1
0
Fork 0
Commit Graph

1417 Commits (c6ffc5ca8fb311a89cb6de5c31b6511308ddac8d)

Author SHA1 Message Date
Mike Rapoport c6ffc5ca8f memblock: rename free_all_bootmem to memblock_free_all
The conversion is done using

sed -i 's@free_all_bootmem@memblock_free_all@' \
    $(git grep -l free_all_bootmem)

Link: http://lkml.kernel.org/r/1536927045-23536-26-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport eb31d559f1 memblock: remove _virt from APIs returning virtual address
The conversion is done using

sed -i 's@memblock_virt_alloc@memblock_alloc@g' \
	$(git grep -l memblock_virt_alloc)

Link: http://lkml.kernel.org/r/1536927045-23536-8-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Mike Rapoport aca52c3983 mm: remove CONFIG_HAVE_MEMBLOCK
All architecures use memblock for early memory management. There is no need
for the CONFIG_HAVE_MEMBLOCK configuration option.

[rppt@linux.vnet.ibm.com: of/fdt: fixup #ifdefs]
  Link: http://lkml.kernel.org/r/20180919103457.GA20545@rapoport-lnx
[rppt@linux.vnet.ibm.com: csky: fixups after bootmem removal]
  Link: http://lkml.kernel.org/r/20180926112744.GC4628@rapoport-lnx
[rppt@linux.vnet.ibm.com: remove stale #else and the code it protects]
  Link: http://lkml.kernel.org/r/1538067825-24835-1-git-send-email-rppt@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1536927045-23536-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Pavel Tatashin ec393a0f01 mm: return zero_resv_unavail optimization
When checking for valid pfns in zero_resv_unavail(), it is not necessary
to verify that pfns within pageblock_nr_pages ranges are valid, only the
first one needs to be checked.  This is because memory for pages are
allocated in contiguous chunks that contain pageblock_nr_pages struct
pages.

Link: http://lkml.kernel.org/r/20181002143821.5112-3-msys.mizuma@gmail.com
Signed-off-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reviewed-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:15 -07:00
Naoya Horiguchi 907ec5fca3 mm: zero remaining unavailable struct pages
Patch series "mm: Fix for movable_node boot option", v3.

This patch series contains a fix for the movable_node boot option issue
which was introduced by commit 124049decb ("x86/e820: put !E820_TYPE_RAM
regions into memblock.reserved").

The commit breaks the option because it changed the memory gap range to
reserved memblock.  So, the node is marked as Normal zone even if the SRAT
has Hot pluggable affinity.

First and second patch fix the original issue which the commit tried to
fix, then revert the commit.

This patch (of 3):

There is a kernel panic that is triggered when reading /proc/kpageflags on
the kernel booted with kernel parameter 'memmap=nn[KMG]!ss[KMG]':

  BUG: unable to handle kernel paging request at fffffffffffffffe
  PGD 9b20e067 P4D 9b20e067 PUD 9b210067 PMD 0
  Oops: 0000 [#1] SMP PTI
  CPU: 2 PID: 1728 Comm: page-types Not tainted 4.17.0-rc6-mm1-v4.17-rc6-180605-0816-00236-g2dfb086ef02c+ #160
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.fc28 04/01/2014
  RIP: 0010:stable_page_flags+0x27/0x3c0
  Code: 00 00 00 0f 1f 44 00 00 48 85 ff 0f 84 a0 03 00 00 41 54 55 49 89 fc 53 48 8b 57 08 48 8b 2f 48 8d 42 ff 83 e2 01 48 0f 44 c7 <48> 8b 00 f6 c4 01 0f 84 10 03 00 00 31 db 49 8b 54 24 08 4c 89 e7
  RSP: 0018:ffffbbd44111fde0 EFLAGS: 00010202
  RAX: fffffffffffffffe RBX: 00007fffffffeff9 RCX: 0000000000000000
  RDX: 0000000000000001 RSI: 0000000000000202 RDI: ffffed1182fff5c0
  RBP: ffffffffffffffff R08: 0000000000000001 R09: 0000000000000001
  R10: ffffbbd44111fed8 R11: 0000000000000000 R12: ffffed1182fff5c0
  R13: 00000000000bffd7 R14: 0000000002fff5c0 R15: ffffbbd44111ff10
  FS:  00007efc4335a500(0000) GS:ffff93a5bfc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: fffffffffffffffe CR3: 00000000b2a58000 CR4: 00000000001406e0
  Call Trace:
   kpageflags_read+0xc7/0x120
   proc_reg_read+0x3c/0x60
   __vfs_read+0x36/0x170
   vfs_read+0x89/0x130
   ksys_pread64+0x71/0x90
   do_syscall_64+0x5b/0x160
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7efc42e75e23
  Code: 09 00 ba 9f 01 00 00 e8 ab 81 f4 ff 66 2e 0f 1f 84 00 00 00 00 00 90 83 3d 29 0a 2d 00 00 75 13 49 89 ca b8 11 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 34 c3 48 83 ec 08 e8 db d3 01 00 48 89 04 24

According to kernel bisection, this problem became visible due to commit
f7f99100d8 which changes how struct pages are initialized.

Memblock layout affects the pfn ranges covered by node/zone.  Consider
that we have a VM with 2 NUMA nodes and each node has 4GB memory, and the
default (no memmap= given) memblock layout is like below:

  MEMBLOCK configuration:
   memory size = 0x00000001fff75c00 reserved size = 0x000000000300c000
   memory.cnt  = 0x4
   memory[0x0]     [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0
   memory[0x1]     [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0
   memory[0x2]     [0x0000000100000000-0x000000013fffffff], 0x0000000040000000 bytes on node 0 flags: 0x0
   memory[0x3]     [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0
   ...

If you give memmap=1G!4G (so it just covers memory[0x2]),
the range [0x100000000-0x13fffffff] is gone:

  MEMBLOCK configuration:
   memory size = 0x00000001bff75c00 reserved size = 0x000000000300c000
   memory.cnt  = 0x3
   memory[0x0]     [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0
   memory[0x1]     [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0
   memory[0x2]     [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0
   ...

This causes shrinking node 0's pfn range because it is calculated by the
address range of memblock.memory.  So some of struct pages in the gap
range are left uninitialized.

We have a function zero_resv_unavail() which does zeroing the struct pages
outside memblock.memory, but currently it covers only the reserved
unavailable range (i.e.  memblock.memory && !memblock.reserved).  This
patch extends it to cover all unavailable range, which fixes the reported
issue.

Link: http://lkml.kernel.org/r/20181002143821.5112-2-msys.mizuma@gmail.com
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Tested-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:15 -07:00
Pavel Tatashin a9a9e77fbf mm: move mirrored memory specific code outside of memmap_init_zone
memmap_init_zone, is getting complex, because it is called from different
contexts: hotplug, and during boot, and also because it must handle some
architecture quirks.  One of them is mirrored memory.

Move the code that decides whether to skip mirrored memory outside of
memmap_init_zone, into a separate function.

[pasha.tatashin@oracle.com: uninline overlap_memmap_init()]
  Link: http://lkml.kernel.org/r/20180726193509.3326-4-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180724235520.10200-4-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:10 -07:00
Pavel Tatashin d3035be4ce mm: calculate deferred pages after skipping mirrored memory
update_defer_init() should be called only when struct page is about to be
initialized. Because it counts number of initialized struct pages, but
there we may skip struct pages if there is some mirrored memory.

So move, update_defer_init() after checking for mirrored memory.

Also, rename update_defer_init() to defer_init() and reverse the return
boolean to emphasize that this is a boolean function, that tells that the
reset of memmap initialization should be deferred.

Make this function self-contained: do not pass number of already
initialized pages in this zone by using static counters.

I found this bug by reading the code.  The effect is that fewer than
expected struct pages are initialized early in boot, and it is possible
that in some corner cases we may fail to boot when mirrored pages are
used.  The deferred on demand code should somewhat mitigate this.  But
this still brings some inconsistencies compared to when booting without
mirrored pages, so it is better to fix.

[pasha.tatashin@oracle.com: add comment about defer_init's lack of locking]
  Link: http://lkml.kernel.org/r/20180726193509.3326-3-pasha.tatashin@oracle.com
[akpm@linux-foundation.org: make defer_init non-inline, __meminit]
Link: http://lkml.kernel.org/r/20180724235520.10200-3-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:35 -07:00
Pavel Tatashin dfb3ccd00a mm: make memmap_init a proper function
memmap_init is sometimes a macro sometimes a function based on
__HAVE_ARCH_MEMMAP_INIT.  It is only a function on ia64.  Make memmap_init
a weak function instead, and let ia64 redefine it.

Link: http://lkml.kernel.org/r/20180724235520.10200-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:35 -07:00
David Rientjes 4a222127f3 mm/page_alloc.c: initialize num_movable in move_freepages()
If move_freepages_block() returns 0 because !zone_spans_pfn(),
*num_movable can hold the value from the stack because it does not get
initialized in move_freepages().

Move the initialization to move_freepages_block() to guarantee the value
actually makes sense.

This currently doesn't affect its only caller where num_movable != NULL,
so no bug fix, but just more robust.

Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1810051355490.212229@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:35 -07:00
Alexander Duyck 966cf44f63 mm: defer ZONE_DEVICE page initialization to the point where we init pgmap
The ZONE_DEVICE pages were being initialized in two locations.  One was
with the memory_hotplug lock held and another was outside of that lock.
The problem with this is that it was nearly doubling the memory
initialization time.  Instead of doing this twice, once while holding a
global lock and once without, I am opting to defer the initialization to
the one outside of the lock.  This allows us to avoid serializing the
overhead for memory init and we can instead focus on per-node init times.

One issue I encountered is that devm_memremap_pages and
hmm_devmmem_pages_create were initializing only the pgmap field the same
way.  One wasn't initializing hmm_data, and the other was initializing it
to a poison value.  Since this is something that is exposed to the driver
in the case of hmm I am opting for a third option and just initializing
hmm_data to 0 since this is going to be exposed to unknown third party
drivers.

[alexander.h.duyck@linux.intel.com: fix reference count for pgmap in devm_memremap_pages]
  Link: http://lkml.kernel.org/r/20181008233404.1909.37302.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/20180925202053.3576.66039.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:34 -07:00
Alexander Duyck d483da5bc7 mm: create non-atomic version of SetPageReserved for init use
It doesn't make much sense to use the atomic SetPageReserved at init time
when we are using memset to clear the memory and manipulating the page
flags via simple "&=" and "|=" operations in __init_single_page.

This patch adds a non-atomic version __SetPageReserved that can be used
during page init and shows about a 10% improvement in initialization times
on the systems I have available for testing.  On those systems I saw
initialization times drop from around 35 seconds to around 32 seconds to
initialize a 3TB block of persistent memory.  I believe the main advantage
of this is that it allows for more compiler optimization as the __set_bit
operation can be reordered whereas the atomic version cannot.

I tried adding a bit of documentation based on f1dd2cd13c ("mm,
memory_hotplug: do not associate hotadded memory to zones until online").

Ideally the reserved flag should be set earlier since there is a brief
window where the page is initialization via __init_single_page and we have
not set the PG_Reserved flag.  I'm leaving that for a future patch set as
that will require a more significant refactor.

