Commit graph

331 commits

Author SHA1 Message Date
Kirill A. Shutemov 0fda2788b0 thp: fix typo in khugepaged_scan_pmd()
!PageLRU should lead to SCAN_PAGE_LRU, not SCAN_SCAN_ABORT result.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Linus Torvalds d5e2d00898 powerpc updates for 4.6
Highlights:
  - Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
  - Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
  - Add POWER9 cputable entry from Michael Neuling
  - FPU/Altivec/VSX save/restore optimisations from Cyril Bur
  - Add support for new ftrace ABI on ppc64le from Torsten Duwe
 
 Various cleanups & minor fixes from:
  - Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
    Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
    Sukadev Bhattiprolu, Suraj Jitindar Singh.
 
 General:
  - atomics: Allow architectures to define their own __atomic_op_* helpers from
    Boqun Feng
  - Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
    variants for (cmp)xchg from Boqun Feng
  - Add powernv_defconfig from Jeremy Kerr
  - Fix BUG_ON() reporting in real mode from Balbir Singh
  - Add xmon command to dump OPAL msglog from Andrew Donnellan
  - Add xmon command to dump process/task similar to ps(1) from Douglas Miller
  - Clean up memory hotplug failure paths from David Gibson
 
 pci/eeh:
  - Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
    Yang.
  - EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
  - PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
  - PCI: Add pcibios_bus_add_device() weak function from Wei Yang
  - MAINTAINERS: Update EEH details and maintainership from Russell Currey
 
 cxl:
  - Support added to the CXL driver for running on both bare-metal and
    hypervisor systems, from Christophe Lombard and Frederic Barrat.
  - Ignore probes for virtual afu pci devices from Vaibhav Jain
 
 perf:
  - Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
  - hv-24x7: Fix usage with chip events, display change in counter values,
    display domain indices in sysfs, eliminate domain suffix in event names,
    from Sukadev Bhattiprolu
 
 Freescale:
  - Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
    optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
    other dt bits, and minor fixes/cleanup."
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
 qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
 n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
 TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
 qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
 vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
 2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
 E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
 5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
 dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
 xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
 Y6ptGm0rYAJluPNlziFj
 =qkAt
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "This was delayed a day or two by some build-breakage on old toolchains
  which we've now fixed.

  There's two PCI commits both acked by Bjorn.

  There's one commit to mm/hugepage.c which is (co)authored by Kirill.

  Highlights:
   - Restructure Linux PTE on Book3S/64 to Radix format from Paul
     Mackerras
   - Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
     Kumar K.V
   - Add POWER9 cputable entry from Michael Neuling
   - FPU/Altivec/VSX save/restore optimisations from Cyril Bur
   - Add support for new ftrace ABI on ppc64le from Torsten Duwe

  Various cleanups & minor fixes from:
   - Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
     Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
     Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.

  General:
   - atomics: Allow architectures to define their own __atomic_op_*
     helpers from Boqun Feng
   - Implement atomic{, 64}_*_return_* variants and acquire/release/
     relaxed variants for (cmp)xchg from Boqun Feng
   - Add powernv_defconfig from Jeremy Kerr
   - Fix BUG_ON() reporting in real mode from Balbir Singh
   - Add xmon command to dump OPAL msglog from Andrew Donnellan
   - Add xmon command to dump process/task similar to ps(1) from Douglas
     Miller
   - Clean up memory hotplug failure paths from David Gibson

  pci/eeh:
   - Redesign SR-IOV on PowerNV to give absolute isolation between VFs
     from Wei Yang.
   - EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
   - PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
   - PCI: Add pcibios_bus_add_device() weak function from Wei Yang
   - MAINTAINERS: Update EEH details and maintainership from Russell
     Currey

  cxl:
   - Support added to the CXL driver for running on both bare-metal and
     hypervisor systems, from Christophe Lombard and Frederic Barrat.
   - Ignore probes for virtual afu pci devices from Vaibhav Jain

  perf:
   - Export Power8 generic and cache events to sysfs from Sukadev
     Bhattiprolu
   - hv-24x7: Fix usage with chip events, display change in counter
     values, display domain indices in sysfs, eliminate domain suffix in
     event names, from Sukadev Bhattiprolu

