1
0
Fork 0
Commit Graph

188 Commits (ad4e38dd6a33bb3a4882c487d7abe621e583b982)

Author SHA1 Message Date
Curt Wohlgemuth ad4e38dd6a writeback: send work item to queue_io, move_expired_inodes
Instead of sending ->older_than_this to queue_io() and
move_expired_inodes(), send the entire wb_writeback_work
structure.  There are other fields of a work item that are
useful in these routines and in tracepoints.

Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-31 00:33:27 +08:00
Wu Fengguang b00949aa2d writeback: per-bdi background threshold
One thing puzzled me is that in JBOD case, the per-disk writeout
performance is smaller than the corresponding single-disk case even
when they have comparable bdi_thresh. Tracing shows find that in single
disk case, bdi_writeback is always kept high while in JBOD case, it
could drop low from time to time and correspondingly bdi_reclaimable
could sometimes rush high.

The fix is to watch bdi_reclaimable and kick background writeback as
soon as it goes high. This resembles the global background threshold
but in per-bdi manner. The trick is, as long as bdi_reclaimable does
not go high, bdi_writeback naturally won't go low because
bdi_reclaimable+bdi_writeback ~= bdi_thresh.

With less fluctuated writeback pages, JBOD performance is observed to
increase noticeably in various cases.

vmstat:nr_written values before/after patch:

  3.1.0-rc4-wo-underrun+      3.1.0-rc4-bgthresh3+  
------------------------  ------------------------  
               125596480       +25.9%    158179363  JBOD-10HDD-16G/ext4-100dd-1M-24p-16384M-20:10-X
                61790815      +110.4%    130032231  JBOD-10HDD-16G/ext4-10dd-1M-24p-16384M-20:10-X
                58853546        -0.1%     58823828  JBOD-10HDD-16G/ext4-1dd-1M-24p-16384M-20:10-X
               110159811       +24.7%    137355377  JBOD-10HDD-16G/xfs-100dd-1M-24p-16384M-20:10-X
                69544762       +10.8%     77080047  JBOD-10HDD-16G/xfs-10dd-1M-24p-16384M-20:10-X
                50644862        +0.5%     50890006  JBOD-10HDD-16G/xfs-1dd-1M-24p-16384M-20:10-X
                42677090       +28.0%     54643527  JBOD-10HDD-thresh=100M/ext4-100dd-1M-24p-16384M-100M:10-X
                47491324       +13.3%     53785605  JBOD-10HDD-thresh=100M/ext4-10dd-1M-24p-16384M-100M:10-X
                52548986        +0.9%     53001031  JBOD-10HDD-thresh=100M/ext4-1dd-1M-24p-16384M-100M:10-X
                26783091       +36.8%     36650248  JBOD-10HDD-thresh=100M/xfs-100dd-1M-24p-16384M-100M:10-X
                35526347       +14.0%     40492312  JBOD-10HDD-thresh=100M/xfs-10dd-1M-24p-16384M-100M:10-X
                44670723        -1.1%     44177606  JBOD-10HDD-thresh=100M/xfs-1dd-1M-24p-16384M-100M:10-X
               127996037       +22.4%    156719990  JBOD-10HDD-thresh=2G/ext4-100dd-1M-24p-16384M-2048M:10-X
                57518856        +3.8%     59677625  JBOD-10HDD-thresh=2G/ext4-10dd-1M-24p-16384M-2048M:10-X
                51919909       +12.2%     58269894  JBOD-10HDD-thresh=2G/ext4-1dd-1M-24p-16384M-2048M:10-X
                86410514       +79.0%    154660433  JBOD-10HDD-thresh=2G/xfs-100dd-1M-24p-16384M-2048M:10-X
                40132519       +38.6%     55617893  JBOD-10HDD-thresh=2G/xfs-10dd-1M-24p-16384M-2048M:10-X
                48423248        +7.5%     52042927  JBOD-10HDD-thresh=2G/xfs-1dd-1M-24p-16384M-2048M:10-X
               206041046       +44.1%    296846536  JBOD-10HDD-thresh=4G/xfs-100dd-1M-24p-16384M-4096M:10-X
                72312903       -19.4%     58272885  JBOD-10HDD-thresh=4G/xfs-10dd-1M-24p-16384M-4096M:10-X
                50635672        -0.5%     50384787  JBOD-10HDD-thresh=4G/xfs-1dd-1M-24p-16384M-4096M:10-X
                68308534      +115.7%    147324758  JBOD-10HDD-thresh=800M/ext4-100dd-1M-24p-16384M-800M:10-X
                57882933       +14.5%     66269621  JBOD-10HDD-thresh=800M/ext4-10dd-1M-24p-16384M-800M:10-X
                52183472       +12.8%     58855181  JBOD-10HDD-thresh=800M/ext4-1dd-1M-24p-16384M-800M:10-X
                53788956       +94.2%    104460352  JBOD-10HDD-thresh=800M/xfs-100dd-1M-24p-16384M-800M:10-X
                44493342       +35.5%     60298210  JBOD-10HDD-thresh=800M/xfs-10dd-1M-24p-16384M-800M:10-X
                42641209       +18.9%     50681038  JBOD-10HDD-thresh=800M/xfs-1dd-1M-24p-16384M-800M:10-X

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03 21:08:58 +08:00
Wu Fengguang af6a311384 writeback: add bg_threshold parameter to __bdi_update_bandwidth()
No behavior change.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03 21:08:56 +08:00
Wu Fengguang 0e995816f4 don't busy retry the inode on failed grab_super_passive()
This fixes a soft lockup on conditions

a) the flusher is working on a work by __bdi_start_writeback(), while

b) someone else calls writeback_inodes_sb*() or sync_inodes_sb(), which
   grab sb->s_umount and enqueue a new work for the flusher to execute

The s_umount grabbed by (b) will fail the grab_super_passive() in (a).
Then if the inode is requeued, wb_writeback() will busy retry on it.
As a result, wb_writeback() loops for ever without releasing
wb->list_lock, which further blocks other tasks.

