1
0
Fork 0
Commit Graph

450 Commits (9446385f05c9af25fed53dbed3cc75763730be52)

Author SHA1 Message Date
Kirill A. Shutemov 315d09bf30 Revert "mm: make faultaround produce old ptes"
This reverts commit 5c0a85fad9.

The commit causes ~6% regression in unixbench.

Let's revert it for now and consider other solution for reclaim problem
later.

Link: http://lkml.kernel.org/r/1465893750-44080-2-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Linus Torvalds 478a1469a7 Filesystem DAX locking for 4.7
- We use a bit in an exceptional radix tree entry as a lock bit and use it
   similarly to how page lock is used for normal faults.  This fixes races
   between hole instantiation and read faults of the same index.
 
 - Filesystem DAX PMD faults are disabled, and will be re-enabled when PMD
   locking is implemented.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXRKwLAAoJEJ/BjXdf9fLB+BkP/3HBm05KlAKDklvnBIPFDMUK
 hA7g2K6vuvaEDZXZQ1ioc1Ajf1sCpVip7shXJsojZqwWmRz0/4nneF7ytluW9AjS
 dBX+0qCgKGH1fnwyGFF+MN7fuj7kGrSDz34lG0OObRN6/oKiVNb2svXiYKkT6J6C
 AgsWlWRUpMy9jrn1u/FduMjDhk92Z3ojarexuicr0i8NUlBClCIrdCEmUMi4orSB
 DuiIjestLOc7+mERBUwrXkzoh9v8Z0FpIgnDLWwpeEkAvJwWkGe5eXrBJwF+hEbi
 RYfTrOYc7bBQLo22LRb8pdighjrx3OW9EpNCfEmLDOjM3cYBbMK/d2i/ww52H6IK
 Mw6iS5rXdGgJtQIGL8N96HLFk+cDyZ8J8xNUCwbYYBJqgpMzxzVkL3vTm72tyFnl
 InWhih+miCMbBPytQSRd6+1wZG2piJTv6SsFTd5K1OaiRmJhBJZG47t2QTBRBu7Y
 5A4FGPtlraV+iDJvD6VLO1Tp8twxdLluOJ2BwdGeiKXiGh6LP+FGGFF3aFa5N4Ro
 xSslCTX7Q1G66zXQwD4+IMWLwS1FDNymPkUSsF6RQo6qfAnl9SrmYTc4xJ4QXy92
 sUdrWEz2OBTfxKNqbGyc/KrXKZT3RnEkJNft8snB2h6WTCdOPaNYs/yETUwiwkSc
 CXpuQFrxm69QYwNsqVu1
 =Pkd0
 -----END PGP SIGNATURE-----

Merge tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull DAX locking updates from Ross Zwisler:
 "Filesystem DAX locking for 4.7

   - We use a bit in an exceptional radix tree entry as a lock bit and
     use it similarly to how page lock is used for normal faults.  This
     fixes races between hole instantiation and read faults of the same
     index.

   - Filesystem DAX PMD faults are disabled, and will be re-enabled when
     PMD locking is implemented"

* tag 'dax-locking-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
  dax: Remove i_mmap_lock protection
  dax: Use radix tree entry lock to protect cow faults
  dax: New fault locking
  dax: Allow DAX code to replace exceptional entries
  dax: Define DAX lock bit for radix tree exceptional entry
  dax: Make huge page handling depend of CONFIG_BROKEN
  dax: Fix condition for filling of PMD holes
2016-05-26 20:00:28 -07:00
Matthew Wilcox d604c32452 radix-tree: introduce radix_tree_replace_clear_tags()
In addition to replacing the entry, we also clear all associated tags.
This is really a one-off special for page_cache_tree_delete() which had
far too much detailed knowledge about how the radix tree works.

For efficiency, factor node_tag_clear() out of radix_tree_tag_clear() It
can be used by radix_tree_delete_item() as well as
radix_tree_replace_clear_tags().

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Kirill A. Shutemov 5c0a85fad9 mm: make faultaround produce old ptes
Currently, faultaround code produces young pte.  This can screw up
vmscan behaviour[1], as it makes vmscan think that these pages are hot
and not push them out on first round.

During sparse file access faultaround gets more pages mapped and all of
them are young.  Under memory pressure, this makes vmscan swap out anon
pages instead, or to drop other page cache pages which otherwise stay
resident.

Modify faultaround to produce old ptes, so they can easily be reclaimed
under memory pressure.

This can to some extend defeat the purpose of faultaround on machines
without hardware accessed bit as it will not help us with reducing the
number of minor page faults.

We may want to disable faultaround on such machines altogether, but
that's subject for separate patchset.

Minchan:
 "I tested 512M mmap sequential word read test on non-HW access bit
  system (i.e., ARM) and confirmed it doesn't increase minor fault any
  more.

  old: 4096 fault_around
  minor fault: 131291
  elapsed time: 6747645 usec

  new: 65536 fault_around
  minor fault: 131291
  elapsed time: 6709263 usec

  0.56% benefit"

[1] https://lkml.kernel.org/r/1460992636-711-1-git-send-email-vinmenon@codeaurora.org

Link: http://lkml.kernel.org/r/1463488366-47723-1-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Tested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Johannes Weiner bbddabe2e4 mm: filemap: only do access activations on reads
Andres observed that his database workload is struggling with the
transaction journal creating pressure on frequently read pages.