  Freescale:
   - Updates from Scott: "Highlights include 8xx optimizations, 32-bit
     checksum optimizations, 86xx consolidation, e5500/e6500 cpu
     hotplug, more fman and other dt bits, and minor fixes/cleanup"

* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
  powerpc: Fix unrecoverable SLB miss during restore_math()
  powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
  powerpc/rcpm: Fix build break when SMP=n
  powerpc/book3e-64: Use hardcoded mttmr opcode
  powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
  powerpc/T104xRDB: add tdm riser card node to device tree
  powerpc32: PAGE_EXEC required for inittext
  powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
  powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
  powerpc/86xx: Introduce and use common dtsi
  powerpc/86xx: Update device tree
  powerpc/86xx: Move dts files to fsl directory
  powerpc/86xx: Switch to kconfig fragments approach
  powerpc/86xx: Update defconfigs
  powerpc/86xx: Consolidate common platform code
  powerpc32: Remove one insn in mulhdu
  powerpc32: small optimisation in flush_icache_range()
  powerpc: Simplify test in __dma_sync()
  powerpc32: move xxxxx_dcache_range() functions inline
  powerpc32: Remove clear_pages() and define clear_page() inline
  ...
2016-03-19 15:38:41 -07:00
Kirill A. Shutemov 5f7377147c thp: fix deadlock in split_huge_pmd()
split_huge_pmd() tries to munlock page with munlock_vma_page().  That
requires the page to locked.

If the is locked by caller, we would get a deadlock:

	Unable to find swap-space signature
	INFO: task trinity-c85:1907 blocked for more than 120 seconds.
	      Not tainted 4.4.0-00032-gf19d0bdced41-dirty #1606
	"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
	trinity-c85     D ffff88084d997608     0  1907    309 0x00000000
	Call Trace:
	  schedule+0x9f/0x1c0
	  schedule_timeout+0x48e/0x600
	  io_schedule_timeout+0x1c3/0x390
	  bit_wait_io+0x29/0xd0
	  __wait_on_bit_lock+0x94/0x140
	  __lock_page+0x1d4/0x280
	  __split_huge_pmd+0x5a8/0x10f0
	  split_huge_pmd_address+0x1d9/0x230
	  try_to_unmap_one+0x540/0xc70
	  rmap_walk_anon+0x284/0x810
	  rmap_walk_locked+0x11e/0x190
	  try_to_unmap+0x1b1/0x4b0
	  split_huge_page_to_list+0x49d/0x18a0
	  follow_page_mask+0xa36/0xea0
	  SyS_move_pages+0xaf3/0x1570
	  entry_SYSCALL_64_fastpath+0x12/0x6b
	2 locks held by trinity-c85/1907:
	 #0:  (&mm->mmap_sem){++++++}, at:  SyS_move_pages+0x933/0x1570
	 #1:  (&anon_vma->rwsem){++++..}, at:  split_huge_page_to_list+0x402/0x18a0

I don't think the deadlock is triggerable without split_huge_page()
simplifilcation patchset.

But munlock_vma_page() here is wrong: we want to munlock the page
unconditionally, no need in rmap lookup, that munlock_vma_page() does.

Let's use clear_page_mlock() instead.  It can be called under ptl.

Fixes: e90309c9f7 ("thp: allow mlocked THP again")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov fec89c109f thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers
freeze_page() and unfreeze_page() helpers evolved in rather complex
beasts.  It would be nice to cut complexity of this code.

This patch rewrites freeze_page() using standard try_to_unmap().
unfreeze_page() is rewritten with remove_migration_ptes().

The result is much simpler.

But the new variant is somewhat slower for PTE-mapped THPs.  Current
helpers iterates over VMAs the compound page is mapped to, and then over
ptes within this VMA.  New helpers iterates over small page, then over
VMA the small page mapped to, and only then find relevant pte.