Link: http://lkml.kernel.org/r/20180925202018.3576.11607.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:34 -07:00
Michal Hocko 2c029a1ea3 mm, page_alloc: drop should_suppress_show_mem
should_suppress_show_mem() was introduced to reduce the overhead of
show_mem on large NUMA systems.  Things have changed since then though.
Namely c78e93630d ("mm: do not walk all of system memory during
show_mem") has reduced the overhead considerably.

Moreover warn_alloc_show_mem clears SHOW_MEM_FILTER_NODES when called from
the IRQ context already so we are not printing per node stats.

Remove should_suppress_show_mem because we are losing potentially
interesting information about allocation failures.  We have seen a bug
report where system gets unresponsive under memory pressure and there is
only

kernel: [2032243.696888] qlge 0000:8b:00.1 ql1: Could not get a page chunk, i=8, clean_idx =200 .
kernel: [2032243.710725] swapper/7: page allocation failure: order:1, mode:0x1084120(GFP_ATOMIC|__GFP_COLD|__GFP_COMP)

without an additional information for debugging.  It would be great to see
the state of the page allocator at the moment.

Link: http://lkml.kernel.org/r/20180907114334.7088-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Johannes Weiner eb414681d5 psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills.  In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.

In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.

A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively.  Stall states are aggregate versions of the per-task delay
accounting delays:

       cpu: some tasks are runnable but not executing on a CPU
       memory: tasks are reclaiming, or waiting for swapin or thrashing cache
       io: tasks are waiting for io completions

These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit.  They can also indicate when the system
is approaching lockup scenarios and OOMs.

To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states.  Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime.  A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).

[hannes@cmpxchg.org: doc fixlet, per Randy]
  Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
  Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
  Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
  Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Vlastimil Babka b29940c1ab mm: rename and change semantics of nr_indirectly_reclaimable_bytes
The vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES was introduced by
commit eb59254608 ("mm: introduce NR_INDIRECTLY_RECLAIMABLE_BYTES") with
the goal of accounting objects that can be reclaimed, but cannot be
allocated via a SLAB_RECLAIM_ACCOUNT cache.  This is now possible via
kmalloc() with __GFP_RECLAIMABLE flag, and the dcache external names user
is converted.

The counter is however still useful for accounting direct page allocations
(i.e.  not slab) with a shrinker, such as the ION page pool.  So keep it,
and:

- change granularity to pages to be more like other counters; sub-page
  allocations should be able to use kmalloc
- rename the counter to NR_KERNEL_MISC_RECLAIMABLE
- expose the counter again in vmstat as "nr_kernel_misc_reclaimable"; we can
  again remove the check for not printing "hidden" counters

Link: http://lkml.kernel.org/r/20180731090649.16028-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Oscar Salvador 7b0e0c0e35 mm/page_alloc.c: clean up check_for_memory()
check_for_memory() looks a bit confusing.  First of all, we have this:

if (N_MEMORY == N_NORMAL_MEMORY)
	return;

Checking the ENUM declaration, looks like N_MEMORY canot be equal to
N_NORMAL_MEMORY.

I could not find where N_MEMORY is set to N_NORMAL_MEMORY, or the other
way around either, so unless I am missing something, this condition will
never evaluate to true.  It makes sense to get rid of it.

Moving forward, the operations within the loop look a bit confusing as
well.

We set N_HIGH_MEMORY unconditionally, and then we set N_NORMAL_MEMORY in
case we have CONFIG_HIGHMEM (N_NORMAL_MEMORY != N_HIGH_MEMORY) and zone <=
ZONE_NORMAL.  (N_HIGH_MEMORY falls back to N_NORMAL_MEMORY on
!CONFIG_HIGHMEM systems, and that is why we can just go ahead and set
N_HIGH_MEMORY unconditionally)

Although this works, it is a bit subtle.

I think that this could be easier to follow:

First, we should only set N_HIGH_MEMORY in case we have CONFIG_HIGHMEM.
And then we should set N_NORMAL_MEMORY in case zone <= ZONE_NORMAL,
without further checking whether we have CONFIG_HIGHMEM or not.

Link: http://lkml.kernel.org/r/20180828210158.4617-1-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michael Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Michal Hocko 15f570bf3d mm,page_alloc: PF_WQ_WORKER threads must sleep at should_reclaim_retry()
Tetsuo Handa has reported that it is possible to bypass the short sleep
for PF_WQ_WORKER threads which was introduced by commit 373ccbe592
("mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make
any progress") and lock up the system if OOM.

The primary reason is that WQ_MEM_RECLAIM WQs are not guaranteed to run
even when they have a rescuer available.  Those workers might be essential
for reclaim to make a forward progress, however.  If we are too unlucky
all the allocations requests can get stuck waiting for a WQ_MEM_RECLAIM
work item and the system is essentially stuck in an OOM condition without
much hope to move on.  Tetsuo has seen the reclaim stuck on
drain_local_pages_wq or xlog_cil_push_work (xfs).  There might be others.

Since should_reclaim_retry() should be a natural reschedule point,
let's do the short sleep for PF_WQ_WORKER threads unconditionally in
order to guarantee that other pending work items are started.  This
will workaround this problem and it is less fragile than hunting down
when the sleep is missed.  Having a single sleeping point is more
robust.

[akpm@linux-foundation.org: reflow comment to 80 cols to save a couple of lines]
Link: http://lkml.kernel.org/r/20180827135101.15700-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Srikar Dronamraju e054637597 mm, sched/numa: Remove remaining traces of NUMA rate-limiting
Remove the leftover pglist_data::numabalancing_migrate_lock and its
initialization, we stopped using this lock with:

  efaffc5e40 ("mm, sched/numa: Remove rate-limiting of automatic NUMA balancing migration")

[ mingo: Rewrote the changelog. ]

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-MM <linux-mm@kvack.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1538824999-31230-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-09 08:30:51 +02:00
Mel Gorman efaffc5e40 mm, sched/numa: Remove rate-limiting of automatic NUMA balancing migration
Rate limiting of page migrations due to automatic NUMA balancing was
introduced to mitigate the worst-case scenario of migrating at high
frequency due to false sharing or slowly ping-ponging between nodes.
Since then, a lot of effort was spent on correctly identifying these
pages and avoiding unnecessary migrations and the safety net may no longer
be required.

Jirka Hladky reported a regression in 4.17 due to a scheduler patch that
avoids spreading STREAM tasks wide prematurely. However, once the task
was properly placed, it delayed migrating the memory due to rate limiting.
Increasing the limit fixed the problem for him.

Currently, the limit is hard-coded and does not account for the real
capabilities of the hardware. Even if an estimate was attempted, it would
not properly account for the number of memory controllers and it could
not account for the amount of bandwidth used for normal accesses. Rather
than fudging, this patch simply eliminates the rate limiting.

However, Jirka reports that a STREAM configuration using multiple
processes achieved similar performance to 4.16. In local tests, this patch
improved performance of STREAM relative to the baseline but it is somewhat
machine-dependent. Most workloads show little or not performance difference
implying that there is not a heavily reliance on the throttling mechanism
and it is safe to remove.

STREAM on 2-socket machine
                         4.19.0-rc5             4.19.0-rc5
                         numab-v1r1       noratelimit-v1r1
MB/sec copy     43298.52 (   0.00%)    44673.38 (   3.18%)
MB/sec scale    30115.06 (   0.00%)    31293.06 (   3.91%)
MB/sec add      32825.12 (   0.00%)    34883.62 (   6.27%)
MB/sec triad    32549.52 (   0.00%)    34906.60 (   7.24%

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-MM <linux-mm@kvack.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181001100525.29789-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-02 11:31:14 +02:00
Aneesh Kumar K.V 464c7ffbcb mm/hugetlb: filter out hugetlb pages if HUGEPAGE migration is not supported.
When scanning for movable pages, filter out Hugetlb pages if hugepage
migration is not supported.  Without this we hit infinte loop in
__offline_pages() where we do

	pfn = scan_movable_pages(start_pfn, end_pfn);
	if (pfn) { /* We have movable pages */
		ret = do_migrate_range(pfn, end_pfn);
		goto repeat;
	}

Fix this by checking hugepage_migration_supported both in
has_unmovable_pages which is the primary backoff mechanism for page
offlining and for consistency reasons also into scan_movable_pages
because it doesn't make any sense to return a pfn to non-migrateable
huge page.

This issue was revealed by, but not caused by 72b39cfc4d ("mm,
memory_hotplug: do not fail offlining too early").

Link: http://lkml.kernel.org/r/20180824063314.21981-1-aneesh.kumar@linux.ibm.com
Fixes: 72b39cfc4d ("mm, memory_hotplug: do not fail offlining too early")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Haren Myneni <haren@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04 16:45:02 -07:00
Mukesh Ojha 13ba17bee1 notifier: Remove notifier header file wherever not used
The conversion of the hotplug notifiers to a state machine left the
notifier.h includes around in some places. Remove them.

Signed-off-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1535114033-4605-1-git-send-email-mojha@codeaurora.org
2018-08-30 12:56:40 +02:00
Naoya Horiguchi d4ae9916ea mm: soft-offline: close the race against page allocation
A process can be killed with SIGBUS(BUS_MCEERR_AR) when it tries to
allocate a page that was just freed on the way of soft-offline.  This is
undesirable because soft-offline (which is about corrected error) is
less aggressive than hard-offline (which is about uncorrected error),
and we can make soft-offline fail and keep using the page for good
reason like "system is busy."

Two main changes of this patch are:

- setting migrate type of the target page to MIGRATE_ISOLATE. As done
  in free_unref_page_commit(), this makes kernel bypass pcplist when
  freeing the page. So we can assume that the page is in freelist just
  after put_page() returns,

- setting PG_hwpoison on free page under zone->lock which protects
  freelists, so this allows us to avoid setting PG_hwpoison on a page
  that is decided to be allocated soon.

[akpm@linux-foundation.org: tweak set_hwpoison_free_buddy_page() comment]
Link: http://lkml.kernel.org/r/1531452366-11661-3-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <zy.zhengyi@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:43 -07:00
Oscar Salvador 03e85f9d5f mm/page_alloc: Introduce free_area_init_core_hotplug
Currently, whenever a new node is created/re-used from the memhotplug
path, we call free_area_init_node()->free_area_init_core().  But there is
some code that we do not really need to run when we are coming from such
path.

free_area_init_core() performs the following actions:

1) Initializes pgdat internals, such as spinlock, waitqueues and more.
2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on
   when creating hash tables.
3) Account number of managed_pages per zone, substracting dma_reserved and
   memmap pages.
4) Initializes some fields of the zone structure data
5) Calls init_currently_empty_zone to initialize all the freelists
6) Calls memmap_init to initialize all pages belonging to certain zone

When called from memhotplug path, free_area_init_core() only performs
actions #1 and #4.

Action #2 is pointless as the zones do not have any pages since either the
node was freed, or we are re-using it, eitherway all zones belonging to
this node should have 0 pages.  For the same reason, action #3 results
always in manages_pages being 0.

Action #5 and #6 are performed later on when onlining the pages:
 online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone()
 online_pages()->move_pfn_range_to_zone()->memmap_init_zone()

This patch does two things:

First, moves the node/zone initializtion to their own function, so it
allows us to create a small version of free_area_init_core, where we only
perform:

1) Initialization of pgdat internals, such as spinlock, waitqueues and more
4) Initialization of some fields of the zone structure data

These two functions are: pgdat_init_internals() and zone_init_internals().