Access patterns like transaction journals frequently write the same
pages over and over, but in the majority of cases those pages are never
read back.  There are no caching benefits to be had for those pages, so
activating them and having them put pressure on pages that do benefit
from caching is a bad choice.

Leave page activations to read accesses and don't promote pages based on
writes alone.

It could be said that partially written pages do contain cache-worthy
data, because even if *userspace* does not access the unwritten part,
the kernel still has to read it from the filesystem for correctness.
However, a counter argument is that these pages enjoy at least *some*
protection over other inactive file pages through the writeback cache,
in the sense that dirty pages are written back with a delay and cache
reclaim leaves them alone until they have been written back to disk.
Should that turn out to be insufficient and we see increased read IO
from partial writes under memory pressure, we can always go back and
update grab_cache_page_write_begin() to take (pos, len) so that it can
tell partial writes from pages that don't need partial reads.  But for
now, keep it simple.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Rik van Riel f0281a00fe mm: workingset: only do workingset activations on reads
This is a follow-up to

  http://www.spinics.net/lists/linux-mm/msg101739.html

where Andres reported his database workingset being pushed out by the
minimum size enforcement of the inactive file list - currently 50% of
cache - as well as repeatedly written file pages that are never actually
read.

Two changes fell out of the discussions.  The first change observes that
pages that are only ever written don't benefit from caching beyond what
the writeback cache does for partial page writes, and so we shouldn't
promote them to the active file list where they compete with pages whose
cached data is actually accessed repeatedly.  This change comes in two
patches - one for in-cache write accesses and one for refaults triggered
by writes, neither of which should promote a cache page.

Second, with the refault detection we don't need to set 50% of the cache
aside for used-once cache anymore since we can detect frequently used
pages even when they are evicted between accesses.  We can allow the
active list to be bigger and thus protect a bigger workingset that isn't
challenged by streamers.  Depending on the access patterns, this can
increase major faults during workingset transitions for better
performance during stable phases.

This patch (of 3):

When rewriting a page, the data in that page is replaced with new data.
This means that evicting something else from the active file list, in
order to cache data that will be replaced by something else, is likely
to be a waste of memory.

It is better to save the active list for frequently read pages, because
reads actually use the data that is in the page.

This patch ignores partial writes, because it is unclear whether the
complexity of identifying those is worth any potential performance gain
obtained from better caching pages that see repeated partial writes at
large enough intervals to not get caught by the use-twice promotion code
used for the inactive file list.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Joonsoo Kim 6d061f9f61 mm/page_ref: use page_ref helper instead of direct modification of _count
page_reference manipulation functions are introduced to track down
reference count change of the page.  Use it instead of direct
modification of _count.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Jan Kara ac401cc782 dax: New fault locking
Currently DAX page fault locking is racy.

CPU0 (write fault)		CPU1 (read fault)

__dax_fault()			__dax_fault()
  get_block(inode, block, &bh, 0) -> not mapped
				  get_block(inode, block, &bh, 0)
				    -> not mapped
  if (!buffer_mapped(&bh))
    if (vmf->flags & FAULT_FLAG_WRITE)
      get_block(inode, block, &bh, 1) -> allocates blocks
  if (page) -> no
				  if (!buffer_mapped(&bh))
				    if (vmf->flags & FAULT_FLAG_WRITE) {
				    } else {
				      dax_load_hole();
				    }
  dax_insert_mapping()

And we are in a situation where we fail in dax_radix_entry() with -EIO.

Another problem with the current DAX page fault locking is that there is
no race-free way to clear dirty tag in the radix tree. We can always
end up with clean radix tree and dirty data in CPU cache.

We fix the first problem by introducing locking of exceptional radix
tree entries in DAX mappings acting very similarly to page lock and thus
synchronizing properly faults against the same mapping index. The same
lock can later be used to avoid races when clearing radix tree dirty
tag.

Reviewed-by: NeilBrown <neilb@suse.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:20:54 -06:00
Jan Kara 4f622938a5 dax: Allow DAX code to replace exceptional entries
Currently we forbid page_cache_tree_insert() to replace exceptional radix
tree entries for DAX inodes. However to make DAX faults race free we will
lock radix tree entries and when hole is created, we need to replace
such locked radix tree entry with a hole page. So modify
page_cache_tree_insert() to allow that.

Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
2016-05-19 15:18:30 -06:00
Christoph Hellwig e259221763 fs: simplify the generic_write_sync prototype
The kiocb already has the new position, so use that.  The only interesting
case is AIO, where we currently don't bother updating ki_pos.  We're about
to free the kiocb after we're done, so we might as well update it to make
everyone's life simpler.

While we're at it also return the bytes written argument passed in if
we were successful so that the boilerplate error switch code in the
callers can go away.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig dde0c2e798 fs: add IOCB_SYNC and IOCB_DSYNC
This will allow us to do per-I/O sync file writes, as required by a lot
of fileservers or storage targets.