Fix the busy loop by redirtying the inode. This may undesirably delay
the writeback of the inode, however most likely it will be picked up
soon by the queued work by writeback_inodes_sb*(), sync_inodes_sb() or
even writeback_inodes_wb().

bug url: http://www.spinics.net/lists/linux-fsdevel/msg47292.html

Reported-by: Christoph Hellwig <hch@infradead.org>
Tested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-31 22:52:08 +08:00
Linus Torvalds f01ef569cd Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback: (27 commits)
  mm: properly reflect task dirty limits in dirty_exceeded logic
  writeback: don't busy retry writeback on new/freeing inodes
  writeback: scale IO chunk size up to half device bandwidth
  writeback: trace global_dirty_state
  writeback: introduce max-pause and pass-good dirty limits
  writeback: introduce smoothed global dirty limit
  writeback: consolidate variable names in balance_dirty_pages()
  writeback: show bdi write bandwidth in debugfs
  writeback: bdi write bandwidth estimation
  writeback: account per-bdi accumulated written pages
  writeback: make writeback_control.nr_to_write straight
  writeback: skip tmpfs early in balance_dirty_pages_ratelimited_nr()
  writeback: trace event writeback_queue_io
  writeback: trace event writeback_single_inode
  writeback: remove .nonblocking and .encountered_congestion
  writeback: remove writeback_control.more_io
  writeback: skip balance_dirty_pages() for in-memory fs
  writeback: add bdi_dirty_limit() kernel-doc
  writeback: avoid extra sync work at enqueue time
  writeback: elevate queue_io() into wb_writeback()
  ...

Fix up trivial conflicts in fs/fs-writeback.c and mm/filemap.c
2011-07-26 10:39:54 -07:00
Wu Fengguang fcc5c22218 writeback: don't busy retry writeback on new/freeing inodes
Fix a system hang bug introduced by commit b7a2441f99 ("writeback:
remove writeback_control.more_io") and e8dfc3058 ("writeback: elevate
queue_io() into wb_writeback()") easily reproducible with high memory
pressure and lots of file creation/deletions, for example, a kernel
build in limited memory.

It hangs when some inode is in the I_NEW, I_FREEING or I_WILL_FREE 
state, the flusher will get stuck busy retrying that inode, never
releasing wb->list_lock. The lock in turn blocks all kinds of other
tasks when they are trying to grab it.

As put by Jan, it's a safe change regarding data integrity. I_FREEING or
I_WILL_FREE inodes are written back by iput_final() and it is reclaim
code that is responsible for eventually removing them. So writeback code
can safely ignore them. I_NEW inodes should move out of this state when
they are fully set up and in the writeback round following that, we will
consider them for writeback. So the change makes sense.                                                         

CC: Jan Kara <jack@suse.cz> 
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-24 10:46:51 +08:00
Dave Chinner 12ad3ab661 superblock: move pin_sb_for_writeback() to fs/super.c
The per-sb shrinker has the same requirement as the writeback
threads of ensuring that the superblock is usable and pinned for the
time it takes to run the work. Both need to take a passive reference
to the sb, take a read lock on the s_umount lock and then only
continue if an unmount is not in progress.

pin_sb_for_writeback() does this exactly, so move it to fs/super.c
and rename it to grab_super_passive() and exporting it via
fs/internal.h for all the VFS code to be able to use.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20 01:44:38 -04:00
Wu Fengguang 1a12d8bd7b writeback: scale IO chunk size up to half device bandwidth
Originally, MAX_WRITEBACK_PAGES was hard-coded to 1024 because of a
concern of not holding I_SYNC for too long.  (At least, that was the
comment previously.)  This doesn't make sense now because the only
time we wait for I_SYNC is if we are calling sync or fsync, and in
that case we need to write out all of the data anyway.  Previously
there may have been other code paths that waited on I_SYNC, but not
any more.					    -- Theodore Ts'o

So remove the MAX_WRITEBACK_PAGES constraint. The writeback pages
will adapt to as large as the storage device can write within 500ms.

XFS is observed to do IO completions in a batch, and the batch size is
equal to the write chunk size. To avoid dirty pages to suddenly drop
out of balance_dirty_pages()'s dirty control scope and create large
fluctuations, the chunk size is also limited to half the control scope.

The balance_dirty_pages() control scrope is

	[(background_thresh + dirty_thresh) / 2, dirty_thresh]

which is by default [15%, 20%] of global dirty pages, whose range size
is dirty_thresh / DIRTY_FULL_SCOPE.

The adpative write chunk size will be rounded to the nearest 4MB
boundary.

http://bugzilla.kernel.org/show_bug.cgi?id=13930

CC: Theodore Ts'o <tytso@mit.edu>
CC: Dave Chinner <david@fromorbit.com>
CC: Chris Mason <chris.mason@oracle.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09 22:09:03 -07:00
Wu Fengguang c42843f2f0 writeback: introduce smoothed global dirty limit
The start of a heavy weight application (ie. KVM) may instantly knock
down determine_dirtyable_memory() if the swap is not enabled or full.
global_dirty_limits() and bdi_dirty_limit() will in turn get global/bdi
dirty thresholds that are _much_ lower than the global/bdi dirty pages.

balance_dirty_pages() will then heavily throttle all dirtiers including
the light ones, until the dirty pages drop below the new dirty thresholds.
During this _deep_ dirty-exceeded state, the system may appear rather
unresponsive to the users.