We have short cut for PMD-mapped THP: we directly install migration
entries on PMD split.

I don't think the slowdown is critical, considering how much simpler
result is and that split_huge_page() is quite rare nowadays.  It only
happens due memory pressure or migration.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov 2a52bcbcc6 rmap: extend try_to_unmap() to be usable by split_huge_page()
Add support for two ttu_flags:

  - TTU_SPLIT_HUGE_PMD would split PMD if it's there, before trying to
    unmap page;

  - TTU_RMAP_LOCKED indicates that caller holds relevant rmap lock;

Also, change rwc->done to !page_mapcount() instead of !page_mapped().
try_to_unmap() works on pte level, so we are really interested in the
mappedness of this small page rather than of the compound page it's a
part of.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches 756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Mel Gorman 444eb2a449 mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure.  The problem is that
THP allocation requests potentially enter reclaim/compaction.  This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses.  While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so.  Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM.  It's been years and
it's time to throw in the towel.

First, this patch defines THP defrag as follows;

 madvise: A failed allocation will direct reclaim/compact if the application requests it
 never:   Neither reclaim/compact nor wake kswapd
 defer:   A failed allocation will wake kswapd/kcompactd
 always:  A failed allocation will direct reclaim/compact (historical behaviour)
          khugepaged defrag will enter direct/reclaim but not wake kswapd.

Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.

Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work.  The callers that
really cares are slub/slab and they are updated accordingly.  The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.

This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available.  There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary.  THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future.  In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times.  The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete.  It uses multiple threads to see
if that is a factor.  On UMA, the performance is almost identical so is
not reported but on NUMA, we see this

usemem
                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)

For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases.  Similar,
notice the large reduction in most cases in system CPU usage.  The
overall CPU time is

               4.4.0       4.4.0
        kcompactd-v1r1 nodefrag-v1r3
User        10357.65    10438.33
System       3988.88     3543.94
Elapsed      2203.01     1634.41

Which is substantial. Now, the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 128458477   278352931
Major Faults                   2174976         225
Swap Ins                      16904701           0
Swap Outs                     17359627           0
Allocation stalls                43611           0
DMA allocs                           0           0
DMA32 allocs                  19832646    19448017
Normal allocs                614488453   580941839
Movable allocs                       0           0
Direct pages scanned          24163800           0
Kswapd pages scanned                 0           0
Kswapd pages reclaimed               0           0
Direct pages reclaimed        20691346           0
Compaction stalls                42263           0
Compaction success                 938           0
Compaction failures              41325           0

This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used

thpscale Fault Latencies
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload

                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                  37429143    47564000
Major Faults                      1916        1558
Swap Ins                          1466        1079
Swap Outs                      2936863      149626
Allocation stalls                62510           3
DMA allocs                           0           0
DMA32 allocs                   6566458     6401314
Normal allocs                216361697   216538171
Movable allocs                       0           0
Direct pages scanned          25977580       17998
Kswapd pages scanned                 0     3638931
Kswapd pages reclaimed               0      207236
Direct pages reclaimed         8833714          88
Compaction stalls               103349           5
Compaction success                 270           4
Compaction failures             103079           1

Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.

I also tried the stutter benchmark.  For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available

stutter
                                 4.4.0                 4.4.0
                        kcompactd-v1r1         nodefrag-v1r3
Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently.  This shows a mix because the ideal case of mapping with THP
is not hit as often.  However, note that 99% of the mappings complete
13.79% faster.  The CPU usage here is particularly interesting

               4.4.0       4.4.0
        kcompactd-v1r1nodefrag-v1r3
User           67.50        0.99
System       1327.88       91.30
Elapsed      2079.00     2128.98

And once again we look at the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 335241922  1314582827
Major Faults                       715         819
Swap Ins                             0           0
Swap Outs                            0           0
Allocation stalls               532723           0
DMA allocs                           0           0
DMA32 allocs                1822364341  1177950222
Normal allocs               1815640808  1517844854
Movable allocs                       0           0
Direct pages scanned          21892772           0
Kswapd pages scanned          20015890    41879484
Kswapd pages reclaimed        19961986    41822072
Direct pages reclaimed        21892741           0
Compaction stalls              1065755           0
Compaction success                 514           0
Compaction failures            1065241           0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available.  We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov f9719a03de thp, vmstats: count deferred split events
Count how many times we put a THP in split queue.  Currently, it happens
on partial unmap of a THP.