The second thing this patch does, is to introduce
free_area_init_core_hotplug(), the memhotplug version of
free_area_init_core():

Currently, we call free_area_init_node() from the memhotplug path.  In
there, we set some pgdat's fields, and call calculate_node_totalpages().
calculate_node_totalpages() calculates the # of pages the node has.

Since the node is either new, or we are re-using it, the zones belonging
to this node should not have any pages, so there is no point to calculate
this now.

Actually, we re-set these values to 0 later on with the calls to:

reset_node_managed_pages()
reset_node_present_pages()

The # of pages per node and the # of pages per zone will be calculated when
onlining the pages:

online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range()
online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range()

Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace
__paginginit with __init, so their code gets freed up.

[osalvador@techadventures.net: fix section usage]
  Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net
[osalvador@suse.de: v6]
  Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Oscar Salvador 0188dc98ad mm/page_alloc: inline function to handle CONFIG_DEFERRED_STRUCT_PAGE_INIT
Let us move the code between CONFIG_DEFERRED_STRUCT_PAGE_INIT to an inline
function.  Not having an ifdef in the function makes the code more
readable.

Link: http://lkml.kernel.org/r/20180730101757.28058-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Pavel Tatashin 7cc2a9596d mm: remove __paginginit
__paginginit is the same thing as __meminit except for platforms without
sparsemem, there it is defined as __init.

Remove __paginginit and use __meminit.  Use __ref in one single function
that merges __meminit and __init sections: setup_usemap().

Link: http://lkml.kernel.org/r/20180801122348.21588-4-osalvador@techadventures.net
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Pavel Tatashin c1093b746c mm: access zone->node via zone_to_nid() and zone_set_nid()
zone->node is configured only when CONFIG_NUMA=y, so it is a good idea to
have inline functions to access this field in order to avoid ifdef's in c
files.

Link: http://lkml.kernel.org/r/20180730101757.28058-3-osalvador@techadventures.net
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Oscar Salvador ace1db3976 mm/page_alloc.c: move ifdefery out of free_area_init_core
Patch series "Refactor free_area_init_core and add
free_area_init_core_hotplug", v6.

This patchset does three things:

 1) Clean up/refactor free_area_init_core/free_area_init_node
    by moving the ifdefery out of the functions.
 2) Move the pgdat/zone initialization in free_area_init_core to its
    own function.
 3) Introduce free_area_init_core_hotplug, a small subset of
    free_area_init_core, which is only called from memhotlug code path. In this
    way, we have:

    free_area_init_core: called during early initialization
    free_area_init_core_hotplug: called whenever a new node is allocated/re-used (memhotplug path)

This patch (of 5):

Moving the #ifdefs out of the function makes it easier to follow.

Link: http://lkml.kernel.org/r/20180730101757.28058-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Aaron Lu d8a759b570 mm, page_alloc: double zone's batchsize
To improve page allocator's performance for order-0 pages, each CPU has
a Per-CPU-Pageset(PCP) per zone.  Whenever an order-0 page is needed,
PCP will be checked first before asking pages from Buddy.  When PCP is
used up, a batch of pages will be fetched from Buddy to improve
performance and the size of batch can affect performance.

zone's batch size gets doubled last time by commit ba56e91c9401("mm:
page_alloc: increase size of per-cpu-pages") over ten years ago.  Since
then, CPU has envolved a lot and CPU's cache sizes also increased.

Dave Hansen is concerned the current batch size doesn't fit well with
modern hardware and suggested me to do two things: first, use a page
allocator intensive benchmark, e.g.  will-it-scale/page_fault1 to find
out how performance changes with different batch sizes on various
machines and then choose a new default batch size; second, see how this
new batch size work with other workloads.

In the first test, we saw performance gains on high-core-count systems
and little to no effect on older systems with more modest core counts.
In this phase's test data, two candidates: 63 and 127 are chosen.

In the second step, ebizzy, oltp, kbuild, pigz, netperf, vm-scalability
and more will-it-scale sub-tests are tested to see how these two
candidates work with these workloads and decides a new default according
to their results.

Most test results are flat.  will-it-scale/page_fault2 process mode has
10%-18% performance increase on 4-sockets Skylake and Broadwell.
vm-scalability/lru-file-mmap-read has 17%-47% performance increase for
4-sockets servers while for 2-sockets servers, it caused 3%-8% performance
drop.  Further analysis showed that, with a larger pcp->batch and thus
larger pcp->high(the relationship of pcp->high=6 * pcp->batch is
maintained in this patch), zone lock contention shifted to LRU add side
lock contention and that caused performance drop.  This performance drop
might be mitigated by others' work on optimizing LRU lock.

Another downside of increasing pcp->batch is, when PCP is used up and need
to fetch a batch of pages from Buddy, since batch is increased, that time
can be longer than before.  My understanding is, this doesn't affect
slowpath where direct reclaim and compaction dominates.  For fastpath,
throughput is a win(according to will-it-scale/page_fault1) but worst
latency can be larger now.

Overall, I think double the batch size from 31 to 63 is relatively safe
and provide good performance boost for high-core-count systems.

The two phase's test results are listed below(all tests are done with THP
disabled).

Phase one(will-it-scale/page_fault1) test results:

Skylake-EX: increased batch size has a good effect on zone->lock
contention, though LRU contention will rise at the same time and
limited the final performance increase.

batch   score     change   zone_contention   lru_contention   total_contention
 31   15345900    +0.00%       64%                 8%           72%
 53   17903847   +16.67%       32%                38%           70%
 63   17992886   +17.25%       24%                45%           69%
 73   18022825   +17.44%       10%                61%           71%
119   18023401   +17.45%        4%                66%           70%
127   18029012   +17.48%        3%                66%           69%
137   18036075   +17.53%        4%                66%           70%
165   18035964   +17.53%        2%                67%           69%
188   18101105   +17.95%        2%                67%           69%
223   18130951   +18.15%        2%                67%           69%
255   18118898   +18.07%        2%                67%           69%
267   18101559   +17.96%        2%                67%           69%
299   18160468   +18.34%        2%                68%           70%
320   18139845   +18.21%        2%                67%           69%
393   18160869   +18.34%        2%                68%           70%
424   18170999   +18.41%        2%                68%           70%
458   18144868   +18.24%        2%                68%           70%
467   18142366   +18.22%        2%                68%           70%
498   18154549   +18.30%        1%                68%           69%
511   18134525   +18.17%        1%                69%           70%

Broadwell-EX: similar pattern as Skylake-EX.

batch   score     change   zone_contention   lru_contention   total_contention
 31   16703983    +0.00%       67%                 7%           74%
 53   18195393    +8.93%       43%                28%           71%
 63   18288885    +9.49%       38%                33%           71%
 73   18344329    +9.82%       35%                37%           72%
119   18535529   +10.96%       24%                46%           70%
127   18513596   +10.83%       23%                48%           71%
137   18514327   +10.84%       23%                48%           71%
165   18511840   +10.82%       22%                49%           71%
188   18593478   +11.31%       17%                53%           70%
223   18601667   +11.36%       17%                52%           69%
255   18774825   +12.40%       12%                58%           70%
267   18754781   +12.28%        9%                60%           69%
299   18892265   +13.10%        7%                63%           70%
320   18873812   +12.99%        8%                62%           70%
393   18891174   +13.09%        6%                64%           70%
424   18975108   +13.60%        6%                64%           70%
458   18932364   +13.34%        8%                62%           70%
467   18960891   +13.51%        5%                65%           70%
498   18944526   +13.41%        5%                64%           69%
511   18960839   +13.51%        5%                64%           69%

Skylake-EP: although increased batch reduced zone->lock contention, but
the effect is not as good as EX: zone->lock contention is still as high as
20% with a very high batch value instead of 1% on Skylake-EX or 5% on
Broadwell-EX.  Also, total_contention actually decreased with a higher
batch but that doesn't translate to performance increase.

batch   score    change   zone_contention   lru_contention   total_contention
 31   9554867    +0.00%       66%                 3%           69%
 53   9855486    +3.15%       63%                 3%           66%
 63   9980145    +4.45%       62%                 4%           66%
 73   10092774   +5.63%       62%                 5%           67%
119   10310061   +7.90%       45%                19%           64%
127   10342019   +8.24%       42%                19%           61%
137   10358182   +8.41%       42%                21%           63%
165   10397060   +8.81%       37%                24%           61%
188   10341808   +8.24%       34%                26%           60%
223   10349135   +8.31%       31%                27%           58%
255   10327189   +8.08%       28%                29%           57%
267   10344204   +8.26%       27%                29%           56%
299   10325043   +8.06%       25%                30%           55%
320   10310325   +7.91%       25%                31%           56%
393   10293274   +7.73%       21%                31%           52%
424   10311099   +7.91%       21%                32%           53%
458   10321375   +8.02%       21%                32%           53%
467   10303881   +7.84%       21%                32%           53%
498   10332462   +8.14%       20%                33%           53%
511   10325016   +8.06%       20%                32%           52%

Broadwell-EP: zone->lock and lru lock had an agreement to make sure
performance doesn't increase and they successfully managed to keep total
contention at 70%.

batch   score    change   zone_contention   lru_contention   total_contention
 31   10121178   +0.00%       19%                50%           69%
 53   10142366   +0.21%        6%                63%           69%
 63   10117984   -0.03%       11%                58%           69%
 73   10123330   +0.02%        7%                63%           70%
119   10108791   -0.12%        2%                67%           69%
127   10166074   +0.44%        3%                66%           69%
137   10141574   +0.20%        3%                66%           69%
165   10154499   +0.33%        2%                68%           70%
188   10124921   +0.04%        2%                67%           69%
223   10137399   +0.16%        2%                67%           69%
255   10143289   +0.22%        0%                68%           68%
267   10123535   +0.02%        1%                68%           69%
299   10140952   +0.20%        0%                68%           68%
320   10163170   +0.41%        0%                68%           68%
393   10000633   -1.19%        0%                69%           69%
424   10087998   -0.33%        0%                69%           69%
458   10187116   +0.65%        0%                69%           69%
467   10146790   +0.25%        0%                69%           69%
498   10197958   +0.76%        0%                69%           69%
511   10152326   +0.31%        0%                69%           69%

Haswell-EP: similar to Broadwell-EP.

batch   score   change   zone_contention   lru_contention   total_contention
 31   10442205   +0.00%       14%                48%           62%
 53   10442255   +0.00%        5%                57%           62%
 63   10452059   +0.09%        6%                57%           63%
 73   10482349   +0.38%        5%                59%           64%
119   10454644   +0.12%        3%                60%           63%
127   10431514   -0.10%        3%                59%           62%
137   10423785   -0.18%        3%                60%           63%
165   10481216   +0.37%        2%                61%           63%
188   10448755   +0.06%        2%                61%           63%
223   10467144   +0.24%        2%                61%           63%
255   10480215   +0.36%        2%                61%           63%
267   10484279   +0.40%        2%                61%           63%
299   10466450   +0.23%        2%                61%           63%
320   10452578   +0.10%        2%                61%           63%
393   10499678   +0.55%        1%                62%           63%
424   10481454   +0.38%        1%                62%           63%
458   10473562   +0.30%        1%                62%           63%
467   10484269   +0.40%        0%                62%           62%
498   10505599   +0.61%        0%                62%           62%
511   10483395   +0.39%        0%                62%           62%