About "deep" dirty-exceeded: task_dirty_limit() assigns 1/8 lower dirty
threshold to heavy dirtiers than light ones, and the dirty pages will
be throttled around the heavy dirtiers' dirty threshold and reasonably
below the light dirtiers' dirty threshold. In this state, only the heavy
dirtiers will be throttled and the dirty pages are carefully controlled
to not exceed the light dirtiers' dirty threshold. However if the
threshold itself suddenly drops below the number of dirty pages, the
light dirtiers will get heavily throttled.

So introduce global_dirty_limit for tracking the global dirty threshold
with policies

- follow downwards slowly
- follow up in one shot

global_dirty_limit can effectively mask out the impact of sudden drop of
dirtyable memory. It will be used in the next patch for two new type of
dirty limits. Note that the new dirty limits are not going to avoid
throttling the light dirtiers, but could limit their sleep time to 200ms.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09 22:09:02 -07:00
Wu Fengguang e98be2d599 writeback: bdi write bandwidth estimation
The estimation value will start from 100MB/s and adapt to the real
bandwidth in seconds.

It tries to update the bandwidth only when disk is fully utilized.
Any inactive period of more than one second will be skipped.

The estimated bandwidth will be reflecting how fast the device can
writeout when _fully utilized_, and won't drop to 0 when it goes idle.
The value will remain constant at disk idle time. At busy write time, if
not considering fluctuations, it will also remain high unless be knocked
down by possible concurrent reads that compete for the disk time and
bandwidth with async writes.

The estimation is not done purely in the flusher because there is no
guarantee for write_cache_pages() to return timely to update bandwidth.

The bdi->avg_write_bandwidth smoothing is very effective for filtering
out sudden spikes, however may be a little biased in long term.

The overheads are low because the bdi bandwidth update only occurs at
200ms intervals.

The 200ms update interval is suitable, because it's not possible to get
the real bandwidth for the instance at all, due to large fluctuations.

The NFS commits can be as large as seconds worth of data. One XFS
completion may be as large as half second worth of data if we are going
to increase the write chunk to half second worth of data. In ext4,
fluctuations with time period of around 5 seconds is observed. And there
is another pattern of irregular periods of up to 20 seconds on SSD tests.

That's why we are not only doing the estimation at 200ms intervals, but
also averaging them over a period of 3 seconds and then go further to do
another level of smoothing in avg_write_bandwidth.

CC: Li Shaohua <shaohua.li@intel.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09 22:09:01 -07:00
Wu Fengguang d46db3d582 writeback: make writeback_control.nr_to_write straight
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.

struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.

It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.

It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.

Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09 22:09:01 -07:00
Wu Fengguang e84d0a4f8e writeback: trace event writeback_queue_io
Note that it adds a little overheads to account the moved/enqueued
inodes from b_dirty to b_io. The "moved" accounting may be later used to
limit the number of inodes that can be moved in one shot, in order to
keep spinlock hold time under control.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:23 +08:00
Wu Fengguang 251d6a471c writeback: trace event writeback_single_inode
It is valuable to know how the dirty inodes are iterated and their IO size.

"writeback_single_inode: bdi 8:0: ino=134246746 state=I_DIRTY_SYNC|I_SYNC age=414 index=0 to_write=1024 wrote=0"

- "state" reflects inode->i_state at the end of writeback_single_inode()
- "index" reflects mapping->writeback_index after the ->writepages() call
- "to_write" is the wbc->nr_to_write at entrance of writeback_single_inode()
- "wrote" is the number of pages actually written

v2: add trace event writeback_single_inode_requeue as proposed by Dave.

CC: Dave Chinner <david@fromorbit.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:23 +08:00
Wu Fengguang b7a2441f99 writeback: remove writeback_control.more_io
When wbc.more_io was first introduced, it indicates whether there are
at least one superblock whose s_more_io contains more IO work. Now with
the per-bdi writeback, it can be replaced with a simple b_more_io test.

Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:23 +08:00
Wu Fengguang e185dda89d writeback: avoid extra sync work at enqueue time
This removes writeback_control.wb_start and does more straightforward
sync livelock prevention by setting .older_than_this to prevent extra
inodes from being enqueued in the first place.

Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:22 +08:00
Wu Fengguang e8dfc30582 writeback: elevate queue_io() into wb_writeback()
Code refactor for more logical code layout.
No behavior change.

- remove the mis-named __writeback_inodes_sb()

- wb_writeback()/writeback_inodes_wb() will decide when to queue_io()
  before calling __writeback_inodes_wb()

Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:21 +08:00
Christoph Hellwig f758eeabeb writeback: split inode_wb_list_lock into bdi_writeback.list_lock
Split the global inode_wb_list_lock into a per-bdi_writeback list_lock,
as it's currently the most contended lock in the system for metadata
heavy workloads.  It won't help for single-filesystem workloads for
which we'll need the I/O-less balance_dirty_pages, but at least we
can dedicate a cpu to spinning on each bdi now for larger systems.

Based on earlier patches from Nick Piggin and Dave Chinner.