Rapidly growing value can indicate that an application behaves
unfriendly wrt THP: often fault in huge page and then unmap part of it.
This leads to unnecessary memory fragmentation and the application may
require tuning.

The event also can help with debugging kernel [mis-]behaviour.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Kirill A. Shutemov 8df651c705 thp: cleanup split_huge_page()
After one of bugfixes to freeze_page(), we don't have freezed pages in
rmap, therefore mapcount of all subpages of freezed THP is zero.  And we
have assert for that.

Let's drop code which deal with non-zero mapcount of subpages.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Kirill A. Shutemov ff20c2e0ac mm: Some arch may want to use HPAGE_PMD related values as variables
With next generation power processor, we are having a new mmu model
[1] that require us to maintain a different linux page table format.

Inorder to support both current and future ppc64 systems with a single
kernel we need to make sure kernel can select between different page
table format at runtime. With the new MMU (radix MMU) added, we will
have two different pmd hugepage size 16MB for hash model and 2MB for
Radix model. Hence make HPAGE_PMD related values as a variable.

Actual conversion of HPAGE_PMD to a variable for ppc64 happens in a
followup patch.

[1] http://ibm.biz/power-isa3 (Needs registration).

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-03-03 21:18:29 +11:00
Michael Ellerman 2527083cb8 powerpc fixes for 4.5 #3
- eeh: Fix partial hotplug criterion from Gavin Shan
  - mm: Clear the invalid slot information correctly from Aneesh Kumar K.V
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWzXquAAoJEFHr6jzI4aWADHsP/2lbwqz/vS3Ep4zlySHNvStL
 /DrRN2TN35THZ59FPRxgEfeqPxTCXtbpD6zEXwD0gf6m39I2zArhaQMOHXMtVPvV
 p0nAtwR0PX/PxlQTJDpHlg074vVAD7s3iuvad6oNQObLcXhoZ7wYtbStZ9Ithm4R
 YfqZTelzsw+GfMuTYnvAQf5aoRYztUpy7OheaJbbDmSZgMFwF896ZPJnaG9rAOPE
 xcSsRaSfHiUR2NE2ua1K5yya+1ilZqrZhib7QxXgzGuxoVa2AAiPR7Hpx2kX1Wm+
 z0DqPXISzRbVf9zyLgWD3TpJ4OMHI/CYVW+t/Gx/yWCMfNcfavUrh0vPdHRVEPZu
 zxmIUoI6yv7jQ6bcfdzR5s0Mr5pYWlUj5MZg2r8aGqloYcLPk5DiENg+c0QmKI05
 kQPCBoQz2ezzJWAt1BYshkc+mlimv3ODaNWFP34Nc6kcDaSO6a0rhVOecvKuR6dv
 UBNpeh5np1rKq1wX0ri0yAmnm//yXqe+bK0I8Ctipi0++e73sVJGzfFdVvXwEhhW
 h+v1BkdgW8WK/xlH+JCPiXd5dfXrUeFI0D65Kgpb7IbFc9hcXDmp2Dv7+8zx/Wcl
 L2NpuucSDxi+LHkE10QiypgLWSKjn9OSi8PLocqABNXG8uHxIp54jRfyViBNALXF
 XlPveqTgpt7On3aa0qVh
 =bk3U
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.5-4' into next

Pull in our current fixes from 4.5, in particular the "Fix Multi hit
ERAT" bug is causing folks some grief when testing next.
2016-02-25 21:52:58 +11:00
Kirill A. Shutemov 2ac015e293 thp: call pmdp_invalidate() with correct virtual address
Sebastian Ott and Gerald Schaefer reported random crashes on s390.
It was bisected to my THP refcounting patchset.