XXX: Will need a few additional audits for O_DSYNC

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig c8b8e32d70 direct-io: eliminate the offset argument to ->direct_IO
Including blkdev_direct_IO and dax_do_io.  It has to be ki_pos to actually
work, so eliminate the superflous argument.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig 1af5bb491f filemap: remove the pos argument to generic_file_direct_write
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Christoph Hellwig c64fb5c744 filemap: remove pos variables in generic_file_read_iter
Just use ki_pos directly to make everyones life easier.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
Kirill A. Shutemov 09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Nicolai Stange e7080a439a mm/filemap: generic_file_read_iter(): check for zero reads unconditionally
If
 - generic_file_read_iter() gets called with a zero read length,
 - the read offset is at a page boundary,
 - IOCB_DIRECT is not set
-  and the page in question hasn't made it into the page cache yet,
then do_generic_file_read() will trigger a readahead with a req_size hint
of zero.

Since roundup_pow_of_two(0) is undefined, UBSAN reports

  UBSAN: Undefined behaviour in include/linux/log2.h:63:13
  shift exponent 64 is too large for 64-bit type 'long unsigned int'
  CPU: 3 PID: 1017 Comm: sa1 Tainted: G L 4.5.0-next-20160318+ #14
  [...]
  Call Trace:
   [...]
   [<ffffffff813ef61a>] ondemand_readahead+0x3aa/0x3d0
   [<ffffffff813ef61a>] ? ondemand_readahead+0x3aa/0x3d0
   [<ffffffff813c73bd>] ? find_get_entry+0x2d/0x210
   [<ffffffff813ef9c3>] page_cache_sync_readahead+0x63/0xa0
   [<ffffffff813cc04d>] do_generic_file_read+0x80d/0xf90
   [<ffffffff813cc955>] generic_file_read_iter+0x185/0x420
   [...]
   [<ffffffff81510b06>] __vfs_read+0x256/0x3d0
   [...]

when get_init_ra_size() gets called from ondemand_readahead().

The net effect is that the initial readahead size is arch dependent for
requested read lengths of zero: for example, since

  1UL << (sizeof(unsigned long) * 8)

evaluates to 1 on x86 while its result is 0 on ARMv7, the initial readahead
size becomes 4 on the former and 0 on the latter.

What's more, whether or not the file access timestamp is updated for zero
length reads is decided differently for the two cases of IOCB_DIRECT
being set or cleared: in the first case, generic_file_read_iter()
explicitly skips updating that timestamp while in the latter case, it is
always updated through the call to do_generic_file_read().

According to POSIX, zero length reads "do not modify the last data access
timestamp" and thus, the IOCB_DIRECT behaviour is POSIXly correct.

Let generic_file_read_iter() unconditionally check the requested read
length at its entry and return immediately with success if it is zero.

Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Matthew Wilcox 2cf938aae1 mm: use radix_tree_iter_retry()
Instead of a 'goto restart', we can now use radix_tree_iter_retry() to
restart from our current position.  This will make a difference when
there are more ways to happen across an indirect pointer.  And it
eliminates some confusing gotos.

[vbabka@suse.cz: remove now-obsolete-and-misleading comment]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Matthew Wilcox e614523653 radix_tree: add support for multi-order entries
With huge pages, it is convenient to have the radix tree be able to
return an entry that covers multiple indices.  Previous attempts to deal
with the problem have involved inserting N duplicate entries, which is a
waste of memory and leads to problems trying to handle aliased tags, or
probing the tree multiple times to find alternative entries which might
cover the requested index.

This approach inserts one canonical entry into the tree for a given
range of indices, and may also insert other entries in order to ensure
that lookups find the canonical entry.

This solution only tolerates inserting powers of two that are greater
than the fanout of the tree.  If we wish to expand the radix tree's
abilities to support large-ish pages that is less than the fanout at the
penultimate level of the tree, then we would need to add one more step
in lookup to ensure that any sibling nodes in the final level of the
tree are dereferenced and we return the canonical entry that they
reference.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner fdf1cdb91b mm: remove unnecessary uses of lock_page_memcg()
There are several users that nest lock_page_memcg() inside lock_page()
to prevent page->mem_cgroup from changing.  But the page lock prevents
pages from moving between cgroups, so that is unnecessary overhead.

Remove lock_page_memcg() in contexts with locked contexts and fix the
debug code in the page stat functions to be okay with the page lock.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner 62cccb8c8e mm: simplify lock_page_memcg()
Now that migration doesn't clear page->mem_cgroup of live pages anymore,
it's safe to make lock_page_memcg() and the memcg stat functions take
pages, and spare the callers from memcg objects.

[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner 6a93ca8fde mm: migrate: do not touch page->mem_cgroup of live pages
Changing a page's memcg association complicates dealing with the page,
so we want to limit this as much as possible.  Page migration e.g.  does
not have to do that.  Just like page cache replacement, it can forcibly
charge a replacement page, and then uncharge the old page when it gets
freed.  Temporarily overcharging the cgroup by a single page is not an
issue in practice, and charging is so cheap nowadays that this is much
preferrable to the headache of messing with live pages.

The only place that still changes the page->mem_cgroup binding of live
pages is when pages move along with a task to another cgroup.  But that
path isolates the page from the LRU, takes the page lock, and the move
lock (lock_page_memcg()).  That means page->mem_cgroup is always stable
in callers that have the page isolated from the LRU or locked.  Lighter
unlocked paths, like writeback accounting, can use lock_page_memcg().

[akpm@linux-foundation.org: fix build]
[vdavydov@virtuozzo.com: fix lockdep splat]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner 81f8c3a461 mm: memcontrol: generalize locking for the page->mem_cgroup binding
These patches tag the page cache radix tree eviction entries with the
memcg an evicted page belonged to, thus making per-cgroup LRU reclaim
work properly and be as adaptive to new cache workingsets as global
reclaim already is.