It reduces lock contentions to 1/4 in this test case:
10 HDD JBOD, 100 dd on each disk, XFS, 6GB ram

lock_stat version 0.3
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                              class name    con-bounces    contentions   waittime-min   waittime-max waittime-total    acq-bounces   acquisitions   holdtime-min   holdtime-max holdtime-total
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
vanilla 2.6.39-rc3:
                      inode_wb_list_lock:         42590          44433           0.12         147.74      144127.35         252274         886792           0.08         121.34      917211.23
                      ------------------
                      inode_wb_list_lock              2          [<ffffffff81165da5>] bdev_inode_switch_bdi+0x29/0x85
                      inode_wb_list_lock             34          [<ffffffff8115bd0b>] inode_wb_list_del+0x22/0x49
                      inode_wb_list_lock          12893          [<ffffffff8115bb53>] __mark_inode_dirty+0x170/0x1d0
                      inode_wb_list_lock          10702          [<ffffffff8115afef>] writeback_single_inode+0x16d/0x20a
                      ------------------
                      inode_wb_list_lock              2          [<ffffffff81165da5>] bdev_inode_switch_bdi+0x29/0x85
                      inode_wb_list_lock             19          [<ffffffff8115bd0b>] inode_wb_list_del+0x22/0x49
                      inode_wb_list_lock           5550          [<ffffffff8115bb53>] __mark_inode_dirty+0x170/0x1d0
                      inode_wb_list_lock           8511          [<ffffffff8115b4ad>] writeback_sb_inodes+0x10f/0x157

2.6.39-rc3 + patch:
                &(&wb->list_lock)->rlock:         11383          11657           0.14         151.69       40429.51          90825         527918           0.11         145.90      556843.37
                ------------------------
                &(&wb->list_lock)->rlock             10          [<ffffffff8115b189>] inode_wb_list_del+0x5f/0x86
                &(&wb->list_lock)->rlock           1493          [<ffffffff8115b1ed>] writeback_inodes_wb+0x3d/0x150
                &(&wb->list_lock)->rlock           3652          [<ffffffff8115a8e9>] writeback_sb_inodes+0x123/0x16f
                &(&wb->list_lock)->rlock           1412          [<ffffffff8115a38e>] writeback_single_inode+0x17f/0x223
                ------------------------
                &(&wb->list_lock)->rlock              3          [<ffffffff8110b5af>] bdi_lock_two+0x46/0x4b
                &(&wb->list_lock)->rlock              6          [<ffffffff8115b189>] inode_wb_list_del+0x5f/0x86
                &(&wb->list_lock)->rlock           2061          [<ffffffff8115af97>] __mark_inode_dirty+0x173/0x1cf
                &(&wb->list_lock)->rlock           2629          [<ffffffff8115a8e9>] writeback_sb_inodes+0x123/0x16f

hughd@google.com: fix recursive lock when bdi_lock_two() is called with new the same as old
akpm@linux-foundation.org: cleanup bdev_inode_switch_bdi() comment

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:21 +08:00
Wu Fengguang 424b351fe1 writeback: refill b_io iff empty
There is no point to carry different refill policies between for_kupdate
and other type of works. Use a consistent "refill b_io iff empty" policy
which can guarantee fairness in an easy to understand way.

A b_io refill will setup a _fixed_ work set with all currently eligible
inodes and start a new round of walk through b_io. The "fixed" work set
means no new inodes will be added to the work set during the walk.
Only when a complete walk over b_io is done, new inodes that are
eligible at the time will be enqueued and the walk be started over.

This procedure provides fairness among the inodes because it guarantees
each inode to be synced once and only once at each round. So all inodes
will be free from starvations.

This change relies on wb_writeback() to keep retrying as long as we made
some progress on cleaning some pages and/or inodes. Without that ability,
the old logic on background works relies on aggressively queuing all
eligible inodes into b_io at every time. But that's not a guarantee.

The below test script completes a slightly faster now:

             2.6.39-rc3	  2.6.39-rc3-dyn-expire+
------------------------------------------------
all elapsed     256.043      252.367
stddev           24.381       12.530

tar elapsed      30.097       28.808
dd  elapsed      13.214       11.782

	#!/bin/zsh

	cp /c/linux-2.6.38.3.tar.bz2 /dev/shm/

	umount /dev/sda7
	mkfs.xfs -f /dev/sda7
	mount /dev/sda7 /fs

	echo 3 > /proc/sys/vm/drop_caches

	tic=$(cat /proc/uptime|cut -d' ' -f2)

	cd /fs
	time tar jxf /dev/shm/linux-2.6.38.3.tar.bz2 &
	time dd if=/dev/zero of=/fs/zero bs=1M count=1000 &

	wait
	sync
	tac=$(cat /proc/uptime|cut -d' ' -f2)
	echo elapsed: $((tac - tic))

It maintains roughly the same small vs. large file writeout shares, and
offers large files better chances to be written in nice 4M chunks.

Analyzes from Dave Chinner in great details:

Let's say we have lots of inodes with 100 dirty pages being created,
and one large writeback going on. We expire 8 new inodes for every
1024 pages we write back.

With the old code, we do:

	b_more_io (large inode) -> b_io (1l)
	8 newly expired inodes -> b_io (1l, 8s)

	writeback  large inode 1024 pages -> b_more_io

	b_more_io (large inode) -> b_io (8s, 1l)
	8 newly expired inodes -> b_io (8s, 1l, 8s)

	writeback  8 small inodes 800 pages
		   1 large inode 224 pages -> b_more_io

	b_more_io (large inode) -> b_io (8s, 1l)
	8 newly expired inodes -> b_io (8s, 1l, 8s)
	.....

Your new code:

	b_more_io (large inode) -> b_io (1l)
	8 newly expired inodes -> b_io (1l, 8s)

	writeback  large inode 1024 pages -> b_more_io
	(b_io == 8s)
	writeback  8 small inodes 800 pages

	b_io empty: (1800 pages written)
		b_more_io (large inode) -> b_io (1l)
		14 newly expired inodes -> b_io (1l, 14s)

	writeback  large inode 1024 pages -> b_more_io
	(b_io == 14s)
	writeback  10 small inodes 1000 pages
		   1 small inode 24 pages -> b_more_io (1l, 1s(24))
	writeback  5 small inodes 500 pages
	b_io empty: (2548 pages written)
		b_more_io (large inode) -> b_io (1l, 1s(24))
		20 newly expired inodes -> b_io (1l, 1s(24), 20s)
	......