The problem is that pmdp_invalidated() called with wrong virtual
address. It got offset up by HPAGE_PMD_SIZE by loop over ptes.

The solution is to introduce new variable to be used in loop and don't
touch 'haddr'.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-and-tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reported-and-tested-by Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-24 10:46:30 -08:00
Linus Torvalds e6a1c1e9dd powerpc fixes for 4.5 #2
- Fix build error on 32-bit with checkpoint restart from Aneesh Kumar
  - Fix dedotify for binutils >= 2.26 from Andreas Schwab
  - Don't trace hcalls on offline CPUs from Denis Kirjanov
  - eeh: Fix stale cached primary bus from Gavin Shan
  - eeh: Fix stale PE primary bus from Gavin Shan
  - mm: Fix Multi hit ERAT cause by recent THP update from Aneesh Kumar K.V
  - ioda: Set "read" permission when "write" is set from Alexey Kardashevskiy
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWx8l5AAoJEFHr6jzI4aWAeY0P/AomeQCRieoBMKJi36WX4+gU
 Cm1iBgM593VEM/KFsYtedm5+4QaCmPE+1tVm4/u0wbLeEQ8TqNLSZLniB9USE0hb
 9655gGQyFE95BZa8WfbqHOI7+BK+TkUOWGY0CfyqPVrknzSN2MCDHjUaNo1wge6l
 zmIYIkKhaQAinFSFovOdjQ63rYdk6CxsfgbP1Gl2aX0cmzWW1n07AvZLqNmLFJ+4
 L3uBXPcrEKY/nfkRi+FutoTb86ggt9J9dqCfJHHfWKn60qwhpKwiva84k3jI/BOu
 yBTFeNzlobXt0ceDSWx1ITXzKmJQokWGC5+Lo+0mDb4veAbhLgHlXdx7NUcZIB6+
 YGYGSOkeKCnbnInIOGLz45LlevJFviI94y0YY4tt++Csq/IjnBhDeTkGx7zcqRLG
 v5hl7AhykHd3Me5iRuyRRVoVyk6+318OZW450Oxxj7EtkzpSeLfHCMKxk5w1Nxuk
 tenWQeApdkTVr91m5VJNFOsrmtFDLJv51C8duiUFWzc195ejSMYDR86K+qBeaebs
 39obXHVYRnCrn9TzODIR9SnEd7dHImekQ4a3G3F54mLJ4qqUN089TDqBGY2GNuT8
 j8QVBttp3SWuZSvtvDJLxoFt2QTKxcuiMQ4FX/OAS4qWRjSR8v2WTCyBZt68l7er
 kpUnIelJSuIDVLdNuFlf
 =7Yzi
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc fixes from Michael Ellerman:
 - Fix build error on 32-bit with checkpoint restart from Aneesh Kumar
 - Fix dedotify for binutils >= 2.26 from Andreas Schwab
 - Don't trace hcalls on offline CPUs from Denis Kirjanov
 - eeh: Fix stale cached primary bus from Gavin Shan
 - eeh: Fix stale PE primary bus from Gavin Shan
 - mm: Fix Multi hit ERAT cause by recent THP update from Aneesh Kumar K.V
 - ioda: Set "read" permission when "write" is set from Alexey Kardashevskiy

* tag 'powerpc-4.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
  powerpc/ioda: Set "read" permission when "write" is set
  powerpc/mm: Fix Multi hit ERAT cause by recent THP update
  powerpc/powernv: Fix stale PE primary bus
  powerpc/eeh: Fix stale cached primary bus
  powerpc/pseries: Don't trace hcalls on offline CPUs
  powerpc: Fix dedotify for binutils >= 2.26
  powerpc/book3s_32: Fix build error with checkpoint restart
2016-02-20 09:22:11 -08:00
Kirill A. Shutemov 69a8ec2d81 thp, dax: do not try to withdraw pgtable from non-anon VMA
DAX doesn't deposit pgtables when it maps huge pages: nothing to
withdraw. It can lead to crash.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 16:23:24 -08:00
Aneesh Kumar K.V c777e2a8b6 powerpc/mm: Fix Multi hit ERAT cause by recent THP update
With ppc64 we use the deposited pgtable_t to store the hash pte slot
information. We should not withdraw the deposited pgtable_t without
marking the pmd none. This ensure that low level hash fault handling
will skip this huge pte and we will handle them at upper levels.