This should have been part of the original thrash detection patch
series, but was deferred due to the complexity of those patches.

This patch (of 5):

So far the only sites that needed to exclude charge migration to
stabilize page->mem_cgroup have been per-cgroup page statistics, hence
the name mem_cgroup_begin_page_stat().  But per-cgroup thrash detection
will add another site that needs to ensure page->mem_cgroup lifetime.

Rename these locking functions to the more generic lock_page_memcg() and
unlock_page_memcg().  Since charge migration is a cgroup1 feature only,
we might be able to delete it at some point, and these now easy to
identify locking sites along with it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Mel Gorman ebded02788 mm: filemap: avoid unnecessary calls to lock_page when waiting for IO to complete during a read
In the generic read paths the kernel looks up a page in the page cache
and if it's up to date, it is used.  If not, the page lock is acquired
to wait for IO to complete and then check the page.  If multiple
processes are waiting on IO, they all serialise against the lock and
duplicate the checks.  This is unnecessary.

The page lock in itself does not give any guarantees to the callers
about the page state as it can be immediately truncated or reclaimed
after the page is unlocked.  It's sufficient to wait_on_page_locked and
then continue if the page is up to date on wakeup.

It is possible that a truncated but up-to-date page is returned but the
reference taken during read prevents it disappearing underneath the
caller and the data is still valid if PageUptodate.

The overall impact is small as even if processes serialise on the lock,
the lock section is tiny once the IO is complete.  Profiles indicated
that unlock_page and friends are generally a tiny portion of a
read-intensive workload.  An artificial test was created that had
instances of dd access a cache-cold file on an ext4 filesystem and
measure how long the read took.

paralleldd
                                    4.4.0                 4.4.0
                                  vanilla             avoidlock
Amean    Elapsd-1          5.28 (  0.00%)        5.15 (  2.50%)
Amean    Elapsd-4          5.29 (  0.00%)        5.17 (  2.12%)
Amean    Elapsd-7          5.28 (  0.00%)        5.18 (  1.78%)
Amean    Elapsd-12         5.20 (  0.00%)        5.33 ( -2.50%)
Amean    Elapsd-21         5.14 (  0.00%)        5.21 ( -1.41%)
Amean    Elapsd-30         5.30 (  0.00%)        5.12 (  3.38%)
Amean    Elapsd-48         5.78 (  0.00%)        5.42 (  6.21%)
Amean    Elapsd-79         6.78 (  0.00%)        6.62 (  2.46%)
Amean    Elapsd-110        9.09 (  0.00%)        8.99 (  1.15%)
Amean    Elapsd-128       10.60 (  0.00%)       10.43 (  1.66%)

The impact is small but intuitively, it makes sense to avoid unnecessary
calls to lock_page.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Mel Gorman 32b635298f mm: filemap: remove redundant code in do_read_cache_page
do_read_cache_page and __read_cache_page duplicate page filler code when
filling the page for the first time.  This patch simply removes the
duplicate logic.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Hugh Dickins 06b241f32c mm: __delete_from_page_cache show Bad page if mapped
Commit e1534ae950 ("mm: differentiate page_mapped() from
page_mapcount() for compound pages") changed the famous
BUG_ON(page_mapped(page)) in __delete_from_page_cache() to
VM_BUG_ON_PAGE(page_mapped(page)): which gives us more info when
CONFIG_DEBUG_VM=y, but nothing at all when not.

Although it has not usually been very helpul, being hit long after the
error in question, we do need to know if it actually happens on users'
systems; but reinstating a crash there is likely to be opposed :)

In the non-debug case, pr_alert("BUG: Bad page cache") plus dump_page(),
dump_stack(), add_taint() - I don't really believe LOCKDEP_NOW_UNRELIABLE,
but that seems to be the standard procedure now.  Move that, or the
VM_BUG_ON_PAGE(), up before the deletion from tree: so that the
unNULLified page->mapping gives a little more information.

If the inode is being evicted (rather than truncated), it won't have any
vmas left, so it's safe(ish) to assume that the raised mapcount is
erroneous, and we can discount it from page_count to avoid leaking the
page (I'm less worried by leaking the occasional 4kB, than losing a
potential 2MB page with each 4kB page leaked).

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Ross Zwisler 7f6d5b529b dax: move writeback calls into the filesystems
Previously calls to dax_writeback_mapping_range() for all DAX filesystems
(ext2, ext4 & xfs) were centralized in filemap_write_and_wait_range().

dax_writeback_mapping_range() needs a struct block_device, and it used
to get that from inode->i_sb->s_bdev.  This is correct for normal inodes
mounted on ext2, ext4 and XFS filesystems, but is incorrect for DAX raw
block devices and for XFS real-time files.

Instead, call dax_writeback_mapping_range() directly from the filesystem
->writepages function so that it can supply us with a valid block
device.  This also fixes DAX code to properly flush caches in response
to sync(2).