Rough progression of pages written at b_io refill:

Old code:

	total	large file	% of writeback
	1024	224		21.9% (fixed)

New code:
	total	large file	% of writeback
	1800	1024		~55%
	2550	1024		~40%
	3050	1024		~33%
	3500	1024		~29%
	3950	1024		~26%
	4250	1024		~24%
	4500	1024		~22.7%
	4700	1024		~21.7%
	4800	1024		~21.3%
	4800	1024		~21.3%
	(pretty much steady state from here)

Ok, so the steady state is reached with a similar percentage of
writeback to the large file as the existing code. Ok, that's good,
but providing some evidence that is doesn't change the shared of
writeback to the large should be in the commit message ;)

The other advantage to this is that we always write 1024 page chunks
to the large file, rather than smaller "whatever remains" chunks.

CC: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:21 +08:00
Wu Fengguang ba9aa8399f writeback: the kupdate expire timestamp should be a moving target
Dynamically compute the dirty expire timestamp at queue_io() time.

writeback_control.older_than_this used to be determined at entrance to
the kupdate writeback work. This _static_ timestamp may go stale if the
kupdate work runs on and on. The flusher may then stuck with some old
busy inodes, never considering newly expired inodes thereafter.

This has two possible problems:

- It is unfair for a large dirty inode to delay (for a long time) the
  writeback of small dirty inodes.

- As time goes by, the large and busy dirty inode may contain only
  _freshly_ dirtied pages. Ignoring newly expired dirty inodes risks
  delaying the expired dirty pages to the end of LRU lists, triggering
  the evil pageout(). Nevertheless this patch merely addresses part
  of the problem.

v2: keep policy changes inside wb_writeback() and keep the
wbc.older_than_this visibility as suggested by Dave.

CC: Dave Chinner <david@fromorbit.com>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:21 +08:00
Wu Fengguang e6fb6da2e1 writeback: try more writeback as long as something was written
writeback_inodes_wb()/__writeback_inodes_sb() are not aggressive in that
they only populate possibly a subset of eligible inodes into b_io at
entrance time. When the queued set of inodes are all synced, they just
return, possibly with all queued inode pages written but still
wbc.nr_to_write > 0.

For kupdate and background writeback, there may be more eligible inodes
sitting in b_dirty when the current set of b_io inodes are completed. So
it is necessary to try another round of writeback as long as we made some
progress in this round. When there are no more eligible inodes, no more
inodes will be enqueued in queue_io(), hence nothing could/will be
synced and we may safely bail.

For example, imagine 100 inodes

        i0, i1, i2, ..., i90, i91, i99

At queue_io() time, i90-i99 happen to be expired and moved to s_io for
IO. When finished successfully, if their total size is less than
MAX_WRITEBACK_PAGES, nr_to_write will be > 0. Then wb_writeback() will
quit the background work (w/o this patch) while it's still over
background threshold. This will be a fairly normal/frequent case I guess.

Now that we do tagged sync and update inode->dirtied_when after the sync,
this change won't livelock sync(1).  I actually tried to write 1 page
per 1ms with this command

	write-and-fsync -n10000 -S 1000 -c 4096 /fs/test

and do sync(1) at the same time. The sync completes quickly on ext4,
xfs, btrfs.

Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:20 +08:00
Wu Fengguang cb9bd1159c writeback: introduce writeback_control.inodes_written
The flusher works on dirty inodes in batches, and may quit prematurely
if the batch of inodes happen to be metadata-only dirtied: in this case
wbc->nr_to_write won't be decreased at all, which stands for "no pages
written" but also mis-interpreted as "no progress".

So introduce writeback_control.inodes_written to count the inodes get
cleaned from VFS POV.  A non-zero value means there are some progress on
writeback, in which case more writeback can be tried.

Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:20 +08:00
Wu Fengguang 94c3dcbb0b writeback: update dirtied_when for synced inode to prevent livelock
Explicitly update .dirtied_when on synced inodes, so that they are no
longer considered for writeback in the next round.

It can prevent both of the following livelock schemes:

- while true; do echo data >> f; done
- while true; do touch f;        done (in theory)

The exact livelock condition is, during sync(1):

(1) no new inodes are dirtied
(2) an inode being actively dirtied

On (2), the inode will be tagged and synced with .nr_to_write=LONG_MAX.
When finished, it will be redirty_tail()ed because it's still dirty
and (.nr_to_write > 0). redirty_tail() won't update its ->dirtied_when
on condition (1). The sync work will then revisit it on the next
queue_io() and find it eligible again because its old ->dirtied_when
predates the sync work start time.

We'll do more aggressive "keep writeback as long as we wrote something"
logic in wb_writeback(). The "use LONG_MAX .nr_to_write" trick in commit
b9543dac5b ("writeback: avoid livelocking WB_SYNC_ALL writeback") will
no longer be enough to stop sync livelock.

Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:20 +08:00
Wu Fengguang 6e6938b6d3 writeback: introduce .tagged_writepages for the WB_SYNC_NONE sync stage
sync(2) is performed in two stages: the WB_SYNC_NONE sync and the
WB_SYNC_ALL sync. Identify the first stage with .tagged_writepages and
do livelock prevention for it, too.

Jan's commit f446daaea9 ("mm: implement writeback livelock avoidance
using page tagging") is a partial fix in that it only fixed the
WB_SYNC_ALL phase livelock.

Although ext4 is tested to no longer livelock with commit f446daaea9,
it may due to some "redirty_tail() after pages_skipped" effect which
is by no means a guarantee for _all_ the file systems.