Recent change to pmd splitting changed the above in order to handle the
race between pmd split and exit_mmap. The race is explained below.

Consider following race:

		CPU0				CPU1
shrink_page_list()
  add_to_swap()
    split_huge_page_to_list()
      __split_huge_pmd_locked()
        pmdp_huge_clear_flush_notify()
	// pmd_none() == true
					exit_mmap()
					  unmap_vmas()
					    zap_pmd_range()
					      // no action on pmd since pmd_none() == true
	pmd_populate()

As result the THP will not be freed. The leak is detected by check_mm():

	BUG: Bad rss-counter state mm:ffff880058d2e580 idx:1 val:512

The above required us to not mark pmd none during a pmd split.

The fix for ppc is to clear the huge pte of _PAGE_USER, so that low
level fault handling code skip this pte. At higher level we do take ptl
lock. That should serialze us against the pmd split. Once the lock is
acquired we do check the pmd again using pmd_same. That should always
return false for us and hence we should retry the access. We do the
pmd_same check in all case after taking plt with
THP (do_huge_pmd_wp_page, do_huge_pmd_numa_page and
huge_pmd_set_accessed)

Also make sure we wait for irq disable section in other cpus to finish
before flipping a huge pte entry with a regular pmd entry. Code paths
like find_linux_pte_or_hugepte depend on irq disable to get
a stable pte_t pointer. A parallel thp split need to make sure we
don't convert a pmd pte to a regular pmd entry without waiting for the
irq disable section to finish.

Fixes: eef1b3ba05 ("thp: implement split_huge_pmd()")
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-02-15 21:10:04 +11:00
Kirill A. Shutemov ae026204a2 thp: make deferred_split_scan() work again
We need to iterate over split_queue, not local empty list to get
anything split from the shrinker.

Fixes: e3ae19535c ("thp: limit number of object to scan on deferred_split_scan()")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Matthew Wilcox 12c9d70bd5 mm: fix memory leak in copy_huge_pmd()
We allocate a pgtable but do not attach it to anything if the PMD is in
a DAX VMA, causing it to leak.

We certainly try to not free pgtables associated with the huge zero page
if the zero page is in a DAX VMA, so I think this is the right solution.
This needs to be properly audited.

Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-03 08:28:43 -08:00
Kirill A. Shutemov e3ae19535c thp: limit number of object to scan on deferred_split_scan()
If we have a lot of pages in queue to be split, deferred_split_scan()
can spend unreasonable amount of time under spinlock with disabled
interrupts.

Let's cap number of pages to split on scan by sc->nr_to_scan.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-03 08:28:43 -08:00
Kirill A. Shutemov cb8d68ec16 thp: change deferred_split_count() to return number of THP in queue
I've got meaning of shrinker::count_objects() wrong: it should return
number of potentially freeable objects, which is not necessary correlate
with freeable memory.

Returning 256 per THP in queue is not reasonable:
shrinker::scan_objects() never called with nr_to_scan > 128 in my setup.

Let's return 1 per THP and correct scan_object accordingly.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-03 08:28:43 -08:00
Kirill A. Shutemov a3d0a91850 thp: make split_queue per-node
Andrea Arcangeli suggested to make split queue per-node to improve
scalability.  Let's do it.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-03 08:28:43 -08:00
yalin wang 16fd0fe4aa mm: fix kernel crash in khugepaged thread
This crash is caused by NULL pointer deference, in page_to_pfn() marco,
when page == NULL :

