.

Set sp->mmu_valid_gen before it is added to active_mmu_pages.
Functionally this has no effect as kvm_mmu_alloc_page() has a single
caller that sets sp->mmu_valid_gen soon thereafter, but visually it is
jarring to see a shadow page being added to the list without its
mmu_valid_gen first being set.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:36:00 +02:00
Sean Christopherson 31741eb11a KVM: x86/mmu: Revert "Revert "KVM: MMU: reclaim the zapped-obsolete page first""
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.

Paraphrashing the original changelog:

  Introduce a per-VM list to track obsolete shadow pages, i.e. pages
  which have been deleted from the mmu cache but haven't yet been freed.
  When page reclaiming is needed, zap/free the deleted pages first.

This reverts commit 52d5dedc79.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:47 +02:00
Sean Christopherson 41577ab8bd KVM: x86: Add comments to document various emulation types
Document the intended usage of each emulation type as each exists to
handle an edge case of one kind or another and can be easily
misinterpreted at first glance.

Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:14 +02:00
Sean Christopherson 60fc3d02d5 KVM: x86: Remove emulation_result enums, EMULATE_{DONE,FAIL,USER_EXIT}
Deferring emulation failure handling (in some cases) to the caller of
x86_emulate_instruction() has proven fragile, e.g. multiple instances of
KVM not setting run->exit_reason on EMULATE_FAIL, largely due to it
being difficult to discern what emulation types can return what result,
and which combination of types and results are handled where.

Now that x86_emulate_instruction() always handles emulation failure,
i.e. EMULATION_FAIL is only referenced in callers, remove the
emulation_result enums entirely.  Per KVM's existing exit handling
conventions, return '0' and '1' for "exit to userspace" and "resume
guest" respectively.  Doing so cleans up many callers, e.g. they can
return kvm_emulate_instruction() directly instead of having to interpret
its result.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:00 +02:00
Sean Christopherson b400060620 KVM: x86: Add explicit flag for forced emulation on #UD
Add an explicit emulation type for forced #UD emulation and use it to
detect that KVM should unconditionally inject a #UD instead of falling
into its standard emulation failure handling.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:30:54 +02:00
Sean Christopherson 42cbf06872 KVM: x86: Move #GP injection for VMware into x86_emulate_instruction()
Immediately inject a #GP when VMware emulation fails and return
EMULATE_DONE instead of propagating EMULATE_FAIL up the stack.  This
helps pave the way for removing EMULATE_FAIL altogether.

Rename EMULTYPE_VMWARE to EMULTYPE_VMWARE_GP to document that the x86
emulator is called to handle VMware #GP interception, e.g. why a #GP
is injected on emulation failure for EMULTYPE_VMWARE_GP.

Drop EMULTYPE_NO_UD_ON_FAIL as a standalone type.  The "no #UD on fail"
is used only in the VMWare case and is obsoleted by having the emulator
itself reinject #GP.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:30:47 +02:00
Vitaly Kuznetsov 6f6a657c99 KVM/Hyper-V/VMX: Add direct tlb flush support
Hyper-V provides direct tlb flush function which helps
L1 Hypervisor to handle Hyper-V tlb flush request from
L2 guest. Add the function support for VMX.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 13:37:14 +02:00
Tianyu Lan 344c6c8047 KVM/Hyper-V: Add new KVM capability KVM_CAP_HYPERV_DIRECT_TLBFLUSH
Hyper-V direct tlb flush function should be enabled for
guest that only uses Hyper-V hypercall. User space
hypervisor(e.g, Qemu) can disable KVM identification in
CPUID and just exposes Hyper-V identification to make
sure the precondition. Add new KVM capability KVM_CAP_
HYPERV_DIRECT_TLBFLUSH for user space to enable Hyper-V
direct tlb function and this function is default to be
disabled in KVM.

Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 13:37:13 +02:00
Linus Torvalds fe38bd6862 * s390: ioctl hardening, selftests
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
 and bugfixes
 
 * PPC: various minor fixes and preparation
 
 * x86: bugfixes all over the place (posted interrupts, SVM, emulation
 corner cases, blocked INIT), some IPI optimizations
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
 LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
 ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
 FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
 IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
 Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
 =w6I3
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "s390:
   - ioctl hardening
   - selftests

  ARM:
   - ITS translation cache
   - support for 512 vCPUs
   - various cleanups and bugfixes

  PPC:
   - various minor fixes and preparation

  x86:
   - bugfixes all over the place (posted interrupts, SVM, emulation
     corner cases, blocked INIT)
   - some IPI optimizations"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
  KVM: X86: Use IPI shorthands in kvm guest when support
  KVM: x86: Fix INIT signal handling in various CPU states
  KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
  KVM: VMX: Stop the preemption timer during vCPU reset
  KVM: LAPIC: Micro optimize IPI latency
  kvm: Nested KVM MMUs need PAE root too
  KVM: x86: set ctxt->have_exception in x86_decode_insn()
  KVM: x86: always stop emulation on page fault
  KVM: nVMX: trace nested VM-Enter failures detected by H/W
  KVM: nVMX: add tracepoint for failed nested VM-Enter
  x86: KVM: svm: Fix a check in nested_svm_vmrun()
  KVM: x86: Return to userspace with internal error on unexpected exit reason
  KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
  KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
  doc: kvm: Fix return description of KVM_SET_MSRS
  KVM: X86: Tune PLE Window tracepoint
  KVM: VMX: Change ple_window type to unsigned int
  KVM: X86: Remove tailing newline for tracepoints
  KVM: X86: Trace vcpu_id for vmexit
  KVM: x86: Manually calculate reserved bits when loading PDPTRS
  ...
2019-09-18 09:49:13 -07:00
Sean Christopherson 002c5f73c5 KVM: x86/mmu: Reintroduce fast invalidate/zap for flushing memslot
James Harvey reported a livelock that was introduced by commit
d012a06ab1 ("Revert "KVM: x86/mmu: Zap only the relevant pages when
removing a memslot"").

The livelock occurs because kvm_mmu_zap_all() as it exists today will
voluntarily reschedule and drop KVM's mmu_lock, which allows other vCPUs
to add shadow pages.  With enough vCPUs, kvm_mmu_zap_all() can get stuck
in an infinite loop as it can never zap all pages before observing lock
contention or the need to reschedule.  The equivalent of kvm_mmu_zap_all()
that was in use at the time of the reverted commit (4e103134b8, "KVM:
x86/mmu: Zap only the relevant pages when removing a memslot") employed
a fast invalidate mechanism and was not susceptible to the above livelock.

There are three ways to fix the livelock:

- Reverting the revert (commit d012a06ab1) is not a viable option as
  the revert is needed to fix a regression that occurs when the guest has
  one or more assigned devices.  It's unlikely we'll root cause the device
  assignment regression soon enough to fix the regression timely.

- Remove the conditional reschedule from kvm_mmu_zap_all().  However, although
  removing the reschedule would be a smaller code change, it's less safe
  in the sense that the resulting kvm_mmu_zap_all() hasn't been used in
  the wild for flushing memslots since the fast invalidate mechanism was
  introduced by commit 6ca18b6950 ("KVM: x86: use the fast way to
  invalidate all pages"), back in 2013.

- Reintroduce the fast invalidate mechanism and use it when zapping shadow
  pages in response to a memslot being deleted/moved, which is what this
  patch does.

For all intents and purposes, this is a revert of commit ea145aacf4
("Revert "KVM: MMU: fast invalidate all pages"") and a partial revert of
commit 7390de1e99 ("Revert "KVM: x86: use the fast way to invalidate
all pages""), i.e. restores the behavior of commit 5304b8d37c ("KVM:
MMU: fast invalidate all pages") and commit 6ca18b6950 ("KVM: x86:
use the fast way to invalidate all pages") respectively.

Fixes: d012a06ab1 ("Revert "KVM: x86/mmu: Zap only the relevant pages when removing a memslot"")
Reported-by: James Harvey <jamespharvey20@gmail.com>
Cc: Alex Willamson <alex.williamson@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-14 09:25:11 +02:00
Liran Alon 4b9852f4f3 KVM: x86: Fix INIT signal handling in various CPU states
Commit cd7764fe9f ("KVM: x86: latch INITs while in system management mode")
changed code to latch INIT while vCPU is in SMM and process latched INIT
when leaving SMM. It left a subtle remark in commit message that similar
treatment should also be done while vCPU is in VMX non-root-mode.

However, INIT signals should actually be latched in various vCPU states:
(*) For both Intel and AMD, INIT signals should be latched while vCPU
is in SMM.
(*) For Intel, INIT should also be latched while vCPU is in VMX
operation and later processed when vCPU leaves VMX operation by
executing VMXOFF.
(*) For AMD, INIT should also be latched while vCPU runs with GIF=0
or in guest-mode with intercept defined on INIT signal.