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-27 10:28:52 -08:00
Randy Dunlap 62eb320ab0 mm: fix filemap.c kernel doc warning
Add missing kernel-doc notation for function parameter 'gfp_mask' to fix
kernel-doc warning.

  mm/filemap.c:1898: warning: No description found for parameter 'gfp_mask'

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-11 18:35:48 -08:00
Linus Torvalds cc673757e2 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull final vfs updates from Al Viro:

 - The ->i_mutex wrappers (with small prereq in lustre)

 - a fix for too early freeing of symlink bodies on shmem (they need to
   be RCU-delayed) (-stable fodder)

 - followup to dedupe stuff merged this cycle

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  vfs: abort dedupe loop if fatal signals are pending
  make sure that freeing shmem fast symlinks is RCU-delayed
  wrappers for ->i_mutex access
  lustre: remove unused declaration
2016-01-23 12:24:56 -08:00
Ross Zwisler 9973c98ecf dax: add support for fsync/sync
To properly handle fsync/msync in an efficient way DAX needs to track
dirty pages so it is able to flush them durably to media on demand.

The tracking of dirty pages is done via the radix tree in struct
address_space.  This radix tree is already used by the page writeback
infrastructure for tracking dirty pages associated with an open file,
and it already has support for exceptional (non struct page*) entries.
We build upon these features to add exceptional entries to the radix
tree for DAX dirty PMD or PTE pages at fault time.

[dan.j.williams@intel.com: fix dax_pmd_dbg build warning]
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-22 17:02:18 -08:00
Ross Zwisler 7e7f774984 mm: add find_get_entries_tag()
Add find_get_entries_tag() to the family of functions that include
find_get_entries(), find_get_pages() and find_get_pages_tag().  This is
needed for DAX dirty page handling because we need a list of both page
offsets and radix tree entries ('indices' and 'entries' in this
function) that are marked with the PAGECACHE_TAG_TOWRITE tag.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-22 17:02:18 -08:00
Ross Zwisler f9fe48bece dax: support dirty DAX entries in radix tree
Add support for tracking dirty DAX entries in the struct address_space
radix tree.  This tree is already used for dirty page writeback, and it
already supports the use of exceptional (non struct page*) entries.

In order to properly track dirty DAX pages we will insert new
exceptional entries into the radix tree that represent dirty DAX PTE or
PMD pages.  These exceptional entries will also contain the writeback
addresses for the PTE or PMD faults that we can use at fsync/msync time.

There are currently two types of exceptional entries (shmem and shadow)
that can be placed into the radix tree, and this adds a third.  We rely
on the fact that only one type of exceptional entry can be found in a
given radix tree based on its usage.  This happens for free with DAX vs
shmem but we explicitly prevent shadow entries from being added to radix
trees for DAX mappings.

The only shadow entries that would be generated for DAX radix trees
would be to track zero page mappings that were created for holes.  These
pages would receive minimal benefit from having shadow entries, and the
choice to have only one type of exceptional entry in a given radix tree
makes the logic simpler both in clear_exceptional_entry() and in the
rest of DAX.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-22 17:02:18 -08:00
Al Viro 5955102c99 wrappers for ->i_mutex access
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).

Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-22 18:04:28 -05:00
Kirill A. Shutemov e1534ae950 mm: differentiate page_mapped() from page_mapcount() for compound pages
Let's define page_mapped() to be true for compound pages if any
sub-pages of the compound page is mapped (with PMD or PTE).

On other hand page_mapcount() return mapcount for this particular small
page.

This will make cases like page_get_anon_vma() behave correctly once we
allow huge pages to be mapped with PTE.

Most users outside core-mm should use page_mapcount() instead of
page_mapped().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov f627c2f537 memcg: adjust to support new THP refcounting
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup.  We need
to get information from caller to know whether it was mapped with PMD or
PTE.

We do uncharge when last reference on the page gone.  At that point if
we see PageTransHuge() it means we need to unchange whole huge page.

The tricky part is partial unmap -- when we try to unmap part of huge
page.  We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered.  In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker.  This
should be good enough.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 48c935ad88 page-flags: define PG_locked behavior on compound pages
lock_page() must operate on the whole compound page.  It doesn't make
much sense to lock part of compound page.  Change code to use head
page's PG_locked, if tail page is passed.

This patch also gets rid of custom helper functions --
__set_page_locked() and __clear_page_locked().  They are replaced with
helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG.  Tail pages to these
helper would trigger VM_BUG_ON().

SLUB uses PG_locked as a bit spin locked.  IIUC, tail pages should never
appear there.  VM_BUG_ON() is added to make sure that this assumption is
correct.

[akpm@linux-foundation.org: fix fs/cifs/file.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Michal Hocko c20cd45eb0 mm: allow GFP_{FS,IO} for page_cache_read page cache allocation
page_cache_read has been historically using page_cache_alloc_cold to
allocate a new page.  This means that mapping_gfp_mask is used as the
base for the gfp_mask.  Many filesystems are setting this mask to
GFP_NOFS to prevent from fs recursion issues.  page_cache_read is called
from the vm_operations_struct::fault() context during the page fault.
This context doesn't need the reclaim protection normally.

ceph and ocfs2 which call filemap_fault from their fault handlers seem
to be OK because they are not taking any fs lock before invoking generic
implementation.  xfs which takes XFS_MMAPLOCK_SHARED is safe from the
reclaim recursion POV because this lock serializes truncate and punch
hole with the page faults and it doesn't get involved in the reclaim.