Westmere-EP: contention is pretty small so not interesting.  Note too high
a batch value could hurt performance.

batch   score   change   zone_contention   lru_contention   total_contention
 31   4831523   +0.00%        2%                 3%            5%
 53   4834086   +0.05%        2%                 4%            6%
 63   4834262   +0.06%        2%                 3%            5%
 73   4832851   +0.03%        2%                 4%            6%
119   4830534   -0.02%        1%                 3%            4%
127   4827461   -0.08%        1%                 4%            5%
137   4827459   -0.08%        1%                 3%            4%
165   4820534   -0.23%        0%                 4%            4%
188   4817947   -0.28%        0%                 3%            3%
223   4809671   -0.45%        0%                 3%            3%
255   4802463   -0.60%        0%                 4%            4%
267   4801634   -0.62%        0%                 3%            3%
299   4798047   -0.69%        0%                 3%            3%
320   4793084   -0.80%        0%                 3%            3%
393   4785877   -0.94%        0%                 3%            3%
424   4782911   -1.01%        0%                 3%            3%
458   4779346   -1.08%        0%                 3%            3%
467   4780306   -1.06%        0%                 3%            3%
498   4780589   -1.05%        0%                 3%            3%
511   4773724   -1.20%        0%                 3%            3%

Skylake-Desktop: similar to Westmere-EP, nothing interesting.

batch   score   change   zone_contention   lru_contention   total_contention
 31   3906608   +0.00%        2%                 3%            5%
 53   3940164   +0.86%        2%                 3%            5%
 63   3937289   +0.79%        2%                 3%            5%
 73   3940201   +0.86%        2%                 3%            5%
119   3933240   +0.68%        2%                 3%            5%
127   3930514   +0.61%        2%                 4%            6%
137   3938639   +0.82%        0%                 3%            3%
165   3908755   +0.05%        0%                 3%            3%
188   3905621   -0.03%        0%                 3%            3%
223   3903015   -0.09%        0%                 4%            4%
255   3889480   -0.44%        0%                 3%            3%
267   3891669   -0.38%        0%                 4%            4%
299   3898728   -0.20%        0%                 4%            4%
320   3894547   -0.31%        0%                 4%            4%
393   3875137   -0.81%        0%                 4%            4%
424   3874521   -0.82%        0%                 3%            3%
458   3880432   -0.67%        0%                 4%            4%
467   3888715   -0.46%        0%                 3%            3%
498   3888633   -0.46%        0%                 4%            4%
511   3875305   -0.80%        0%                 5%            5%

Haswell-Desktop: zone->lock is pretty low as other desktops, though lru
contention is higher than other desktops.

batch   score   change   zone_contention   lru_contention   total_contention
 31   3511158   +0.00%        2%                 5%            7%
 53   3555445   +1.26%        2%                 6%            8%
 63   3561082   +1.42%        2%                 6%            8%
 73   3547218   +1.03%        2%                 6%            8%
119   3571319   +1.71%        1%                 7%            8%
127   3549375   +1.09%        0%                 6%            6%
137   3560233   +1.40%        0%                 6%            6%
165   3555176   +1.25%        2%                 6%            8%
188   3551501   +1.15%        0%                 8%            8%
223   3531462   +0.58%        0%                 7%            7%
255   3570400   +1.69%        0%                 7%            7%
267   3532235   +0.60%        1%                 8%            9%
299   3562326   +1.46%        0%                 6%            6%
320   3553569   +1.21%        0%                 8%            8%
393   3539519   +0.81%        0%                 7%            7%
424   3549271   +1.09%        0%                 8%            8%
458   3528885   +0.50%        0%                 8%            8%
467   3526554   +0.44%        0%                 7%            7%
498   3525302   +0.40%        0%                 9%            9%
511   3527556   +0.47%        0%                 8%            8%

Sandybridge-Desktop: the 0% contention isn't accurate but caused by
dropped fractional part. Since multiple contention path's contentions
are all under 1% here, with some arithmetic operations like add, the
final deviation could be as large as 3%.

batch   score   change   zone_contention   lru_contention   total_contention
 31   1744495   +0.00%        0%                 0%            0%
 53   1755341   +0.62%        0%                 0%            0%
 63   1758469   +0.80%        0%                 0%            0%
 73   1759626   +0.87%        0%                 0%            0%
119   1770417   +1.49%        0%                 0%            0%
127   1768252   +1.36%        0%                 0%            0%
137   1767848   +1.34%        0%                 0%            0%
165   1765088   +1.18%        0%                 0%            0%
188   1766918   +1.29%        0%                 0%            0%
223   1767866   +1.34%        0%                 0%            0%
255   1768074   +1.35%        0%                 0%            0%
267   1763187   +1.07%        0%                 0%            0%
299   1765620   +1.21%        0%                 0%            0%
320   1767603   +1.32%        0%                 0%            0%
393   1764612   +1.15%        0%                 0%            0%
424   1758476   +0.80%        0%                 0%            0%
458   1758593   +0.81%        0%                 0%            0%
467   1757915   +0.77%        0%                 0%            0%
498   1753363   +0.51%        0%                 0%            0%
511   1755548   +0.63%        0%                 0%            0%

Phase two test results:
Note: all percent change is against base(batch=31).

ebizzy.throughput (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    2410037±7%     2600451±2% +7.9%     2602878 +8.0%
lkp-bdw-ex1     1493328        1489243    -0.3%     1492145 -0.1%
lkp-skl-2sp2    1329674        1345891    +1.2%     1351056 +1.6%
lkp-bdw-ep2      711511         711511     0.0%      710708 -0.1%
lkp-wsm-ep2       75750          75528    -0.3%       75441 -0.4%
lkp-skl-d01      264126         262791    -0.5%      264113 +0.0%
lkp-hsw-d01      176601         176328    -0.2%      176368 -0.1%
lkp-sb02          98937          98937    +0.0%       99030 +0.1%

kbuild.buildtime (less is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     107.00        107.67  +0.6%        107.11  +0.1%
lkp-bdw-ex1       97.33         97.33  +0.0%         97.42  +0.1%
lkp-skl-2sp2     180.00        179.83  -0.1%        179.83  -0.1%
lkp-bdw-ep2      178.17        179.17  +0.6%        177.50  -0.4%
lkp-wsm-ep2      737.00        738.00  +0.1%        738.00  +0.1%
lkp-skl-d01      642.00        653.00  +1.7%        653.00  +1.7%
lkp-hsw-d01     1310.00       1316.00  +0.5%       1311.00  +0.1%

netperf/TCP_STREAM.Throughput_total_Mbps (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     948790        947144  -0.2%        948333 -0.0%
lkp-bdw-ex1      904224        904366  +0.0%        904926 +0.1%
lkp-skl-2sp2     239731        239607  -0.1%        239565 -0.1%
lk-bdw-ep2       365764        365933  +0.0%        365951 +0.1%
lkp-wsm-ep2       93736         93803  +0.1%         93808 +0.1%
lkp-skl-d01       77314         77303  -0.0%         77375 +0.1%
lkp-hsw-d01       58617         60387  +3.0%         60208 +2.7%
lkp-sb02          29990         30137  +0.5%         30103 +0.4%

oltp.transactions (higer is better)

machine         batch=31      batch=63             batch=127
lkp-bdw-ex1      9073276       9100377     +0.3%    9036344     -0.4%
lkp-skl-2sp2     8898717       8852054     -0.5%    8894459     -0.0%
lkp-bdw-ep2     13426155      13384654     -0.3%   13333637     -0.7%
lkp-hsw-ep2     13146314      13232784     +0.7%   13193163     +0.4%
lkp-wsm-ep2      5035355       5019348     -0.3%    5033418     -0.0%
lkp-skl-d01       418485       4413339     -0.1%    4419039     +0.0%
lkp-hsw-d01      3517817±5%    3396120±3%  -3.5%    3455138±3%  -1.8%

pigz.throughput (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    1.513e+08     1.507e+08 -0.4%      1.511e+08 -0.2%
lkp-bdw-ex1     2.060e+08     2.052e+08 -0.4%      2.044e+08 -0.8%
lkp-skl-2sp2    8.836e+08     8.845e+08 +0.1%      8.836e+08 -0.0%
lkp-bdw-ep2     8.275e+08     8.464e+08 +2.3%      8.330e+08 +0.7%
lkp-wsm-ep2     2.224e+08     2.221e+08 -0.2%      2.218e+08 -0.3%
lkp-skl-d01     1.177e+08     1.177e+08 -0.0%      1.176e+08 -0.1%
lkp-hsw-d01     1.154e+08     1.154e+08 +0.1%      1.154e+08 -0.0%
lkp-sb02        0.633e+08     0.633e+08 +0.1%      0.633e+08 +0.0%

will-it-scale.malloc1.processes (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1      620181       620484 +0.0%         620240 +0.0%
lkp-bdw-ex1      1403610      1401201 -0.2%        1417900 +1.0%
lkp-skl-2sp2     1288097      1284145 -0.3%        1283907 -0.3%
lkp-bdw-ep2      1427879      1427675 -0.0%        1428266 +0.0%
lkp-hsw-ep2      1362546      1353965 -0.6%        1354759 -0.6%
lkp-wsm-ep2      2099657      2107576 +0.4%        2100226 +0.0%
lkp-skl-d01      1476835      1476358 -0.0%        1474487 -0.2%
lkp-hsw-d01      1308810      1303429 -0.4%        1301299 -0.6%
lkp-sb02          589286       589284 -0.0%         588101 -0.2%

will-it-scale.malloc1.threads (higher is better)
machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     21289         21125     -0.8%      21241     -0.2%
lkp-bdw-ex1      28114         28089     -0.1%      28007     -0.4%
lkp-skl-2sp2     91866         91946     +0.1%      92723     +0.9%
lkp-bdw-ep2      37637         37501     -0.4%      37317     -0.9%
lkp-hsw-ep2      43673         43590     -0.2%      43754     +0.2%
lkp-wsm-ep2      28577         28298     -1.0%      28545     -0.1%
lkp-skl-d01     175277        173343     -1.1%     173082     -1.3%
lkp-hsw-d01     130303        129566     -0.6%     129250     -0.8%
lkp-sb02        113742±3%     116911     +2.8%     116417±3%  +2.4%

will-it-scale.malloc2.processes (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    1.206e+09     1.206e+09 -0.0%      1.206e+09 +0.0%
lkp-bdw-ex1     1.319e+09     1.319e+09 -0.0%      1.319e+09 +0.0%
lkp-skl-2sp2    8.000e+08     8.021e+08 +0.3%      7.995e+08 -0.1%
lkp-bdw-ep2     6.582e+08     6.634e+08 +0.8%      6.513e+08 -1.1%
lkp-hsw-ep2     6.671e+08     6.669e+08 -0.0%      6.665e+08 -0.1%
lkp-wsm-ep2     1.805e+08     1.806e+08 +0.0%      1.804e+08 -0.1%
lkp-skl-d01     1.611e+08     1.611e+08 -0.0%      1.610e+08 -0.0%
lkp-hsw-d01     1.333e+08     1.332e+08 -0.0%      1.332e+08 -0.0%
lkp-sb02         82485104      82478206 -0.0%       82473546 -0.0%