To fix this:
1) Add kvm_x86_ops->apic_init_signal_blocked() such that each CPU vendor
can define the various CPU states in which INIT signals should be
blocked and modify kvm_apic_accept_events() to use it.
2) Modify vmx_check_nested_events() to check for pending INIT signal
while vCPU in guest-mode. If so, emualte vmexit on
EXIT_REASON_INIT_SIGNAL. Note that nSVM should have similar behaviour
but is currently left as a TODO comment to implement in the future
because nSVM don't yet implement svm_check_nested_events().

Note: Currently KVM nVMX implementation don't support VMX wait-for-SIPI
activity state as specified in MSR_IA32_VMX_MISC bits 6:8 exposed to
guest (See nested_vmx_setup_ctls_msrs()).
If and when support for this activity state will be implemented,
kvm_check_nested_events() would need to avoid emulating vmexit on
INIT signal in case activity-state is wait-for-SIPI. In addition,
kvm_apic_accept_events() would need to be modified to avoid discarding
SIPI in case VMX activity-state is wait-for-SIPI but instead delay
SIPI processing to vmx_check_nested_events() that would clear
pending APIC events and emulate vmexit on SIPI.

Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Co-developed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-11 18:11:45 +02:00
Sean Christopherson 1edce0a9eb KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
Move RDMSR and WRMSR emulation into common x86 code to consolidate
nearly identical SVM and VMX code.

Note, consolidating RDMSR introduces an extra indirect call, i.e.
retpoline, due to reaching {svm,vmx}_get_msr() via kvm_x86_ops, but a
guest kernel likely has bigger problems if increasing the latency of
RDMSR VM-Exits by ~70 cycles has a measurable impact on overall VM
performance.  E.g. the only recurring RDMSR VM-Exits (after booting) on
my system running Linux 5.2 in the guest are for MSR_IA32_TSC_ADJUST via
arch_cpu_idle_enter().

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10 19:18:29 +02:00
Sean Christopherson f20935d85a KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
Refactor the top-level MSR accessors to take/return the index and value
directly instead of requiring the caller to dump them into a msr_data
struct.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10 19:18:14 +02:00
Alexander Graf fdcf756213 KVM: x86: Disable posted interrupts for non-standard IRQs delivery modes
We can easily route hardware interrupts directly into VM context when
they target the "Fixed" or "LowPriority" delivery modes.

However, on modes such as "SMI" or "Init", we need to go via KVM code
to actually put the vCPU into a different mode of operation, so we can
not post the interrupt

Add code in the VMX and SVM PI logic to explicitly refuse to establish
posted mappings for advanced IRQ deliver modes. This reflects the logic
in __apic_accept_irq() which also only ever passes Fixed and LowPriority
interrupts as posted interrupts into the guest.

This fixes a bug I have with code which configures real hardware to
inject virtual SMIs into my guest.

Signed-off-by: Alexander Graf <graf@amazon.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-10 16:39:34 +02:00
Sean Christopherson 871bd03460 KVM: x86: Rename access permissions cache member in struct kvm_vcpu_arch
Rename "access" to "mmio_access" to match the other MMIO cache members
and to make it more obvious that it's tracking the access permissions
for the MMIO cache.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22 10:09:23 +02:00
Vitaly Kuznetsov f8ea7c6049 x86: kvm: svm: propagate errors from skip_emulated_instruction()
On AMD, kvm_x86_ops->skip_emulated_instruction(vcpu) can, in theory,
fail: in !nrips case we call kvm_emulate_instruction(EMULTYPE_SKIP).
Currently, we only do printk(KERN_DEBUG) when this happens and this
is not ideal. Propagate the error up the stack.

On VMX, skip_emulated_instruction() doesn't fail, we have two call
sites calling it explicitly: handle_exception_nmi() and
handle_task_switch(), we can just ignore the result.

On SVM, we also have two explicit call sites:
svm_queue_exception() and it seems we don't need to do anything there as
we check if RIP was advanced or not. In task_switch_interception(),
however, we are better off not proceeding to kvm_task_switch() in case
skip_emulated_instruction() failed.

Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22 10:09:19 +02:00
Paolo Bonzini 0e1c438c44 KVM/arm fixes for 5.3
- A bunch of switch/case fall-through annotation, fixing one actual bug
 - Fix PMU reset bug
 - Add missing exception class debug strings
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl1Bzw8PHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDlXYP/ixqJzqpJetTrvpiUpmLjhp4YwjjOxqyeQvo
 bWy/EFz8bSWbTZlwAAstFDVmtGenuwaiOakChvV8GH6USYqRsYdvc/sJu0evQplJ
 JQtOzGhyv1NuM0s9wYBcstAH+YAW+gBK5YFnowreheuidK/1lo3C/EnR2DxCtNal
 gpV3qQt8qfw3ysGlpC/fDjjOYw4lDkFa6CSx9uk3/587fPBqHANRY/i87nJxmhhX
 lGeCJcOrY3cy1HhbedFwxVt4Q/ZbHf0UhTfgwvsBYw7BaWmB1ymoEOoktQcUWoKb
 LL0rBe+OxNQgRnJpn3fMEHiCAmXaI9qE4dohFOl1J3dQvCElcV/jWjkXDD1+KgzW
 S2XZGB6yxet93Fh1x6xv4i6ATJvmZeTIDUXi9KkjcDiycB9YMCDYY2ejTbQv5VUP
 V0DghGGDd3d8sY7dEjxwBakuJ6nqKixSouQaNsWuBTm7tVpEVS8yW+hqWs/IVI5b
 48SDbxaNpKvx7sAyhuWAjCFbZeIm0hd//JN3JoxazF9i9PKuqnZLbNv/ME6hmzj+
 LrETwaAbjsw5Au+ST+OdT2UiauiBm9C6Kg62qagHrKJviuK941+3hjH8aj/e0pYk
 a0DQxumiyofXPQ0pVe8ZfqlPptONz+EKyAsrOm8AjLJ+bBdRUNHLcZKYj7em7YiE
 pANc8/T+
 =kcDj
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-fixes-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm fixes for 5.3

- A bunch of switch/case fall-through annotation, fixing one actual bug
- Fix PMU reset bug
- Add missing exception class debug strings
2019-08-09 16:53:39 +02:00
Paolo Bonzini 741cbbae07 KVM: remove kvm_arch_has_vcpu_debugfs()
There is no need for this function as all arches have to implement
kvm_arch_create_vcpu_debugfs() no matter what.  A #define symbol
let us actually simplify the code.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-05 12:55:48 +02:00
Wanpeng Li 17e433b543 KVM: Fix leak vCPU's VMCS value into other pCPU
After commit d73eb57b80 (KVM: Boost vCPUs that are delivering interrupts), a
five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs
on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting
in the VMs after stress testing:

 INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073)
 Call Trace:
   flush_tlb_mm_range+0x68/0x140
   tlb_flush_mmu.part.75+0x37/0xe0
   tlb_finish_mmu+0x55/0x60
   zap_page_range+0x142/0x190
   SyS_madvise+0x3cd/0x9c0
   system_call_fastpath+0x1c/0x21

swait_active() sustains to be true before finish_swait() is called in
kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account
by kvm_vcpu_on_spin() loop greatly increases the probability condition
kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv
is enabled the yield-candidate vCPU's VMCS RVI field leaks(by
vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current
VMCS.

This patch fixes it by checking conservatively a subset of events.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Marc Zyngier <Marc.Zyngier@arm.com>
Cc: stable@vger.kernel.org
Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-05 12:55:47 +02:00
Wanpeng Li d9a710e5fc KVM: X86: Dynamically allocate user_fpu
After reverting commit 240c35a378 (kvm: x86: Use task structs fpu field
for user), struct kvm_vcpu is 19456 bytes on my server, PAGE_ALLOC_COSTLY_ORDER(3)
is the order at which allocations are deemed costly to service. In serveless
scenario, one host can service hundreds/thoudands firecracker/kata-container
instances, howerver, new instance will fail to launch after memory is too
fragmented to allocate kvm_vcpu struct on host, this was observed in some
cloud provider product environments.

This patch dynamically allocates user_fpu, kvm_vcpu is 15168 bytes now on my
Skylake server.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-22 13:55:48 +02:00
Paolo Bonzini ec269475cb Revert "kvm: x86: Use task structs fpu field for user"
This reverts commit 240c35a378
("kvm: x86: Use task structs fpu field for user", 2018-11-06).
The commit is broken and causes QEMU's FPU state to be destroyed
when KVM_RUN is preempted.