There is simply no reason to deliberately use a weaker allocation
context when a __GFP_FS | __GFP_IO can be used.  The GFP_NOFS protection
might be even harmful.  There is a push to fail GFP_NOFS allocations
rather than loop within allocator indefinitely with a very limited
reclaim ability.  Once we start failing those requests the OOM killer
might be triggered prematurely because the page cache allocation failure
is propagated up the page fault path and end up in
pagefault_out_of_memory.

We cannot play with mapping_gfp_mask directly because that would be racy
wrt.  parallel page faults and it might interfere with other users who
really rely on NOFS semantic from the stored gfp_mask.  The mask is also
inode proper so it would even be a layering violation.  What we can do
instead is to push the gfp_mask into struct vm_fault and allow fs layer
to overwrite it should the callback need to be called with a different
allocation context.

Initialize the default to (mapping_gfp_mask | __GFP_FS | __GFP_IO)
because this should be safe from the page fault path normally.  Why do
we care about mapping_gfp_mask at all then? Because this doesn't hold
only reclaim protection flags but it also might contain zone and
movability restrictions (GFP_DMA32, __GFP_MOVABLE and others) so we have
to respect those.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Jan Kara <jack@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Michal Hocko c62d25556b mm, fs: introduce mapping_gfp_constraint()
There are many places which use mapping_gfp_mask to restrict a more
generic gfp mask which would be used for allocations which are not
directly related to the page cache but they are performed in the same
context.

Let's introduce a helper function which makes the restriction explicit and
easier to track.  This patch doesn't introduce any functional changes.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Mel Gorman 71baba4b92 mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep.  Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep.  The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake.  As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags.  This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Hugh Dickins 45637bab30 mm: rename mem_cgroup_migrate to mem_cgroup_replace_page
After v4.3's commit 0610c25daa ("memcg: fix dirty page migration")
mem_cgroup_migrate() doesn't have much to offer in page migration: convert
migrate_misplaced_transhuge_page() to set_page_memcg() instead.

Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its
remaining callers are replace_page_cache_page() and shmem_replace_page():
both of whom passed lrucare true, so just eliminate that argument.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Junichi Nomura aa750fd71c mm/filemap.c: make global sync not clear error status of individual inodes
filemap_fdatawait() is a function to wait for on-going writeback to
complete but also consume and clear error status of the mapping set during
writeback.

The latter functionality is critical for applications to detect writeback
error with system calls like fsync(2)/fdatasync(2).

However filemap_fdatawait() is also used by sync(2) or FIFREEZE ioctl,
which don't check error status of individual mappings.

As a result, fsync() may not be able to detect writeback error if events
happen in the following order:

   Application                    System admin
   ----------------------------------------------------------
   write data on page cache
                                  Run sync command
                                  writeback completes with error
                                  filemap_fdatawait() clears error
   fsync returns success
   (but the data is not on disk)

This patch adds filemap_fdatawait_keep_errors() for call sites where
writeback error is not handled so that they don't clear error status.

Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Roman Gushchin 600e19afc5 mm: use only per-device readahead limit
Maximal readahead size is limited now by two values:
 1) by global 2Mb constant (MAX_READAHEAD in max_sane_readahead())
 2) by configurable per-device value* (bdi->ra_pages)

There are devices, which require custom readahead limit.
For instance, for RAIDs it's calculated as number of devices
multiplied by chunk size times 2.

Readahead size can never be larger than bdi->ra_pages * 2 value
(POSIX_FADV_SEQUNTIAL doubles readahead size).

If so, why do we need two limits?
I suggest to completely remove this max_sane_readahead() stuff and
use per-device readahead limit everywhere.

Also, using right readahead size for RAID disks can significantly
increase i/o performance:

before:
  dd if=/dev/md2 of=/dev/null bs=100M count=100
  100+0 records in
  100+0 records out
  10485760000 bytes (10 GB) copied, 12.9741 s, 808 MB/s

after:
  $ dd if=/dev/md2 of=/dev/null bs=100M count=100
  100+0 records in
  100+0 records out
  10485760000 bytes (10 GB) copied, 8.91317 s, 1.2 GB/s

(It's an 8-disks RAID5 storage).

This patch doesn't change sys_readahead and madvise(MADV_WILLNEED)
behavior introduced by 6d2be915e5 ("mm/readahead.c: fix readahead
failure for memoryless NUMA nodes and limit readahead pages").

Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: onstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Jan Kara 296291cdd1 mm: make sendfile(2) killable
Currently a simple program below issues a sendfile(2) system call which
takes about 62 days to complete in my test KVM instance.

        int fd;
        off_t off = 0;

        fd = open("file", O_RDWR | O_TRUNC | O_SYNC | O_CREAT, 0644);
        ftruncate(fd, 2);
        lseek(fd, 0, SEEK_END);
        sendfile(fd, fd, &off, 0xfffffff);

Now you should not ask kernel to do a stupid stuff like copying 256MB in
2-byte chunks and call fsync(2) after each chunk but if you do, sysadmin
should have a way to stop you.

We actually do have a check for fatal_signal_pending() in
generic_perform_write() which triggers in this path however because we
always succeed in writing something before the check is done, we return
value > 0 from generic_perform_write() and thus the information about
signal gets lost.

Fix the problem by doing the signal check before writing anything.  That
way generic_perform_write() returns -EINTR, the error gets propagated up
and the sendfile loop terminates early.

