1
0
Fork 0
Commit Graph

14 Commits (b4d0d230ccfb5d1a9ea85da64aa584df7c148ee9)

Author SHA1 Message Date
Thomas Gleixner b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00
Eric Biggers 877b5691f2 crypto: shash - remove shash_desc::flags
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.

With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP.  These would all need to be fixed if any shash algorithm
actually started sleeping.  For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API.  However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.

Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk.  It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.

Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-25 15:38:12 +08:00
Loganaden Velvindron da7798a7b6 crypto : asymmetric_keys : verify_pefile:zero memory content before freeing
Signed-off-by: Loganaden Velvindron <logan@hackers.mu>
Signed-off-by: Yasir Auleear <yasirmx@hackers.mu>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09 13:29:50 +10:00
David Howells bda850cd21 PKCS#7: Make trust determination dependent on contents of trust keyring
Make the determination of the trustworthiness of a key dependent on whether
a key that can verify it is present in the supplied ring of trusted keys
rather than whether or not the verifying key has KEY_FLAG_TRUSTED set.

verify_pkcs7_signature() will return -ENOKEY if the PKCS#7 message trust
chain cannot be verified.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:24 +01:00
David Howells e68503bd68 KEYS: Generalise system_verify_data() to provide access to internal content
Generalise system_verify_data() to provide access to internal content
through a callback.  This allows all the PKCS#7 stuff to be hidden inside
this function and removed from the PE file parser and the PKCS#7 test key.

If external content is not required, NULL should be passed as data to the
function.  If the callback is not required, that can be set to NULL.

The function is now called verify_pkcs7_signature() to contrast with
verify_pefile_signature() and the definitions of both have been moved into
linux/verification.h along with the key_being_used_for enum.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-06 16:14:24 +01:00
David Howells 4e8ae72a75 X.509: Make algo identifiers text instead of enum
Make the identifier public key and digest algorithm fields text instead of
enum.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-03-03 21:49:27 +00:00
David Howells 99db443506 PKCS#7: Appropriately restrict authenticated attributes and content type
A PKCS#7 or CMS message can have per-signature authenticated attributes
that are digested as a lump and signed by the authorising key for that
signature.  If such attributes exist, the content digest isn't itself
signed, but rather it is included in a special authattr which then
contributes to the signature.

Further, we already require the master message content type to be
pkcs7_signedData - but there's also a separate content type for the data
itself within the SignedData object and this must be repeated inside the
authattrs for each signer [RFC2315 9.2, RFC5652 11.1].

We should really validate the authattrs if they exist or forbid them
entirely as appropriate.  To this end:

 (1) Alter the PKCS#7 parser to reject any message that has more than one
     signature where at least one signature has authattrs and at least one
     that does not.

 (2) Validate authattrs if they are present and strongly restrict them.
     Only the following authattrs are permitted and all others are
     rejected:

     (a) contentType.  This is checked to be an OID that matches the
     	 content type in the SignedData object.

     (b) messageDigest.  This must match the crypto digest of the data.

     (c) signingTime.  If present, we check that this is a valid, parseable
     	 UTCTime or GeneralTime and that the date it encodes fits within
     	 the validity window of the matching X.509 cert.

     (d) S/MIME capabilities.  We don't check the contents.

     (e) Authenticode SP Opus Info.  We don't check the contents.

     (f) Authenticode Statement Type.  We don't check the contents.

     The message is rejected if (a) or (b) are missing.  If the message is
     an Authenticode type, the message is rejected if (e) is missing; if
     not Authenticode, the message is rejected if (d) - (f) are present.

     The S/MIME capabilities authattr (d) unfortunately has to be allowed
     to support kernels already signed by the pesign program.  This only
     affects kexec.  sign-file suppresses them (CMS_NOSMIMECAP).

     The message is also rejected if an authattr is given more than once or
     if it contains more than one element in its set of values.

 (3) Add a parameter to pkcs7_verify() to select one of the following
     restrictions and pass in the appropriate option from the callers:

     (*) VERIFYING_MODULE_SIGNATURE

	 This requires that the SignedData content type be pkcs7-data and
	 forbids authattrs.  sign-file sets CMS_NOATTR.  We could be more
	 flexible and permit authattrs optionally, but only permit minimal
	 content.