Fixes: 240c35a378 ("kvm: x86: Use task structs fpu field for user")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-22 13:55:47 +02:00
Josh Poimboeuf 3901336ed9 x86/kvm: Don't call kvm_spurious_fault() from .fixup
After making a change to improve objtool's sibling call detection, it
started showing the following warning:

  arch/x86/kvm/vmx/nested.o: warning: objtool: .fixup+0x15: sibling call from callable instruction with modified stack frame

The problem is the ____kvm_handle_fault_on_reboot() macro.  It does a
fake call by pushing a fake RIP and doing a jump.  That tricks the
unwinder into printing the function which triggered the exception,
rather than the .fixup code.

Instead of the hack to make it look like the original function made the
call, just change the macro so that the original function actually does
make the call.  This allows removal of the hack, and also makes objtool
happy.

I triggered a vmx instruction exception and verified that the stack
trace is still sane:

  kernel BUG at arch/x86/kvm/x86.c:358!
  invalid opcode: 0000 [#1] SMP PTI
  CPU: 28 PID: 4096 Comm: qemu-kvm Not tainted 5.2.0+ #16
  Hardware name: Lenovo THINKSYSTEM SD530 -[7X2106Z000]-/-[7X2106Z000]-, BIOS -[TEE113Z-1.00]- 07/17/2017
  RIP: 0010:kvm_spurious_fault+0x5/0x10
  Code: 00 00 00 00 00 8b 44 24 10 89 d2 45 89 c9 48 89 44 24 10 8b 44 24 08 48 89 44 24 08 e9 d4 40 22 00 0f 1f 40 00 0f 1f 44 00 00 <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
  RSP: 0018:ffffbf91c683bd00 EFLAGS: 00010246
  RAX: 000061f040000000 RBX: ffff9e159c77bba0 RCX: ffff9e15a5c87000
  RDX: 0000000665c87000 RSI: ffff9e15a5c87000 RDI: ffff9e159c77bba0
  RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9e15a5c87000
  R10: 0000000000000000 R11: fffff8f2d99721c0 R12: ffff9e159c77bba0
  R13: ffffbf91c671d960 R14: ffff9e159c778000 R15: 0000000000000000
  FS:  00007fa341cbe700(0000) GS:ffff9e15b7400000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fdd38356804 CR3: 00000006759de003 CR4: 00000000007606e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
   loaded_vmcs_init+0x4f/0xe0
   alloc_loaded_vmcs+0x38/0xd0
   vmx_create_vcpu+0xf7/0x600
   kvm_vm_ioctl+0x5e9/0x980
   ? __switch_to_asm+0x40/0x70
   ? __switch_to_asm+0x34/0x70
   ? __switch_to_asm+0x40/0x70
   ? __switch_to_asm+0x34/0x70
   ? free_one_page+0x13f/0x4e0
   do_vfs_ioctl+0xa4/0x630
   ksys_ioctl+0x60/0x90
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x55/0x1c0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fa349b1ee5b

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/64a9b64d127e87b6920a97afde8e96ea76f6524e.1563413318.git.jpoimboe@redhat.com
2019-07-18 21:01:04 +02:00
Paolo Bonzini a45ff5994c KVM/arm updates for 5.3
- Add support for chained PMU counters in guests
 - Improve SError handling
 - Handle Neoverse N1 erratum #1349291
 - Allow side-channel mitigation status to be migrated
 - Standardise most AArch64 system register accesses to msr_s/mrs_s
 - Fix host MPIDR corruption on 32bit
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl0kge4VHG1hcmMuenlu
 Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDYyQP/3XY5tFcLKkp/h9rnGaCXwAxhNzn
 TyF/IZEFBKFTSoDMXKLLc8KllvoPQ7aUl03heYbuayYpyKR1+LCx7lDwu1MYyEf+
 aSSuOKlbG//tLUEGp09pTRCgjs2mhhZYqOj5GF2mZ7xpovFVSNOPzTazbXDNQ7tw
 zUAs43YNg+bUMwj+SLWpBlizjrLr7T34utIr6daKJE/GSfmIrcYXhGbZqUh0zbO0
 z5LNasebws8/pHyeGI7+/yoMIKaQ8foMgywTpsRpBsx6YI+AbOLjEmCk2IBOPcEK
 pm9KkSIBZEO2CSxZKl3NQiEow/Qd/lnz2xLMCSfh4XrYoI2Th4gNcsbJpiBDWP5a
 0eZ5jSiexxKngIbM+to7jR3m0yc9RgcuzceJg3Uly7Ya0vb5RqKwOX4Ge4XP4VDT
 DzIVFdQjxDKdVIf3EvGp1cj4P7dRUU3xbZcbzyuRPEmT3vgjEnbxawmPLs3QMAl1
 31Wd2wIsPB86kSxzSMel27Vs5VgMhgyHE26zN91R745CvhDXaDKydIWjGjdVMHsB
 GuX/h2kL+ohx+N/OpZPgwsVUAGLSOQFP3pE/EcGtqc2kkfqa+bx12DKcZ3zdmJvy
 +cu5ixU8q5thPH/pZob/C3hKUY/eLy02emS34RK0Jh2sZHbQgAOtMsiqUxNHEjUm
 6TkpdWa5SRd7CtGV
 =yfCs
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for 5.3

- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
2019-07-11 15:14:16 +02:00
Eric Hankland 66bb8a065f KVM: x86: PMU Event Filter
Some events can provide a guest with information about other guests or the
host (e.g. L3 cache stats); providing the capability to restrict access
to a "safe" set of events would limit the potential for the PMU to be used
in any side channel attacks. This change introduces a new VM ioctl that
sets an event filter. If the guest attempts to program a counter for
any blacklisted or non-whitelisted event, the kernel counter won't be
created, so any RDPMC/RDMSR will show 0 instances of that event.

Signed-off-by: Eric Hankland <ehankland@google.com>
[Lots of changes. All remaining bugs are probably mine. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-11 15:08:28 +02:00
Thomas Gleixner 20c8ccb197 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
Based on 1 normalized pattern(s):

  this work is licensed under the terms of the gnu gpl version 2 see
  the copying file in the top level directory

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 35 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.797835076@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:53 +02:00
Sean Christopherson 95b5a48c4f KVM: VMX: Handle NMIs, #MCs and async #PFs in common irqs-disabled fn
Per commit 1b6269db3f ("KVM: VMX: Handle NMIs before enabling
interrupts and preemption"), NMIs are handled directly in vmx_vcpu_run()
to "make sure we handle NMI on the current cpu, and that we don't
service maskable interrupts before non-maskable ones".  The other
exceptions handled by complete_atomic_exit(), e.g. async #PF and #MC,
have similar requirements, and are located there to avoid extra VMREADs
since VMX bins hardware exceptions and NMIs into a single exit reason.

Clean up the code and eliminate the vaguely named complete_atomic_exit()
by moving the interrupts-disabled exception and NMI handling into the
existing handle_external_intrs() callback, and rename the callback to
a more appropriate name.  Rename VMexit handlers throughout so that the
atomic and non-atomic counterparts have similar names.

In addition to improving code readability, this also ensures the NMI
handler is run with the host's debug registers loaded in the unlikely
event that the user is debugging NMIs.  Accuracy of the last_guest_tsc
field is also improved when handling NMIs (and #MCs) as the handler
will run after updating said field.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Naming cleanups. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-18 11:46:04 +02:00
Paolo Bonzini 73f624f47c KVM: x86: move MSR_IA32_POWER_CTL handling to common code
Make it available to AMD hosts as well, just in case someone is trying
to use an Intel processor's CPUID setup.

Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-18 11:43:48 +02:00
Marcelo Tosatti 2d5ba19bdf kvm: x86: add host poll control msrs
Add an MSRs which allows the guest to disable
host polling (specifically the cpuidle-haltpoll,
when performing polling in the guest, disables
host side polling).

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-18 11:43:46 +02:00
Wanpeng Li b51700632e KVM: X86: Provide a capability to disable cstate msr read intercepts
Allow guest reads CORE cstate when exposing host CPU power management capabilities
to the guest. PKG cstate is restricted to avoid a guest to get the whole package
information in multi-tenant scenario.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-04 19:27:35 +02:00
Xiaoyao Li 4d22c17c17 kvm: x86: refine kvm_get_arch_capabilities()
1. Using X86_FEATURE_ARCH_CAPABILITIES to enumerate the existence of
MSR_IA32_ARCH_CAPABILITIES to avoid using rdmsrl_safe().