Signed-off-by: Jan Kara <jack@suse.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-23 17:55:10 +09:00
Linus Torvalds 00a3d660cb Revert "fs: do not prefault sys_write() user buffer pages"
This reverts commit 998ef75ddb.

The commit itself does not appear to be buggy per se, but it is exposing
a bug in ext4 (and Ted thinks ext3 too, but we solved that by getting
rid of it).  It's too late in the release cycle to really worry about
this, even if Dave Hansen has a patch that may actually fix the
underlying ext4 problem.  We can (and should) revisit this for the next
release.

The problem is that moving the prefaulting later now exposes a special
case with partially successful writes that isn't handled correctly.  And
the prefaulting likely isn't normally even that much of a performance
issue - it looks like at least one reason Dave saw this in his
performance tests is that he also ran them on Skylake that now supports
the new SMAP code, which makes the normally very cheap user space
prefaulting noticeably more expensive.

Bisected-and-acked-by: Ted Ts'o <tytso@mit.edu>
Analyzed-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-07 08:32:38 +01:00
Vlastimil Babka 96db800f5d mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise.  In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.

The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").

Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.

To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage.  Both functions get described in comments.

It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly.  The number of users would be small
anyway.

Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead.  This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.

Both differences will be rectified by the next patch.

To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers.  Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Dave Hansen 998ef75ddb fs: do not prefault sys_write() user buffer pages
=== Short summary ====

iov_iter_fault_in_readable() works around a really rare case and we can
avoid the deadlock it addresses in another way: disable page faults and
work around copy failures by faulting after the copy in a slow path
instead of before in a hot one.

I have a little microbenchmark that does repeated, small writes to tmpfs.
This patch speeds that micro up by 6.2%.

=== Long version ===

When doing a sys_write() we have a source buffer in userspace and then a
target file page.

If both of those are the same physical page, there is a potential deadlock
that we avoid.  It would happen something like this:

1. We start the write to the file
2. Allocate page cache page and set it !Uptodate
3. Touch the userspace buffer to copy in the user data
4. Page fault (since source of the write not yet mapped)
5. Page fault code tries to lock the page and deadlocks

(more details on this below)

To avoid this, we prefault the page to guarantee that this fault does not
occur.  But, this prefault comes at a cost.  It is one of the most
expensive things that we do in a hot write() path (especially if we
compare it to the read path).  It is working around a pretty rare case.

To fix this, it's pretty simple.  We move the "prefault" code to run after
we attempt the copy.  We explicitly disable page faults _during_ the copy,
detect the copy failure, then execute the "prefault" ouside of where the
page lock needs to be held.

iov_iter_copy_from_user_atomic() actually already has an implicit
pagefault_disable() inside of it (at least on x86), but we add an explicit
one.  I don't think we can depend on every kmap_atomic() implementation to
pagefault_disable() for eternity.

===================================================

The stack trace when this happens looks like this:

  wait_on_page_bit_killable+0xc0/0xd0
  __lock_page_or_retry+0x84/0xa0
  filemap_fault+0x1ed/0x3d0
  __do_fault+0x41/0xc0
  handle_mm_fault+0x9bb/0x1210
  __do_page_fault+0x17f/0x3d0
  do_page_fault+0xc/0x10
  page_fault+0x22/0x30
  generic_perform_write+0xca/0x1a0
  __generic_file_write_iter+0x190/0x1f0
  ext4_file_write_iter+0xe9/0x460
  __vfs_write+0xaa/0xe0
  vfs_write+0xa6/0x1a0
  SyS_write+0x46/0xa0
  entry_SYSCALL_64_fastpath+0x12/0x6a
  0xffffffffffffffff

(Note, this does *NOT* happen in practice today because
 the kmap_atomic() does a pagefault_disable().  The trace
 above was obtained by taking out the pagefault_disable().)

You can trigger the deadlock with this little code snippet:

	fd = open("foo", O_RDWR);
	fdmap = mmap(NULL, len, PROT_WRITE|PROT_READ, MAP_SHARED, fd, 0);
	write(fd, &fdmap[0], 1);

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jens Axboe <axboe@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Paul Cassella <cassella@cray.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Linus Torvalds 1dc51b8288 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 "Assorted VFS fixes and related cleanups (IMO the most interesting in
  that part are f_path-related things and Eric's descriptor-related
  stuff).  UFS regression fixes (it got broken last cycle).  9P fixes.
  fs-cache series, DAX patches, Jan's file_remove_suid() work"

[ I'd say this is much more than "fixes and related cleanups".  The
  file_table locking rule change by Eric Dumazet is a rather big and
  fundamental update even if the patch isn't huge.   - Linus ]

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
  9p: cope with bogus responses from server in p9_client_{read,write}
  p9_client_write(): avoid double p9_free_req()
  9p: forgetting to cancel request on interrupted zero-copy RPC
  dax: bdev_direct_access() may sleep
  block: Add support for DAX reads/writes to block devices
  dax: Use copy_from_iter_nocache
  dax: Add block size note to documentation
  fs/file.c: __fget() and dup2() atomicity rules
  fs/file.c: don't acquire files->file_lock in fd_install()
  fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
  vfs: avoid creation of inode number 0 in get_next_ino
  namei: make set_root_rcu() return void
  make simple_positive() public
  ufs: use dir_pages instead of ufs_dir_pages()
  pagemap.h: move dir_pages() over there
  remove the pointless include of lglock.h
  fs: cleanup slight list_entry abuse
  xfs: Correctly lock inode when removing suid and file capabilities
  fs: Call security_ops->inode_killpriv on truncate
  fs: Provide function telling whether file_remove_privs() will do anything
  ...
2015-07-04 19:36:06 -07:00
Linus Torvalds e4bc13adfd Merge branch 'for-4.2/writeback' of git://git.kernel.dk/linux-block
Pull cgroup writeback support from Jens Axboe:
 "This is the big pull request for adding cgroup writeback support.