     (*) VERIFYING_FIRMWARE_SIGNATURE

	 This requires that the SignedData content type be pkcs7-data and
	 requires authattrs.  In future, this will require an attribute
	 holding the target firmware name in addition to the minimal set.

     (*) VERIFYING_UNSPECIFIED_SIGNATURE

	 This requires that the SignedData content type be pkcs7-data but
	 allows either no authattrs or only permits the minimal set.

     (*) VERIFYING_KEXEC_PE_SIGNATURE

	 This only supports the Authenticode SPC_INDIRECT_DATA content type
	 and requires at least an SpcSpOpusInfo authattr in addition to the
	 minimal set.  It also permits an SPC_STATEMENT_TYPE authattr (and
	 an S/MIME capabilities authattr because the pesign program doesn't
	 remove these).

     (*) VERIFYING_KEY_SIGNATURE
     (*) VERIFYING_KEY_SELF_SIGNATURE

	 These are invalid in this context but are included for later use
	 when limiting the use of X.509 certs.

 (4) The pkcs7_test key type is given a module parameter to select between
     the above options for testing purposes.  For example:

	echo 1 >/sys/module/pkcs7_test_key/parameters/usage
	keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7

     will attempt to check the signature on stuff.pkcs7 as if it contains a
     firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE).

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-12 17:01:01 +01:00
David Howells 0aa0409401 PEFILE: Relax the check on the length of the PKCS#7 cert
Relax the check on the length of the PKCS#7 cert as it appears that the PE
file wrapper size gets rounded up to the nearest 8.

The debugging output looks like this:

	PEFILE: ==> verify_pefile_signature()
	PEFILE: ==> pefile_parse_binary()
	PEFILE: checksum @ 110
	PEFILE: header size = 200
	PEFILE: cert = 968 @547be0 [68 09 00 00 00 02 02 00 30 82 09 56 ]
	PEFILE: sig wrapper = { 968, 200, 2 }
	PEFILE: Signature data not PKCS#7

The wrapper is the first 8 bytes of the hex dump inside [].  This indicates a
length of 0x968 bytes, including the wrapper header - so 0x960 bytes of
payload.

The ASN.1 wrapper begins [ ... 30 82 09 56 ].  That indicates an object of size
0x956 - a four byte discrepency, presumably just padding for alignment
purposes.

So we just check that the ASN.1 container is no bigger than the payload and
reduce the recorded size appropriately.

Whilst we're at it, allow shorter PKCS#7 objects that manage to squeeze within
127 or 255 bytes.  It's just about conceivable if no X.509 certs are included
in the PKCS#7 message.

Reported-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Peter Jones <pjones@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2014-09-03 10:30:24 +10:00
David Howells 98801c002f pefile: Validate PKCS#7 trust chain
Validate the PKCS#7 trust chain against the contents of the system keyring.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-07-09 14:58:47 +01:00
David Howells af316fc442 pefile: Digest the PE binary and compare to the PKCS#7 data
Digest the signed parts of the PE binary, canonicalising the section table
before we need it, and then compare the the resulting digest to the one in the
PKCS#7 signed content.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-09 14:58:37 +01:00
David Howells 4c0b4b1d1a pefile: Parse the "Microsoft individual code signing" data blob
The PKCS#7 certificate should contain a "Microsoft individual code signing"
data blob as its signed content.  This blob contains a digest of the signed
content of the PE binary and the OID of the digest algorithm used (typically
SHA256).

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-09 14:58:37 +01:00
David Howells 3968280c76 pefile: Parse the presumed PKCS#7 content of the certificate blob
Parse the content of the certificate blob, presuming it to be PKCS#7 format.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-09 14:58:37 +01:00
David Howells 09dacbbda9 pefile: Strip the wrapper off of the cert data block
The certificate data block in a PE binary has a wrapper around the PKCS#7
signature we actually want to get at.  Strip this off and check that we've got
something that appears to be a PKCS#7 signature.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-09 14:58:37 +01:00
David Howells 26d1164be3 pefile: Parse a PE binary to find a key and a signature contained therein
Parse a PE binary to find a key and a signature contained therein.  Later
patches will check the signature and add the key if the signature checks out.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-09 14:58:37 +01:00