2. Since kvm_get_arch_capabilities() is only used in this file, making
it static.

Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-04 19:27:33 +02:00
Sean Christopherson f257d6dcda KVM: Directly return result from kvm_arch_check_processor_compat()
Add a wrapper to invoke kvm_arch_check_processor_compat() so that the
boilerplate ugliness of checking virtualization support on all CPUs is
hidden from the arch specific code.  x86's implementation in particular
is quite heinous, as it unnecessarily propagates the out-param pattern
into kvm_x86_ops.

While the x86 specific issue could be resolved solely by changing
kvm_x86_ops, make the change for all architectures as returning a value
directly is prettier and technically more robust, e.g. s390 doesn't set
the out param, which could lead to subtle breakage in the (highly
unlikely) scenario where the out-param was not pre-initialized by the
caller.

Opportunistically annotate svm_check_processor_compat() with __init.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-04 19:27:32 +02:00
Linus Torvalds 0ef0fd3515 * ARM: support for SVE and Pointer Authentication in guests, PMU improvements
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
 memory and performance optimizations.
 
 * x86: support for accessing memory not backed by struct page, fixes and refactoring
 
 * Generic: dirty page tracking improvements
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
 PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
 nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
 Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
 eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
 hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
 =D0+p
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - support for SVE and Pointer Authentication in guests
   - PMU improvements

  POWER:
   - support for direct access to the POWER9 XIVE interrupt controller
   - memory and performance optimizations

  x86:
   - support for accessing memory not backed by struct page
   - fixes and refactoring

  Generic:
   - dirty page tracking improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
  kvm: fix compilation on aarch64
  Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
  kvm: x86: Fix L1TF mitigation for shadow MMU
  KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
  KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
  KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
  KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
  kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
  tests: kvm: Add tests for KVM_SET_NESTED_STATE
  KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
  tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
  tests: kvm: Add tests to .gitignore
  KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
  KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
  KVM: Fix the bitmap range to copy during clear dirty
  KVM: arm64: Fix ptrauth ID register masking logic
  KVM: x86: use direct accessors for RIP and RSP
  KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
  KVM: x86: Omit caching logic for always-available GPRs
  kvm, x86: Properly check whether a pfn is an MMIO or not
  ...
2019-05-17 10:33:30 -07:00
Borislav Petkov 191c8137a9 x86/kvm: Implement HWCR support
The hardware configuration register has some useful bits which can be
used by guests. Implement McStatusWrEn which can be used by guests when
injecting MCEs with the in-kernel mce-inject module.

For that, we need to set bit 18 - McStatusWrEn - first, before writing
the MCi_STATUS registers (otherwise we #GP).

Add the required machinery to do so.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: KVM <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:22 +02:00
Sean Christopherson f99279825e KVM: lapic: Refactor ->set_hv_timer to use an explicit expired param
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired.  Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.

Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:16 +02:00
Luwei Kang c715eb9fe9 KVM: x86: Add support of clear Trace_ToPA_PMI status
Let guests clear the Intel PT ToPA PMI status (bit 55 of
MSR_CORE_PERF_GLOBAL_OVF_CTRL).

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:14 +02:00
Vitaly Kuznetsov 0699c64a4b x86/kvm/mmu: reset MMU context when 32-bit guest switches PAE
Commit 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it
to 'gpte_size'") introduced a regression: 32-bit PAE guests stopped
working. The issue appears to be: when guest switches (enables) PAE we need
to re-initialize MMU context (set context->root_level, do
reset_rsvds_bits_mask(), ...) but init_kvm_tdp_mmu() doesn't do that
because we threw away is_pae(vcpu) flag from mmu role. Restore it to
kvm_mmu_extended_role (as we now don't need it in base role) to fix
the issue.

Fixes: 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:03:58 +02:00
Sean Christopherson ed19321fb6 KVM: x86: Load SMRAM in a single shot when leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.

Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm.  Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.

This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:35 +02:00
Ben Gardon bc8a3d8925 kvm: mmu: Fix overflow on kvm mmu page limit calculation
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.

Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
	introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:30 +02:00
Sean Christopherson 45def77ebf KVM: x86: update %rip after emulating IO
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h.  Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.

To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace.  Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.

Updating %rip prior to executing to userspace has several drawbacks:

  - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
    fails it will likely yell about the wrong address.
  - Single step exits to userspace for are effectively dropped as
    KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
  - Behavior of PIO emulation is different depending on whether it
    goes down the fast path or the slow path.

Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot.  For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.

All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another.  For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip.  Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.

Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.

Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:04 +01:00