will-it-scale.malloc2.threads (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    1.574e+09     1.574e+09 -0.0%      1.574e+09 -0.0%
lkp-bdw-ex1     1.737e+09     1.737e+09 +0.0%      1.737e+09 -0.0%
lkp-skl-2sp2    9.161e+08     9.162e+08 +0.0%      9.181e+08 +0.2%
lkp-bdw-ep2     7.856e+08     8.015e+08 +2.0%      8.113e+08 +3.3%
lkp-hsw-ep2     6.908e+08     6.904e+08 -0.1%      6.907e+08 -0.0%
lkp-wsm-ep2     2.409e+08     2.409e+08 +0.0%      2.409e+08 -0.0%
lkp-skl-d01     1.199e+08     1.199e+08 -0.0%      1.199e+08 -0.0%
lkp-hsw-d01     1.029e+08     1.029e+08 -0.0%      1.029e+08 +0.0%
lkp-sb02         68081213      68061423 -0.0%       68076037 -0.0%

will-it-scale.page_fault2.processes (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    14509125±4%   16472364 +13.5%       17123117 +18.0%
lkp-bdw-ex1     14736381      16196588  +9.9%       16364011 +11.0%
lkp-skl-2sp2     6354925       6435444  +1.3%        6436644  +1.3%
lkp-bdw-ep2      8749584       8834422  +1.0%        8827179  +0.9%
lkp-hsw-ep2      8762591       8845920  +1.0%        8825697  +0.7%
lkp-wsm-ep2      3036083       3030428  -0.2%        3021741  -0.5%
lkp-skl-d01      2307834       2304731  -0.1%        2286142  -0.9%
lkp-hsw-d01      1806237       1800786  -0.3%        1795943  -0.6%
lkp-sb02          842616        837844  -0.6%         833921  -1.0%

will-it-scale.page_fault2.threads

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     1623294       1615132±2% -0.5%     1656777    +2.1%
lkp-bdw-ex1      1995714       2025948    +1.5%     2113753±3% +5.9%
lkp-skl-2sp2     2346708       2415591    +2.9%     2416919    +3.0%
lkp-bdw-ep2      2342564       2344882    +0.1%     2300206    -1.8%
lkp-hsw-ep2      1820658       1831681    +0.6%     1844057    +1.3%
lkp-wsm-ep2      1725482       1733774    +0.5%     1740517    +0.9%
lkp-skl-d01      1832833       1823628    -0.5%     1806489    -1.4%
lkp-hsw-d01      1427913       1427287    -0.0%     1420226    -0.5%
lkp-sb02          750626        748615    -0.3%      746621    -0.5%

will-it-scale.page_fault3.processes (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    24382726      24400317 +0.1%       24668774 +1.2%
lkp-bdw-ex1     35399750      35683124 +0.8%       35829492 +1.2%
lkp-skl-2sp2    28136820      28068248 -0.2%       28147989 +0.0%
lkp-bdw-ep2     37269077      37459490 +0.5%       37373073 +0.3%
lkp-hsw-ep2     36224967      36114085 -0.3%       36104908 -0.3%
lkp-wsm-ep2     16820457      16911005 +0.5%       16968596 +0.9%
lkp-skl-d01      7721138       7725904 +0.1%        7756740 +0.5%
lkp-hsw-d01      7611979       7650928 +0.5%        7651323 +0.5%
lkp-sb02         3781546       3796502 +0.4%        3796827 +0.4%

will-it-scale.page_fault3.threads (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     1865820±3%   1900917±2%  +1.9%     1826245±4%  -2.1%
lkp-bdw-ex1      3094060      3148326     +1.8%     3150036     +1.8%
lkp-skl-2sp2     3952940      3953898     +0.0%     3989360     +0.9%
lkp-bdw-ep2      3420373±3%   3643964     +6.5%     3644910±5%  +6.6%
lkp-hsw-ep2      2609635±2%   2582310±3%  -1.0%     2780459     +6.5%
lkp-wsm-ep2      4395001      4417196     +0.5%     4432499     +0.9%
lkp-skl-d01      5363977      5400003     +0.7%     5411370     +0.9%
lkp-hsw-d01      5274131      5311294     +0.7%     5319359     +0.9%
lkp-sb02         2917314      2913004     -0.1%     2935286     +0.6%

will-it-scale.read1.processes (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    73762279±14%  69322519±10% -6.0%    69349855±13%  -6.0% (result unstable)
lkp-bdw-ex1     1.701e+08     1.704e+08    +0.1%    1.705e+08     +0.2%
lkp-skl-2sp2    63111570      63113953     +0.0%    63836573      +1.1%
lkp-bdw-ep2     79247409      79424610     +0.2%    78012656      -1.6%
lkp-hsw-ep2     67677026      68308800     +0.9%    67539106      -0.2%
lkp-wsm-ep2     13339630      13939817     +4.5%    13766865      +3.2%
lkp-skl-d01     10969487      10972650     +0.0%    no data
lkp-hsw-d01     9857342±2%    10080592±2%  +2.3%    10131560      +2.8%
lkp-sb02        5189076        5197473     +0.2%    5163253       -0.5%

will-it-scale.read1.threads (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    62468045±12%  73666726±7% +17.9%    79553123±12% +27.4% (result unstable)
lkp-bdw-ex1     1.62e+08      1.624e+08    +0.3%    1.614e+08     -0.3%
lkp-skl-2sp2    58319780      59181032     +1.5%    59821353      +2.6%
lkp-bdw-ep2     74057992      75698171     +2.2%    74990869      +1.3%
lkp-hsw-ep2     63672959      63639652     -0.1%    64387051      +1.1%
lkp-wsm-ep2     13489943      13526058     +0.3%    13259032      -1.7%
lkp-skl-d01     10297906      10338796     +0.4%    10407328      +1.1%
lkp-hsw-d01      9636721       9667376     +0.3%     9341147      -3.1%
lkp-sb02         4801938       4804496     +0.1%     4802290      +0.0%

will-it-scale.write1.processes (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    1.111e+08     1.104e+08±2%  -0.7%   1.122e+08±2%  +1.0%
lkp-bdw-ex1     1.392e+08     1.399e+08     +0.5%   1.397e+08     +0.4%
lkp-skl-2sp2     59369233      58994841     -0.6%    58715168     -1.1%
lkp-bdw-ep2      61820979      CPU throttle          63593123     +2.9%
lkp-hsw-ep2      57897587      57435605     -0.8%    56347450     -2.7%
lkp-wsm-ep2       7814203       7918017±2%  +1.3%     7669068     -1.9%
lkp-skl-d01       8886557       8971422     +1.0%     8818366     -0.8%
lkp-hsw-d01       9171001±5%    9189915     +0.2%     9483909     +3.4%
lkp-sb02          4475406       4475294     -0.0%     4501756     +0.6%

will-it-scale.write1.threads (higer is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    1.058e+08     1.055e+08±2%  -0.2%   1.065e+08  +0.7%
lkp-bdw-ex1     1.316e+08     1.300e+08     -1.2%   1.308e+08  -0.6%
lkp-skl-2sp2     54492421      56086678     +2.9%    55975657  +2.7%
lkp-bdw-ep2      59360449      59003957     -0.6%    58101262  -2.1%
lkp-hsw-ep2      53346346±2%   52530876     -1.5%    52902487  -0.8%
lkp-wsm-ep2       7774006       7800092±2%  +0.3%     7558833  -2.8%
lkp-skl-d01       8346174       8235695     -1.3%     no data
lkp-hsw-d01       8636244       8655731     +0.2%     8658868  +0.3%
lkp-sb02          4181820       4204107     +0.5%     4182992  +0.0%

vm-scalability.anon-r-rand.throughput (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    11933873±3%   12356544±2%  +3.5%   12188624     +2.1%
lkp-bdw-ex1      7114424±2%    7330949±2%  +3.0%    7392419     +3.9%
lkp-skl-2sp2     6773277±5%    6492332±8%  -4.1%    6543962     -3.4%
lkp-bdw-ep2      7133846±4%    7233508     +1.4%    7013518±3%  -1.7%
lkp-hsw-ep2      4576626       4527098     -1.1%    4551679     -0.5%
lkp-wsm-ep2      2583599       2592492     +0.3%    2588039     +0.2%
lkp-hsw-d01       998199±2%    1028311     +3.0%    1006460±2%  +0.8%
lkp-sb02          570572        567854     -0.5%     568449     -0.4%

vm-scalability.anon-r-rand-mt.throughput (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     1789419       1787830     -0.1%    1788208     -0.1%
lkp-bdw-ex1      3492595±2%    3554966±2%  +1.8%    3558835±3%  +1.9%
lkp-skl-2sp2     3856238±2%    3975403±4%  +3.1%    3994600     +3.6%
lkp-bdw-ep2      3726963±11%   3809292±6%  +2.2%    3871924±4%  +3.9%
lkp-hsw-ep2      2131760±3%    2033578±4%  -4.6%    2130727±6%  -0.0%
lkp-wsm-ep2      2369731       2368384     -0.1%    2370252     +0.0%
lkp-skl-d01      1207128       1206220     -0.1%    1205801     -0.1%
lkp-hsw-d01       964317        992329±2%  +2.9%     992099±2%  +2.9%
lkp-sb02          567137        567346     +0.0%     566144     -0.2%

vm-scalability.lru-file-mmap-read.throughput (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1    19560469±6%   23018999     +17.7%   23418800     +19.7%
lkp-bdw-ex1     17769135±14%  26141676±3%  +47.1%   26284723±5%  +47.9%
lkp-skl-2sp2    14056512      13578884      -3.4%   13146214      -6.5%
lkp-bdw-ep2     15336542      14737654      -3.9%   14088159      -8.1%
lkp-hsw-ep2     16275498      15756296      -3.2%   15018090      -7.7%
lkp-wsm-ep2     11272160      11237231      -0.3%   11310047      +0.3%
lkp-skl-d01      7322119       7324569      +0.0%    7184148      -1.9%
lkp-hsw-d01      6449234       6404542      -0.7%    6356141      -1.4%
lkp-sb02         3517943       3520668      +0.1%    3527309      +0.3%

vm-scalability.lru-file-mmap-read-rand.throughput (higher is better)

machine         batch=31      batch=63             batch=127
lkp-skl-4sp1     1689052       1697553  +0.5%       1698726  +0.6%
lkp-bdw-ex1      1675246       1699764  +1.5%       1712226  +2.2%
lkp-skl-2sp2     1800533       1799749  -0.0%       1800581  +0.0%
lkp-bdw-ep2      1807422       1807758  +0.0%       1804932  -0.1%
lkp-hsw-ep2      1809807       1808781  -0.1%       1807811  -0.1%
lkp-wsm-ep2      1800198       1802434  +0.1%       1801236  +0.1%
lkp-skl-d01       696689        695537  -0.2%        694106  -0.4%
lkp-hsw-d01       698364        698666  +0.0%        696686  -0.2%
lkp-sb02          258939        258787  -0.1%        258199  -0.3%

Link: http://lkml.kernel.org/r/20180711055855.29072-1-aaron.lu@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kemi Wang <kemi.wang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Michal Hocko 9ea9a68064 mm: drop VM_BUG_ON from __get_free_pages
There is no real reason to blow up just because the caller doesn't know
that __get_free_pages cannot return highmem pages.  Simply fix that up
silently.  Even if we have some confused users such a fixup will not be
harmful.