  This code has been in development for a long time, and it has been
  simmering in for-next for a good chunk of this cycle too.  This is one
  of those problems that has been talked about for at least half a
  decade, finally there's a solution and code to go with it.

  Also see last weeks writeup on LWN:

        http://lwn.net/Articles/648292/"

* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
  writeback, blkio: add documentation for cgroup writeback support
  vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
  writeback: do foreign inode detection iff cgroup writeback is enabled
  v9fs: fix error handling in v9fs_session_init()
  bdi: fix wrong error return value in cgwb_create()
  buffer: remove unusued 'ret' variable
  writeback: disassociate inodes from dying bdi_writebacks
  writeback: implement foreign cgroup inode bdi_writeback switching
  writeback: add lockdep annotation to inode_to_wb()
  writeback: use unlocked_inode_to_wb transaction in inode_congested()
  writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
  writeback: implement [locked_]inode_to_wb_and_lock_list()
  writeback: implement foreign cgroup inode detection
  writeback: make writeback_control track the inode being written back
  writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
  mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
  writeback: implement memcg writeback domain based throttling
  writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
  writeback: implement memcg wb_domain
  writeback: update wb_over_bg_thresh() to use wb_domain aware operations
  ...
2015-06-25 16:00:17 -07:00
Michal Hocko 6afdb859b7 mm: do not ignore mapping_gfp_mask in page cache allocation paths
page_cache_read, do_generic_file_read, __generic_file_splice_read and
__ntfs_grab_cache_pages currently ignore mapping_gfp_mask when calling
add_to_page_cache_lru which might cause recursion into fs down in the
direct reclaim path if the mapping really relies on GFP_NOFS semantic.

This doesn't seem to be the case now because page_cache_read (page fault
path) doesn't seem to suffer from the reclaim recursion issues and
do_generic_file_read and __generic_file_splice_read also shouldn't be
called under fs locks which would deadlock in the reclaim path.  Anyway it
is better to obey mapping gfp mask and prevent from later breakage.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Michal Hocko 4165b9b461 hugetlb: do not account hugetlb pages as NR_FILE_PAGES
hugetlb pages uses add_to_page_cache to track shared mappings.  This is
OK from the data structure point of view but it is less so from the
NR_FILE_PAGES accounting:

	- huge pages are accounted as 4k which is clearly wrong
	- this counter is used as the amount of the reclaimable page
	  cache which is incorrect as well because hugetlb pages are
	  special and not reclaimable
	- the counter is then exported to userspace via /proc/meminfo
	  (in Cached:), /proc/vmstat and /proc/zoneinfo as
	  nr_file_pages which is confusing at least:
	  Cached:          8883504 kB
	  HugePages_Free:     8348
	  ...
	  Cached:          8916048 kB
	  HugePages_Free:      156
	  ...
	  thats 8192 huge pages allocated which is ~16G accounted as 32M

There are usually not that many huge pages in the system for this to
make any visible difference e.g.  by fooling __vm_enough_memory or
zone_pagecache_reclaimable.

Fix this by special casing huge pages in both __delete_from_page_cache
and __add_to_page_cache_locked.  replace_page_cache_page is currently
only used by fuse and that shouldn't touch hugetlb pages AFAICS but it
is more robust to check for special casing there as well.

Hugetlb pages shouldn't get to any other paths where we do accounting:
	- migration - we have a special handling via
	  hugetlbfs_migrate_page
	- shmem - doesn't handle hugetlb pages directly even for
	  SHM_HUGETLB resp. MAP_HUGETLB
	- swapcache - hugetlb is not swapable

This has a user visible effect but I believe it is reasonable because the
previously exported number is simply bogus.

An alternative would be to account hugetlb pages with their real size and
treat them similar to shmem.  But this has some drawbacks.

First we would have to special case in kernel users of NR_FILE_PAGES and
considering how hugetlb is special we would have to do it everywhere.  We
do not want Cached exported by /proc/meminfo to include it because the
value would be even more misleading.

__vm_enough_memory and zone_pagecache_reclaimable would have to do the
same thing because those pages are simply not reclaimable.  The correction
is even not trivial because we would have to consider all active hugetlb
page sizes properly.  Users of the counter outside of the kernel would
have to do the same.

So the question is why to account something that needs to be basically
excluded for each reasonable usage.  This doesn't make much sense to me.

It seems that this has been broken since hugetlb was introduced but I
haven't checked the whole history.

[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:43 -07:00
Jan Kara 5fa8e0a1c6 fs: Rename file_remove_suid() to file_remove_privs()
file_remove_suid() is a misnomer since it removes also file capabilities
stored in xattrs and sets S_NOSEC flag. Also should_remove_suid() tells
something else than whether file_remove_suid() call is necessary which
leads to bugs.

Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-06-23 18:01:08 -04:00