Note that writeback_inodes_sb() is called by not only sync(), they are
treated the same because the other callers also need livelock prevention.

Impact:  It changes the order in which pages/inodes are synced to disk.
Now in the WB_SYNC_NONE stage, it won't proceed to write the next inode
until finished with the current inode.

Acked-by: Jan Kara <jack@suse.cz>
CC: Dave Chinner <david@fromorbit.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08 08:25:20 +08:00
Christoph Hellwig aa38572954 fs: pass exact type of data dirties to ->dirty_inode
Tell the filesystem if we just updated timestamp (I_DIRTY_SYNC) or
anything else, so that the filesystem can track internally if it
needs to push out a transaction for fdatasync or not.

This is just the prototype change with no user for it yet.  I plan
to push large XFS changes for the next merge window, and getting
this trivial infrastructure in this window would help a lot to avoid
tree interdependencies.

Also remove incorrect comments that ->dirty_inode can't block.  That
has been changed a long time ago, and many implementations rely on it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-05-27 07:04:40 -04:00
Lucas De Marchi 25985edced Fix common misspellings
Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-31 11:26:23 -03:00
Dave Chinner 0f1b1fd86f fs: pull inode->i_lock up out of writeback_single_inode
First thing we do in writeback_single_inode() is take the i_lock and
the last thing we do is drop it. A caller already holds the i_lock,
so pull the i_lock out of writeback_single_inode() to reduce the
round trips on this lock during inode writeback.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-03-24 21:17:51 -04:00
Dave Chinner a66979abad fs: move i_wb_list out from under inode_lock
Protect the inode writeback list with a new global lock
inode_wb_list_lock and use it to protect the list manipulations and
traversals. This lock replaces the inode_lock as the inodes on the
list can be validity checked while holding the inode->i_lock and
hence the inode_lock is no longer needed to protect the list.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-03-24 21:17:51 -04:00
Dave Chinner 55fa6091d8 fs: move i_sb_list out from under inode_lock
Protect the per-sb inode list with a new global lock
inode_sb_list_lock and use it to protect the list manipulations and
traversals. This lock replaces the inode_lock as the inodes on the
list can be validity checked while holding the inode->i_lock and
hence the inode_lock is no longer needed to protect the list.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-03-24 21:16:32 -04:00
Dave Chinner 250df6ed27 fs: protect inode->i_state with inode->i_lock
Protect inode state transitions and validity checks with the
inode->i_lock. This enables us to make inode state transitions
independently of the inode_lock and is the first step to peeling
away the inode_lock from the code.

This requires that __iget() is done atomically with i_state checks
during list traversals so that we don't race with another thread
marking the inode I_FREEING between the state check and grabbing the
reference.

Also remove the unlock_new_inode() memory barrier optimisation
required to avoid taking the inode_lock when clearing I_NEW.
Simplify the code by simply taking the inode->i_lock around the
state change and wakeup. Because the wakeup is no longer tricky,
remove the wake_up_inode() function and open code the wakeup where
necessary.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-03-24 21:16:31 -04:00
Stefan Hajnoczi cb9ef8d5e3 fs/fs-writeback.c: fix sync_inodes_sb() return value kernel-doc
The sync_inodes_sb() function does not have a return value.  Remove the
outdated documentation comment.

Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:48 -08:00
Andrew Morton c691b9d983 sync_inode_metadata: fix comment
Use correct function name, remove incorrect apostrophe

Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:32 -08:00
Jan Kara b9543dac5b writeback: avoid livelocking WB_SYNC_ALL writeback
When wb_writeback() is called in WB_SYNC_ALL mode, work->nr_to_write is
usually set to LONG_MAX.  The logic in wb_writeback() then calls
__writeback_inodes_sb() with nr_to_write == MAX_WRITEBACK_PAGES and we
easily end up with non-positive nr_to_write after the function returns, if
the inode has more than MAX_WRITEBACK_PAGES dirty pages at the moment.

When nr_to_write is <= 0 wb_writeback() decides we need another round of
writeback but this is wrong in some cases!  For example when a single
large file is continuously dirtied, we would never finish syncing it
because each pass would be able to write MAX_WRITEBACK_PAGES and inode
dirty timestamp never gets updated (as inode is never completely clean).
Thus __writeback_inodes_sb() would write the redirtied inode again and
again.

Fix the issue by setting nr_to_write to LONG_MAX in WB_SYNC_ALL mode.  We
do not need nr_to_write in WB_SYNC_ALL mode anyway since
write_cache_pages() does livelock avoidance using page tagging in
WB_SYNC_ALL mode.

This makes wb_writeback() call __writeback_inodes_sb() only once on
WB_SYNC_ALL.  The latter function won't livelock because it works on

- a finite set of files by doing queue_io() once at the beginning
- a finite set of pages by PAGECACHE_TAG_TOWRITE page tagging

After this patch, program from http://lkml.org/lkml/2010/10/24/154 is no
longer able to stall sync forever.

[fengguang.wu@intel.com: fix locking comment]
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Engelhardt <jengelh@medozas.de>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:32 -08:00
Jan Kara aa373cf550 writeback: stop background/kupdate works from livelocking other works
Background writeback is easily livelockable in a loop in wb_writeback() by
a process continuously re-dirtying pages (or continuously appending to a
file).  This is in fact intended as the target of background writeback is
to write dirty pages it can find as long as we are over
dirty_background_threshold.

But the above behavior gets inconvenient at times because no other work
queued in the flusher thread's queue gets processed.  In particular, since
e.g.  sync(1) relies on flusher thread to do all the IO for it, sync(1)
can hang forever waiting for flusher thread to do the work.