[akpm@linux-foundation.org: mask off __GFP_HIGHMEM]
Link: http://lkml.kernel.org/r/20180622162841.25114-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiankang Chen <chenjiankang1@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Vlastimil Babka d6a24df006 mm, page_alloc: actually ignore mempolicies for high priority allocations
__alloc_pages_slowpath() has for a long time contained code to ignore
node restrictions from memory policies for high priority allocations.
The current code that resets the zonelist iterator however does
effectively nothing after commit 7810e6781e ("mm, page_alloc: do not
break __GFP_THISNODE by zonelist reset") removed a buggy zonelist reset.
Even before that commit, mempolicy restrictions were still not ignored,
as they are passed in ac->nodemask which is untouched by the code.

We can either remove the code, or make it work as intended.  Since
ac->nodemask can be set from task's mempolicy via alloc_pages_current()
and thus also alloc_pages(), it may indeed affect kernel allocations,
and it makes sense to ignore it to allow progress for high priority
allocations.

Thus, this patch resets ac->nodemask to NULL in such cases.  This
assumes all callers can handle it (i.e.  there are no guarantees as in
the case of __GFP_THISNODE) which seems to be the case.  The same
assumption is already present in check_retry_cpuset() for some time.

The expected effect is that high priority kernel allocations in the
context of userspace tasks (e.g.  OOM victims) restricted by mempolicies
will have higher chance to succeed if they are restricted to nodes with
depleted memory, while there are other nodes with free memory left.

It's not a new intention, but for the first time the code will match the
intention, AFAICS.  It was intended by commit 183f6371aa ("mm: ignore
mempolicies when using ALLOC_NO_WATERMARK") in v3.6 but I think it never
really worked, as mempolicy restriction was already encoded in nodemask,
not zonelist, at that time.

So originally that was for ALLOC_NO_WATERMARK only.  Then it was
adjusted by e46e7b77c9 ("mm, page_alloc: recalculate the preferred
zoneref if the context can ignore memory policies") and cd04ae1e2d
("mm, oom: do not rely on TIF_MEMDIE for memory reserves access") to the
current state.  So even GFP_ATOMIC would now ignore mempolicies after
the initial attempts fail - if the code worked as people thought it
does.

Link: http://lkml.kernel.org/r/20180612122624.8045-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:28 -07:00
Pavel Tatashin 720e14ebec mm: skip invalid pages block at a time in zero_resv_unresv()
The role of zero_resv_unavail() is to make sure that every struct page
that is allocated but is not backed by memory that is accessible by
kernel is zeroed and not in some uninitialized state.

Since struct pages are allocated in blocks (2M pages in x86 case), we
can skip pageblock_nr_pages at a time, when the first one is found to be
invalid.

This optimization may help since now on x86 every hole in e820 maps is
marked as reserved in memblock, and thus will go through this function.

This function is called before sched_clock() is initialized, so I used
my x86 early boot clock patches to measure the performance improvement.

With 1T hole on i7-8700 currently we would take 0.606918s of boot time,
but with this optimization 0.001103s.

Link: http://lkml.kernel.org/r/20180615155733.1175-1-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:28 -07:00
Linus Torvalds b018fc9800 Power management updates for 4.19-rc1
- Add a new framework for CPU idle time injection (Daniel Lezcano).
 
  - Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT).
 
  - Add support for current CPU frequency reporting to the ACPI CPPC
    cpufreq driver (George Cherian).
 
  - Rework the cooling device registration in the imx6q/thermal
    driver (Bastian Stender).
 
  - Make the pcc-cpufreq driver refuse to work with dynamic
    scaling governors on systems with many CPUs to avoid
    scalability issues with it (Rafael Wysocki).
 
  - Fix the intel_pstate driver to report different maximum CPU
    frequencies on systems where they really are different and to
    ignore the turbo active ratio if hardware-managend P-states (HWP)
    are in use; make it use the match_string() helper (Xie Yisheng,
    Srinivas Pandruvada).
 
  - Fix a minor deferred probe issue in the qcom-kryo cpufreq
    driver (Niklas Cassel).
 
  - Add a tracepoint for the tracking of frequency limits changes
    (from Andriod) to the cpufreq core (Ruchi Kandoi).
 
  - Fix a circular lock dependency between CPU hotplug and sysfs
    locking in the cpufreq core reported by lockdep (Waiman Long).
 
  - Avoid excessive error reports on driver registration failures
    in the ARM cpuidle driver (Sudeep Holla).
 
  - Add a new device links flag to the driver core to make links go
    away automatically on supplier driver removal (Vivek Gautam).
 
  - Eliminate potential race condition between system-wide power
    management transitions and system shutdown (Pingfan Liu).
 
  - Add a quirk to save NVS memory on system suspend for the ASUS
    1025C laptop (Willy Tarreau).
 
  - Make more systems use suspend-to-idle (instead of ACPI S3) by
    default (Tristian Celestin).
 
  - Get rid of stack VLA usage in the low-level hibernation code on
    64-bit x86 (Kees Cook).
 
  - Fix error handling in the hibernation core and mark an expected
    fall-through switch in it (Chengguang Xu, Gustavo Silva).
 
  - Extend the generic power domains (genpd) framework to support
    attaching a device to a power domain by name (Ulf Hansson).
 
  - Fix device reference counting and user limits initialization in
    the devfreq core (Arvind Yadav, Matthias Kaehlcke).
 
  - Fix a few issues in the rk3399_dmc devfreq driver and improve its
    documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
 
  - Drop a redundant error message from the exynos-ppmu devfreq driver
    (Markus Elfring).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJbcqOqAAoJEILEb/54YlRxOxMP/2ZFvnXU0pey/VX/+TelLMS7
 /ROVGQ+s75QP1c9P/3BjvnXc0dsMRLRFPog+7wyoG/2DbEIV25COyAYsmSE0TRni
 XUaZO6YAx4/e3pm2AfamYbLCPvjw85eucHg5QJQ4b1mSVRNJOsNv+fUo6lmxwvnm
 j9kHvfttFeIhoa/3wa7hbhPKLln46atnpVSxCIceY7L5EFNhkKBvQt6B5yx9geb9
 QMY6ohgkyN+bnK9QySXX+trcWpzx1uGX0apI07NkX7n9QGFdU4lCW8lsAf8jMC3g
 PPValTsUQsdRONUJJsrgqBioq4tvtgQWibyS2tfRrOGXYvHpJNpGmHVplfsrf/SE
 cvlsciR47YbmrXZuqg/r8hql+qefNN16/rnZIZ9VnbcG806VBy2z8IzI5wcdWR7p
 vzxhbCqVqOHcEdEwRwvuM2io67MWvkGtKsbCP+33DBh8SubpsECpKN4nIDboa3SE
 CJ15RUqXnF6enmmfCKOoHZeu7iXWDz6Pi71XmRzaj9DqbITVV281IerqLgV3rbal
 BVa53+202iD0IP+2b7KedGe/5ALlI97ffN0gB+L/eB832853DKSZQKzcvvpRhEN7
 Iv2crnUwuQED9ns8P7hzp1Bk9CFCAOLW8UM43YwZRPWnmdeSsPJusJ5lzkAf7bss
 wfsFoUE3RaY4msnuHyCh
 =kv2M
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "These add a new framework for CPU idle time injection, to be used by
  all of the idle injection code in the kernel in the future, fix some
  issues and add a number of relatively small extensions in multiple
  places.

  Specifics:

   - Add a new framework for CPU idle time injection (Daniel Lezcano).

   - Add AVS support to the armada-37xx cpufreq driver (Gregory
     CLEMENT).

   - Add support for current CPU frequency reporting to the ACPI CPPC
     cpufreq driver (George Cherian).

   - Rework the cooling device registration in the imx6q/thermal driver
     (Bastian Stender).

   - Make the pcc-cpufreq driver refuse to work with dynamic scaling
     governors on systems with many CPUs to avoid scalability issues
     with it (Rafael Wysocki).

   - Fix the intel_pstate driver to report different maximum CPU
     frequencies on systems where they really are different and to
     ignore the turbo active ratio if hardware-managend P-states (HWP)
     are in use; make it use the match_string() helper (Xie Yisheng,
     Srinivas Pandruvada).

   - Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
     (Niklas Cassel).

   - Add a tracepoint for the tracking of frequency limits changes (from
     Andriod) to the cpufreq core (Ruchi Kandoi).

   - Fix a circular lock dependency between CPU hotplug and sysfs
     locking in the cpufreq core reported by lockdep (Waiman Long).

   - Avoid excessive error reports on driver registration failures in
     the ARM cpuidle driver (Sudeep Holla).

   - Add a new device links flag to the driver core to make links go
     away automatically on supplier driver removal (Vivek Gautam).

   - Eliminate potential race condition between system-wide power
     management transitions and system shutdown (Pingfan Liu).

   - Add a quirk to save NVS memory on system suspend for the ASUS 1025C
     laptop (Willy Tarreau).

   - Make more systems use suspend-to-idle (instead of ACPI S3) by
     default (Tristian Celestin).

   - Get rid of stack VLA usage in the low-level hibernation code on
     64-bit x86 (Kees Cook).

   - Fix error handling in the hibernation core and mark an expected
     fall-through switch in it (Chengguang Xu, Gustavo Silva).

   - Extend the generic power domains (genpd) framework to support
     attaching a device to a power domain by name (Ulf Hansson).

   - Fix device reference counting and user limits initialization in the
     devfreq core (Arvind Yadav, Matthias Kaehlcke).

   - Fix a few issues in the rk3399_dmc devfreq driver and improve its
     documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).

   - Drop a redundant error message from the exynos-ppmu devfreq driver
     (Markus Elfring)"

* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
  PM / reboot: Eliminate race between reboot and suspend
  PM / hibernate: Mark expected switch fall-through
  cpufreq: intel_pstate: Ignore turbo active ratio in HWP
  cpufreq: Fix a circular lock dependency problem
  cpu/hotplug: Add a cpus_read_trylock() function
  x86/power/hibernate_64: Remove VLA usage
  cpufreq: trace frequency limits change
  cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
  cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
  cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
  cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
  cpufreq: armada-37xx: Add AVS support
  dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
  PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
  PM / devfreq: Init user limits from OPP limits, not viceversa
  PM / devfreq: rk3399_dmc: fix spelling mistakes.
  PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
  dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
  PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
  dt-bindings: clock: add rk3399 DDR3 standard speed bins.
  ...
2018-08-14 13:12:24 -07:00
Rafael J. Wysocki 17bc3432e3 Merge branches 'pm-core', 'pm-domains', 'pm-sleep', 'acpi-pm' and 'pm-cpuidle'
Merge changes in the PM core, system-wide PM infrastructure, generic
power domains (genpd) framework, ACPI PM infrastructure and cpuidle
for 4.19.

* pm-core:
  driver core: Add flag to autoremove device link on supplier unbind
  driver core: Rename flag AUTOREMOVE to AUTOREMOVE_CONSUMER

* pm-domains:
  PM / Domains: Introduce dev_pm_domain_attach_by_name()
  PM / Domains: Introduce option to attach a device by name to genpd
  PM / Domains: dt: Add a power-domain-names property

* pm-sleep:
  PM / reboot: Eliminate race between reboot and suspend
  PM / hibernate: Mark expected switch fall-through
  x86/power/hibernate_64: Remove VLA usage
  PM / hibernate: cast PAGE_SIZE to int when comparing with error code

* acpi-pm:
  ACPI / PM: save NVS memory for ASUS 1025C laptop
  ACPI / PM: Default to s2idle in all machines supporting LP S0

* pm-cpuidle:
  ARM: cpuidle: silence error on driver registration failure
2018-08-14 09:48:10 +02:00
Pingfan Liu 55f2503c3b PM / reboot: Eliminate race between reboot and suspend
At present, "systemctl suspend" and "shutdown" can run in parrallel. A
system can suspend after devices_shutdown(), and resume. Then the shutdown
task goes on to power off. This causes many devices are not really shut
off. Hence replacing reboot_mutex with system_transition_mutex (renamed
from pm_mutex) to achieve the exclusion. The renaming of pm_mutex as
system_transition_mutex can be better to reflect the purpose of the mutex.

Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-08-06 12:35:20 +02:00
Dave Hansen 0d83432811 mm: Allow non-direct-map arguments to free_reserved_area()
free_reserved_area() takes pointers as arguments to show which addresses
should be freed.  However, it does this in a somewhat ambiguous way.  If it
gets a kernel direct map address, it always works.  However, if it gets an
address that is part of the kernel image alias mapping, it can fail.

It fails if all of the following happen:
 * The specified address is part of the kernel image alias
 * Poisoning is requested (forcing a memset())
 * The address is in a read-only portion of the kernel image

The memset() fails on the read-only mapping, of course.
free_reserved_area() *is* called both on the direct map and on kernel image
alias addresses.  We've just lucked out thus far that the kernel image
alias areas it gets used on are read-write.  I'm fairly sure this has been
just a happy accident.

It is quite easy to make free_reserved_area() work for all cases: just
convert the address to a direct map address before doing the memset(), and
do this unconditionally.  There is little chance of a regression here
because we previously did a virt_to_page() on the address for the memset,
so we know these are not highmem pages for which virt_to_page() would fail.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@google.com
Cc: aarcange@redhat.com
Cc: jgross@suse.com
Cc: jpoimboe@redhat.com
Cc: gregkh@linuxfoundation.org
Cc: peterz@infradead.org
Cc: hughd@google.com
Cc: torvalds@linux-foundation.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: ak@linux.intel.com
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20180802225826.1287AE3E@viggo.jf.intel.com
2018-08-05 22:21:02 +02:00
Pavel Tatashin d1b47a7c9e mm: don't do zero_resv_unavail if memmap is not allocated
Moving zero_resv_unavail before memmap_init_zone(), caused a regression on
x86-32.

The cause is that we access struct pages before they are allocated when
CONFIG_FLAT_NODE_MEM_MAP is used.

free_area_init_nodes()
  zero_resv_unavail()
    mm_zero_struct_page(pfn_to_page(pfn)); <- struct page is not alloced
  free_area_init_node()
    if CONFIG_FLAT_NODE_MEM_MAP
      alloc_node_mem_map()
        memblock_virt_alloc_node_nopanic() <- struct page alloced here

On the other hand memblock_virt_alloc_node_nopanic() zeroes all the memory
that it returns, so we do not need to do zero_resv_unavail() here.

Fixes: e181ae0c5d ("mm: zero unavailable pages before memmap init")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Matt Hart <matt@mattface.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-07-16 09:41:57 -07:00
Pavel Tatashin e181ae0c5d mm: zero unavailable pages before memmap init
We must zero struct pages for memory that is not backed by physical
memory, or kernel does not have access to.

Recently, there was a change which zeroed all memmap for all holes in
e820.  Unfortunately, it introduced a bug that is discussed here:

  https://www.spinics.net/lists/linux-mm/msg156764.html

Linus, also saw this bug on his machine, and confirmed that reverting
commit 124049decb ("x86/e820: put !E820_TYPE_RAM regions into
memblock.reserved") fixes the issue.

The problem is that we incorrectly zero some struct pages after they
were setup.

The fix is to zero unavailable struct pages prior to initializing of
struct pages.

A more detailed fix should come later that would avoid double zeroing
cases: one in __init_single_page(), the other one in
zero_resv_unavail().

Fixes: 124049decb ("x86/e820: put !E820_TYPE_RAM regions into memblock.reserved")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-07-14 11:02:20 -07:00
Joe Perches 0825a6f986 mm: use octal not symbolic permissions
mm/*.c files use symbolic and octal styles for permissions.

Using octal and not symbolic permissions is preferred by many as more
readable.

https://lkml.org/lkml/2016/8/2/1945

Prefer the direct use of octal for permissions.

Done using
$ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c
and some typing.

Before:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
44
After:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
86

Miscellanea:

o Whitespace neatening around these conversions.

Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:25 +09:00
Vlastimil Babka 7810e6781e mm, page_alloc: do not break __GFP_THISNODE by zonelist reset
In __alloc_pages_slowpath() we reset zonelist and preferred_zoneref for
allocations that can ignore memory policies.  The zonelist is obtained
from current CPU's node.  This is a problem for __GFP_THISNODE
allocations that want to allocate on a different node, e.g.  because the
allocating thread has been migrated to a different CPU.

This has been observed to break SLAB in our 4.4-based kernel, because
there it relies on __GFP_THISNODE working as intended.  If a slab page
is put on wrong node's list, then further list manipulations may corrupt
the list because page_to_nid() is used to determine which node's
list_lock should be locked and thus we may take a wrong lock and race.

Current SLAB implementation seems to be immune by luck thanks to commit
511e3a0588 ("mm/slab: make cache_grow() handle the page allocated on
arbitrary node") but there may be others assuming that __GFP_THISNODE
works as promised.

We can fix it by simply removing the zonelist reset completely.  There
is actually no reason to reset it, because memory policies and cpusets
don't affect the zonelist choice in the first place.  This was different
when commit 183f6371aa ("mm: ignore mempolicies when using
ALLOC_NO_WATERMARK") introduced the code, as mempolicies provided their
own restricted zonelists.

We might consider this for 4.17 although I don't know if there's
anything currently broken.

SLAB is currently not affected, but in kernels older than 4.7 that don't
yet have 511e3a0588 ("mm/slab: make cache_grow() handle the page
allocated on arbitrary node") it is.  That's at least 4.4 LTS.  Older
ones I'll have to check.

So stable backports should be more important, but will have to be
reviewed carefully, as the code went through many changes.  BTW I think
that also the ac->preferred_zoneref reset is currently useless if we
don't also reset ac->nodemask from a mempolicy to NULL first (which we
probably should for the OOM victims etc?), but I would leave that for a
separate patch.

Link: http://lkml.kernel.org/r/20180525130853.13915-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 183f6371aa ("mm: ignore mempolicies when using ALLOC_NO_WATERMARK")
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:38 -07:00
Matthew Wilcox 4da1984edb mm: combine LRU and main union in struct page
This gives us five words of space in a single union in struct page.  The
compound_mapcount moves position (from offset 24 to offset 20) on 64-bit
systems, but that does not seem likely to cause any trouble.

Link: http://lkml.kernel.org/r/20180518194519.3820-11-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:37 -07:00
Matthew Wilcox fa3015b7ee mm: use page->deferred_list
Now that we can represent the location of 'deferred_list' in C instead of
comments, make use of that ability.

Link: http://lkml.kernel.org/r/20180518194519.3820-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:37 -07:00
Matthew Wilcox 6e292b9be7 mm: split page_type out from _mapcount
We're already using a union of many fields here, so stop abusing the
_mapcount and make page_type its own field.  That implies renaming some of
the machinery that creates PageBuddy, PageBalloon and PageKmemcg; bring
back the PG_buddy, PG_balloon and PG_kmemcg names.

As suggested by Kirill, make page_type a bitmask.  Because it starts out
life as -1 (thanks to sharing the storage with _mapcount), setting a page
flag means clearing the appropriate bit.  This gives us space for probably
twenty or so extra bits (depending how paranoid we want to be about
_mapcount underflow).

Link: http://lkml.kernel.org/r/20180518194519.3820-3-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:37 -07:00
Huaisheng Ye a380b40abb mm/page_alloc.c: remove useless parameter of finalise_ac()
finalise_ac() has parameter order which is not used at all.  Remove it.

Signed-off-by: Huaisheng Ye <yehs1@lenovo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Mathieu Malaterre fb52bbaee5 mm: move is_pageblock_removable_nolock() to mm/memory_hotplug.c
is_pageblock_removable_nolock() is not used outside of
mm/memory_hotplug.c.  Move it next to unique caller
is_mem_section_removable() and make it static.

Remove prototype in <linux/memory_hotplug.h> to silence gcc warning (W=1):

  mm/page_alloc.c:7704:6: warning: no previous prototype for `is_pageblock_removable_nolock' [-Wmissing-prototypes]

Link: http://lkml.kernel.org/r/20180509190001.24789-1-malat@debian.org
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Omar Sandoval 93781325da lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep.  It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag.  In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different.  After applying this, I got the expected lockdep splats.

1: https://lwn.net/Articles/625412/

Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb3 ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Wei Yang e69438596b mm/page_alloc: remove realsize in free_area_init_core()
Highmem's realsize always equals to freesize, so it is not necessary to
spare a variable to record this.

Link: http://lkml.kernel.org/r/20180413083859.65888-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Michal Hocko 15c30bc090 mm, memory_hotplug: make has_unmovable_pages more robust
Oscar has reported:
: Due to an unfortunate setting with movablecore, memblocks containing bootmem
: memory (pages marked by get_page_bootmem()) ended up marked in zone_movable.
: So while trying to remove that memory, the system failed in do_migrate_range
: and __offline_pages never returned.
:
: This can be reproduced by running
: qemu-system-x86_64 -m 6G,slots=8,maxmem=8G -numa node,mem=4096M -numa node,mem=2048M
: and movablecore=4G kernel command line
:
: linux kernel: BIOS-provided physical RAM map:
: linux kernel: BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
: linux kernel: BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
: linux kernel: BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved
: linux kernel: BIOS-e820: [mem 0x0000000000100000-0x00000000bffdffff] usable
: linux kernel: BIOS-e820: [mem 0x00000000bffe0000-0x00000000bfffffff] reserved
: linux kernel: BIOS-e820: [mem 0x00000000feffc000-0x00000000feffffff] reserved
: linux kernel: BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
: linux kernel: BIOS-e820: [mem 0x0000000100000000-0x00000001bfffffff] usable
: linux kernel: NX (Execute Disable) protection: active
: linux kernel: SMBIOS 2.8 present.
: linux kernel: DMI: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org
: linux kernel: Hypervisor detected: KVM
: linux kernel: e820: update [mem 0x00000000-0x00000fff] usable ==> reserved
: linux kernel: e820: remove [mem 0x000a0000-0x000fffff] usable
: linux kernel: last_pfn = 0x1c0000 max_arch_pfn = 0x400000000
:
: linux kernel: SRAT: PXM 0 -> APIC 0x00 -> Node 0
: linux kernel: SRAT: PXM 1 -> APIC 0x01 -> Node 1
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x00000000-0x0009ffff]
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x00100000-0xbfffffff]
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0x13fffffff]
: linux kernel: ACPI: SRAT: Node 1 PXM 1 [mem 0x140000000-0x1bfffffff]
: linux kernel: ACPI: SRAT: Node 0 PXM 0 [mem 0x1c0000000-0x43fffffff] hotplug
: linux kernel: NUMA: Node 0 [mem 0x00000000-0x0009ffff] + [mem 0x00100000-0xbfffffff] -> [mem 0x0
: linux kernel: NUMA: Node 0 [mem 0x00000000-0xbfffffff] + [mem 0x100000000-0x13fffffff] -> [mem 0
: linux kernel: NODE_DATA(0) allocated [mem 0x13ffd6000-0x13fffffff]
: linux kernel: NODE_DATA(1) allocated [mem 0x1bffd3000-0x1bfffcfff]
:
: zoneinfo shows that the zone movable is placed into both numa nodes:
: Node 0, zone  Movable
:   pages free     160140
:         min      1823
:         low      2278
:         high     2733
:         spanned  262144
:         present  262144
:         managed  245670
: Node 1, zone  Movable
:   pages free     448427
:         min      3827
:         low      4783
:         high     5739
:         spanned  524288
:         present  524288
:         managed  515766

Note how only Node 0 has a hutplugable memory region which would rule it
out from the early memblock allocations (most likely memmap).  Node1
will surely contain memmaps on the same node and those would prevent
offlining to succeed.  So this is arguably a configuration issue.
Although one could argue that we should be more clever and rule early
allocations from the zone movable.  This would be correct but probably
not worth the effort considering what a hack movablecore is.