Generally, when a flusher thread has some work queued, someone submitted
the work to achieve a goal more specific than what background writeback
does.  Moreover by working on the specific work, we also reduce amount of
dirty pages which is exactly the target of background writeout.  So it
makes sense to give specific work a priority over a generic page cleaning.

Thus we interrupt background writeback if there is some other work to do.
We return to the background writeback after completing all the queued
work.

This may delay the writeback of expired inodes for a while, however the
expired inodes will eventually be flushed to disk as long as the other
works won't livelock.

[fengguang.wu@intel.com: update comment]
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Engelhardt <jengelh@medozas.de>
Cc: Jens Axboe <axboe@kernel.dk>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:32 -08:00
Wu Fengguang 71927e84e0 writeback: trace wakeup event for background writeback
This tracks when balance_dirty_pages() tries to wakeup the flusher thread
for background writeback (if it was not started already).

Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Engelhardt <jengelh@medozas.de>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:32 -08:00
Jan Kara 6585027a5e writeback: integrated background writeback work
Check whether background writeback is needed after finishing each work.

When bdi flusher thread finishes doing some work check whether any kind of
background writeback needs to be done (either because
dirty_background_ratio is exceeded or because we need to start flushing
old inodes).  If so, just do background write back.

This way, bdi_start_background_writeback() just needs to wake up the
flusher thread.  It will do background writeback as soon as there is no
other work.

This is a preparatory patch for the next patch which stops background
writeback as soon as there is other work to do.

Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Engelhardt <jengelh@medozas.de>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:32 -08:00
Linus Torvalds 925d169f5b Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (39 commits)
  Btrfs: deal with errors from updating the tree log
  Btrfs: allow subvol deletion by unprivileged user with -o user_subvol_rm_allowed
  Btrfs: make SNAP_DESTROY async
  Btrfs: add SNAP_CREATE_ASYNC ioctl
  Btrfs: add START_SYNC, WAIT_SYNC ioctls
  Btrfs: async transaction commit
  Btrfs: fix deadlock in btrfs_commit_transaction
  Btrfs: fix lockdep warning on clone ioctl
  Btrfs: fix clone ioctl where range is adjacent to extent
  Btrfs: fix delalloc checks in clone ioctl
  Btrfs: drop unused variable in block_alloc_rsv
  Btrfs: cleanup warnings from gcc 4.6 (nonbugs)
  Btrfs: Fix variables set but not read (bugs found by gcc 4.6)
  Btrfs: Use ERR_CAST helpers
  Btrfs: use memdup_user helpers
  Btrfs: fix raid code for removing missing drives
  Btrfs: Switch the extent buffer rbtree into a radix tree
  Btrfs: restructure try_release_extent_buffer()
  Btrfs: use the flusher threads for delalloc throttling
  Btrfs: tune the chunk allocation to 5% of the FS as metadata
  ...

Fix up trivial conflicts in fs/btrfs/super.c and fs/fs-writeback.c, and
remove use of INIT_RCU_HEAD in fs/btrfs/extent_io.c (that init macro was
useless and removed in commit 5e8067adfdba: "rcu head remove init")
2010-10-30 09:05:48 -07:00
Linus Torvalds cdf01dd544 fs-writeback.c: unify some common code
The btrfs merge looks like hell, because it changes fs-writeback.c, and
the crazy code has this repeated "estimate number of dirty pages"
counting that involves three different helper functions.  And it's done
in two different places.

Just unify that whole calculation as a "get_nr_dirty_pages()" helper
function, and the merge result will look half-way decent.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-30 08:55:52 -07:00
Chris Mason 3259f8bed2 Add new functions for triggering inode writeback
When btrfs is running low on metadata space, it needs to force delayed
allocation pages to disk.  It currently does this with a suboptimal walk
of a private list of inodes with delayed allocation, and it would be
much better if we used the generic flusher threads.

writeback_inodes_sb_if_idle would be ideal, but it waits for the flusher
thread to start IO on all the dirty pages in the FS before it returns.
This adds variants of writeback_inodes_sb* that allow the caller to
control how many pages get sent down.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2010-10-29 11:25:29 -04:00
Linus Torvalds 426e1f5cec Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (52 commits)
  split invalidate_inodes()
  fs: skip I_FREEING inodes in writeback_sb_inodes
  fs: fold invalidate_list into invalidate_inodes
  fs: do not drop inode_lock in dispose_list
  fs: inode split IO and LRU lists
  fs: switch bdev inode bdi's correctly
  fs: fix buffer invalidation in invalidate_list
  fsnotify: use dget_parent
  smbfs: use dget_parent
  exportfs: use dget_parent
  fs: use RCU read side protection in d_validate
  fs: clean up dentry lru modification
  fs: split __shrink_dcache_sb
  fs: improve DCACHE_REFERENCED usage
  fs: use percpu counter for nr_dentry and nr_dentry_unused
  fs: simplify __d_free
  fs: take dcache_lock inside __d_path
  fs: do not assign default i_ino in new_inode
  fs: introduce a per-cpu last_ino allocator
  new helper: ihold()
  ...
2010-10-26 17:58:44 -07:00
Peter Zijlstra 766f916419 kernel: remove PF_FLUSHER
PF_FLUSHER is only ever set, not tested, remove it.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:15 -07:00
Andrew Morton 74ce002d9a fs/fs-writeback.c: restore lost comment
I had to go back to a 2.6.20 tree to work out why we're adding a
number-of-inodes into a number-of-pages count.  Restore the lost comment.

Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:10 -07:00
Wu Fengguang 4cbec4c8b9 writeback: remove the internal 5% low bound on dirty_ratio
The dirty_ratio was silently limited in global_dirty_limits() to >= 5%.
This is not a user expected behavior.  And it's inconsistent with
calc_period_shift(), which uses the plain vm_dirty_ratio value.