Anyway, We could do better for those cases though.  We rely on
start_isolate_page_range resp.  has_unmovable_pages to do their job.
The first one isolates the whole range to be offlined so that we do not
allocate from it anymore and the later makes sure we are not stumbling
over non-migrateable pages.

has_unmovable_pages is overly optimistic, however.  It doesn't check all
the pages if we are withing zone_movable because we rely that those
pages will be always migrateable.  As it turns out we are still not
perfect there.  While bootmem pages in zonemovable sound like a clear
bug which should be fixed let's remove the optimization for now and warn
if we encounter unmovable pages in zone_movable in the meantime.  That
should help for now at least.

Btw.  this wasn't a real problem until commit 72b39cfc4d ("mm,
memory_hotplug: do not fail offlining too early") because we used to
have a small number of retries and then failed.  This turned out to be
too fragile though.

Link: http://lkml.kernel.org/r/20180523125555.30039-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Oscar Salvador <osalvador@techadventures.net>
Tested-by: Oscar Salvador <osalvador@techadventures.net>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-25 18:12:11 -07:00
Joonsoo Kim d883c6cf3b Revert "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE"
This reverts the following commits that change CMA design in MM.

 3d2054ad8c ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y")

 1d47a3ec09 ("mm/cma: remove ALLOC_CMA")

 bad8c6c0b1 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE")

Ville reported a following error on i386.

  Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
  microcode: microcode updated early to revision 0x4, date = 2013-06-28
  Initializing CPU#0
  Initializing HighMem for node 0 (000377fe:00118000)
  Initializing Movable for node 0 (00000001:00118000)
  BUG: Bad page state in process swapper  pfn:377fe
  page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0
  flags: 0x80000000()
  raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001
  page dumped because: nonzero mapcount
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145
  Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013
  Call Trace:
   dump_stack+0x60/0x96
   bad_page+0x9a/0x100
   free_pages_check_bad+0x3f/0x60
   free_pcppages_bulk+0x29d/0x5b0
   free_unref_page_commit+0x84/0xb0
   free_unref_page+0x3e/0x70
   __free_pages+0x1d/0x20
   free_highmem_page+0x19/0x40
   add_highpages_with_active_regions+0xab/0xeb
   set_highmem_pages_init+0x66/0x73
   mem_init+0x1b/0x1d7
   start_kernel+0x17a/0x363
   i386_start_kernel+0x95/0x99
   startup_32_smp+0x164/0x168

The reason for this error is that the span of MOVABLE_ZONE is extended
to whole node span for future CMA initialization, and, normal memory is
wrongly freed here.  I submitted the fix and it seems to work, but,
another problem happened.

It's so late time to fix the later problem so I decide to reverting the
series.

Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-24 10:07:50 -07:00
Pavel Tatashin 6f84f8d158 xen, mm: allow deferred page initialization for xen pv domains
Juergen Gross noticed that commit f7f99100d8 ("mm: stop zeroing memory
during allocation in vmemmap") broke XEN PV domains when deferred struct
page initialization is enabled.

This is because the xen's PagePinned() flag is getting erased from
struct pages when they are initialized later in boot.

Juergen fixed this problem by disabling deferred pages on xen pv
domains.  It is desirable, however, to have this feature available as it
reduces boot time.  This fix re-enables the feature for pv-dmains, and
fixes the problem the following way:

The fix is to delay setting PagePinned flag until struct pages for all
allocated memory are initialized, i.e.  until after free_all_bootmem().

A new x86_init.hyper op init_after_bootmem() is called to let xen know
that boot allocator is done, and hence struct pages for all the
allocated memory are now initialized.  If deferred page initialization
is enabled, the rest of struct pages are going to be initialized later
in boot once page_alloc_init_late() is called.

xen_after_bootmem() walks page table's pages and marks them pinned.

Link: http://lkml.kernel.org/r/20180226160112.24724-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Juergen Gross <jgross@suse.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Jinbum Park <jinb.park7@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jia Zhang <zhang.jia@linux.alibaba.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:38 -07:00
Joonsoo Kim 1d47a3ec09 mm/cma: remove ALLOC_CMA
Now, all reserved pages for CMA region are belong to the ZONE_MOVABLE
and it only serves for a request with GFP_HIGHMEM && GFP_MOVABLE.

Therefore, we don't need to maintain ALLOC_CMA at all.

Link: http://lkml.kernel.org/r/1512114786-5085-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Joonsoo Kim bad8c6c0b1 mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE
Patch series "mm/cma: manage the memory of the CMA area by using the
ZONE_MOVABLE", v2.

0. History

This patchset is the follow-up of the discussion about the "Introduce
ZONE_CMA (v7)" [1].  Please reference it if more information is needed.

1. What does this patch do?

This patch changes the management way for the memory of the CMA area in
the MM subsystem.  Currently the memory of the CMA area is managed by
the zone where their pfn is belong to.  However, this approach has some
problems since MM subsystem doesn't have enough logic to handle the
situation that different characteristic memories are in a single zone.
To solve this issue, this patch try to manage all the memory of the CMA
area by using the MOVABLE zone.  In MM subsystem's point of view,
characteristic of the memory on the MOVABLE zone and the memory of the
CMA area are the same.  So, managing the memory of the CMA area by using
the MOVABLE zone will not have any problem.

2. Motivation

There are some problems with current approach.  See following.  Although
these problem would not be inherent and it could be fixed without this
conception change, it requires many hooks addition in various code path
and it would be intrusive to core MM and would be really error-prone.
Therefore, I try to solve them with this new approach.  Anyway,
following is the problems of the current implementation.

o CMA memory utilization

First, following is the freepage calculation logic in MM.

 - For movable allocation: freepage = total freepage
 - For unmovable allocation: freepage = total freepage - CMA freepage

Freepages on the CMA area is used after the normal freepages in the zone
where the memory of the CMA area is belong to are exhausted.  At that
moment that the number of the normal freepages is zero, so

 - For movable allocation: freepage = total freepage = CMA freepage
 - For unmovable allocation: freepage = 0

If unmovable allocation comes at this moment, allocation request would
fail to pass the watermark check and reclaim is started.  After reclaim,
there would exist the normal freepages so freepages on the CMA areas
would not be used.

FYI, there is another attempt [2] trying to solve this problem in lkml.
And, as far as I know, Qualcomm also has out-of-tree solution for this
problem.

Useless reclaim:

There is no logic to distinguish CMA pages in the reclaim path.  Hence,
CMA page is reclaimed even if the system just needs the page that can be
usable for the kernel allocation.

Atomic allocation failure:

This is also related to the fallback allocation policy for the memory of
the CMA area.  Consider the situation that the number of the normal
freepages is *zero* since the bunch of the movable allocation requests
come.  Kswapd would not be woken up due to following freepage
calculation logic.

- For movable allocation: freepage = total freepage = CMA freepage

If atomic unmovable allocation request comes at this moment, it would
fails due to following logic.

- For unmovable allocation: freepage = total freepage - CMA freepage = 0

It was reported by Aneesh [3].

Useless compaction:

Usual high-order allocation request is unmovable allocation request and
it cannot be served from the memory of the CMA area.  In compaction,
migration scanner try to migrate the page in the CMA area and make
high-order page there.  As mentioned above, it cannot be usable for the
unmovable allocation request so it's just waste.

3. Current approach and new approach

Current approach is that the memory of the CMA area is managed by the
zone where their pfn is belong to.  However, these memory should be
distinguishable since they have a strong limitation.  So, they are
marked as MIGRATE_CMA in pageblock flag and handled specially.  However,
as mentioned in section 2, the MM subsystem doesn't have enough logic to
deal with this special pageblock so many problems raised.

New approach is that the memory of the CMA area is managed by the
MOVABLE zone.  MM already have enough logic to deal with special zone
like as HIGHMEM and MOVABLE zone.  So, managing the memory of the CMA
area by the MOVABLE zone just naturally work well because constraints
for the memory of the CMA area that the memory should always be
migratable is the same with the constraint for the MOVABLE zone.

There is one side-effect for the usability of the memory of the CMA
area.  The use of MOVABLE zone is only allowed for a request with
GFP_HIGHMEM && GFP_MOVABLE so now the memory of the CMA area is also
only allowed for this gfp flag.  Before this patchset, a request with
GFP_MOVABLE can use them.  IMO, It would not be a big issue since most
of GFP_MOVABLE request also has GFP_HIGHMEM flag.  For example, file
cache page and anonymous page.  However, file cache page for blockdev
file is an exception.  Request for it has no GFP_HIGHMEM flag.  There is
pros and cons on this exception.  In my experience, blockdev file cache
pages are one of the top reason that causes cma_alloc() to fail
temporarily.  So, we can get more guarantee of cma_alloc() success by
discarding this case.

Note that there is no change in admin POV since this patchset is just
for internal implementation change in MM subsystem.  Just one minor
difference for admin is that the memory stat for CMA area will be
printed in the MOVABLE zone.  That's all.

4. Result

Following is the experimental result related to utilization problem.

8 CPUs, 1024 MB, VIRTUAL MACHINE
make -j16

<Before>
  CMA area:               0 MB            512 MB
  Elapsed-time:           92.4		186.5
  pswpin:                 82		18647
  pswpout:                160		69839

<After>
  CMA        :            0 MB            512 MB
  Elapsed-time:           93.1		93.4
  pswpin:                 84		46
  pswpout:                183		92

akpm: "kernel test robot" reported a 26% improvement in
vm-scalability.throughput:
http://lkml.kernel.org/r/20180330012721.GA3845@yexl-desktop

[1]: lkml.kernel.org/r/1491880640-9944-1-git-send-email-iamjoonsoo.kim@lge.com
[2]: https://lkml.org/lkml/2014/10/15/623
[3]: http://www.spinics.net/lists/linux-mm/msg100562.html

Link: http://lkml.kernel.org/r/1512114786-5085-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00