Let's remove the internal bound.

At the same time, fix balance_dirty_pages() to work with the
dirty_thresh=0 case.  This allows applications to proceed when
dirty+writeback pages are all cleaned.

And ">" fits with the name "exceeded" better than ">=" does.  Neil thinks
it is an aesthetic improvement as well as a functional one :)

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Proposed-by: Con Kolivas <kernel@kolivas.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Neil Brown <neilb@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:08 -07:00
Christoph Hellwig 9843b76aae fs: skip I_FREEING inodes in writeback_sb_inodes
Skip I_FREEING inodes just like I_WILL_FREE and I_NEW when walking the
writeback lists.  Currenly this can't happen, but once we move from
inode_lock to more fine grained locking we can have an inode that's
still on the writeback lists but has I_FREEING set, and we absolutely
need to skip it here, just like we do for all other inode list walks.

Based on a patch from Dave Chinner.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-25 21:26:16 -04:00
Nick Piggin 7ccf19a804 fs: inode split IO and LRU lists
The use of the same inode list structure (inode->i_list) for two
different list constructs with different lifecycles and purposes
makes it impossible to separate the locking of the different
operations. Therefore, to enable the separation of the locking of
the writeback and reclaim lists, split the inode->i_list into two
separate lists dedicated to their specific tracking functions.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-25 21:26:15 -04:00
Nick Piggin 9e38d86ff2 fs: Implement lazy LRU updates for inodes
Convert the inode LRU to use lazy updates to reduce lock and
cacheline traffic.  We avoid moving inodes around in the LRU list
during iget/iput operations so these frequent operations don't need
to access the LRUs. Instead, we defer the refcount checks to
reclaim-time and use a per-inode state flag, I_REFERENCED, to tell
reclaim that iget has touched the inode in the past. This means that
only reclaim should be touching the LRU with any frequency, hence
significantly reducing lock acquisitions and the amount contention
on LRU updates.

This also removes the inode_in_use list, which means we now only
have one list for tracking the inode LRU status. This makes it much
simpler to split out the LRU list operations under it's own lock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-25 21:26:09 -04:00
Dave Chinner cffbc8aa33 fs: Convert nr_inodes and nr_unused to per-cpu counters
The number of inodes allocated does not need to be tied to the
addition or removal of an inode to/from a list. If we are not tied
to a list lock, we could update the counters when inodes are
initialised or destroyed, but to do that we need to convert the
counters to be per-cpu (i.e. independent of a lock). This means that
we have the freedom to change the list/locking implementation
without needing to care about the counters.

Based on a patch originally from Eric Dumazet.

[AV: cleaned up a bit, fixed build breakage on weird configs

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-25 21:26:09 -04:00
Al Viro 1d3382cbf0 new helper: inode_unhashed()
note: for race-free uses you inode_lock held

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-25 21:24:15 -04:00
Christoph Hellwig c37650161a fs: add sync_inode_metadata
Add a new helper to write out the inode using the writeback code,
that is including the correct dirty bit and list manipulation.  A few
of filesystems already opencode this, and a lot of others should be
using it instead of using write_inode_now which also writes out the
data.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-25 21:18:19 -04:00
Christoph Hellwig aaead25b95 writeback: always use sb->s_bdi for writeback purposes
We currently use struct backing_dev_info for various different purposes.
Originally it was introduced to describe a backing device which includes
an unplug and congestion function and various bits of readahead information
and VM-relevant flags.  We're also using for tracking dirty inodes for
writeback.

To make writeback properly find all inodes we need to only access the
per-filesystem backing_device pointed to by the superblock in ->s_bdi
inside the writeback code, and not the instances pointeded to by
inode->i_mapping->backing_dev which can be overriden by special devices
or might not be set at all by some filesystems.

Long term we should split out the writeback-relevant bits of struct
backing_device_info (which includes more than the current bdi_writeback)
and only point to it from the superblock while leaving the traditional
backing device as a separate structure that can be overriden by devices.

The one exception for now is the block device filesystem which really
wants different writeback contexts for it's different (internal) inodes
to handle the writeout more efficiently.  For now we do this with
a hack in fs-writeback.c because we're so late in the cycle, but in
the future I plan to replace this with a superblock method that allows
for multiple writeback contexts per filesystem.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-10-04 14:25:33 +02:00
Jan Kara 692ebd17c2 bdi: Fix warnings in __mark_inode_dirty for /dev/zero and friends
Inodes of devices such as /dev/zero can get dirty for example via
utime(2) syscall or due to atime update. Backing device of such inodes
(zero_bdi, etc.) is however unable to handle dirty inodes and thus
__mark_inode_dirty complains.  In fact, inode should be rather dirtied
against backing device of the filesystem holding it. This is generally a
good rule except for filesystems such as 'bdev' or 'mtd_inodefs'. Inodes
in these pseudofilesystems are referenced from ordinary filesystem
inodes and carry mapping with real data of the device. Thus for these
inodes we have to use inode->i_mapping->backing_dev_info as we did so
far. We distinguish these filesystems by checking whether sb->s_bdi
points to a non-trivial backing device or not.

Example: Assume we have an ext3 filesystem on /dev/sda1 mounted on /.
There's a device inode A described by a path "/dev/sdb" on this
filesystem. This inode will be dirtied against backing device "8:0"
after this patch. bdev filesystem contains block device inode B coupled
with our inode A. When someone modifies a page of /dev/sdb, it's B that
gets dirtied and the dirtying happens against the backing device "8:16".
Thus both inodes get filed to a correct bdi list.

Cc: stable@kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2010-09-22 09:48:47 +02:00