  Unable to handle kernel NULL pointer dereference at virtual address 00000000
  Internal error: Oops: 94000006 [#1] SMP
  Modules linked in:
  CPU: 1 PID: 26 Comm: khugepaged Tainted: G        W       4.3.0-rc6-next-20151022ajb-00001-g32f3386-dirty #3
  PC is at khugepaged+0x378/0x1af8
  LR is at khugepaged+0x418/0x1af8
  Process khugepaged (pid: 26, stack limit = 0xffffffc079638020)
  Call trace:
    khugepaged+0x378/0x1af8
    kthread+0xdc/0xf4
    ret_from_fork+0xc/0x40
  Code: 35001700 f0002c60 aa0703e3 f9009fa0 (f94000e0)
  ---[ end trace 637503d8e28ae69e  ]---
  Kernel panic - not syncing: Fatal exception
  CPU2: stopping
  CPU: 2 PID: 0 Comm: swapper/2 Tainted: G      D W       4.3.0-rc6-next-20151022ajb-00001-g32f3386-dirty #3
  Hardware name: linux,dummy-virt (DT)

[akpm@linux-foundation.org: fix fat-fingered merge resolution]
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 17:20:51 -08:00
Kirill A. Shutemov b6ec57f4b9 thp: change pmd_trans_huge_lock() interface to return ptl
After THP refcounting rework we have only two possible return values
from pmd_trans_huge_lock(): success and failure.  Return-by-pointer for
ptl doesn't make much sense in this case.

Let's convert pmd_trans_huge_lock() to return ptl on success and NULL on
failure.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 17:20:51 -08:00
Kirill A. Shutemov 0b9b6fff7b thp: fix interrupt unsafe locking in split_huge_page()
split_queue_lock can be taken from interrupt context in some cases, but
I forgot to convert locking in split_huge_page() to interrupt-safe
primitives.

Let's fix this.

lockdep output:

  ======================================================
  [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ]
  4.4.0+ #259 Tainted: G        W
  ------------------------------------------------------
  syz-executor/18183 [HC0[0]:SC0[2]:HE0:SE0] is trying to acquire:
   (split_queue_lock){+.+...}, at: free_transhuge_page+0x24/0x90 mm/huge_memory.c:3436

  and this task is already holding:
   (slock-AF_INET){+.-...}, at: spin_lock_bh include/linux/spinlock.h:307
   (slock-AF_INET){+.-...}, at: lock_sock_fast+0x45/0x120 net/core/sock.c:2462
  which would create a new lock dependency:
   (slock-AF_INET){+.-...} -> (split_queue_lock){+.+...}

  but this new dependency connects a SOFTIRQ-irq-safe lock:
   (slock-AF_INET){+.-...}
  ... which became SOFTIRQ-irq-safe at:
     mark_irqflags kernel/locking/lockdep.c:2799
     __lock_acquire+0xfd8/0x4700 kernel/locking/lockdep.c:3162
     lock_acquire+0x1dc/0x430 kernel/locking/lockdep.c:3585
     __raw_spin_lock include/linux/spinlock_api_smp.h:144
     _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151
     spin_lock include/linux/spinlock.h:302
     udp_queue_rcv_skb+0x781/0x1550 net/ipv4/udp.c:1680
     flush_stack+0x50/0x330 net/ipv6/udp.c:799
     __udp4_lib_mcast_deliver+0x694/0x7f0 net/ipv4/udp.c:1798
     __udp4_lib_rcv+0x17dc/0x23e0 net/ipv4/udp.c:1888
     udp_rcv+0x21/0x30 net/ipv4/udp.c:2108
     ip_local_deliver_finish+0x2b3/0xa50 net/ipv4/ip_input.c:216
     NF_HOOK_THRESH include/linux/netfilter.h:226
     NF_HOOK include/linux/netfilter.h:249
     ip_local_deliver+0x1c4/0x2f0 net/ipv4/ip_input.c:257
     dst_input include/net/dst.h:498
     ip_rcv_finish+0x5ec/0x1730 net/ipv4/ip_input.c:365
     NF_HOOK_THRESH include/linux/netfilter.h:226
     NF_HOOK include/linux/netfilter.h:249
     ip_rcv+0x963/0x1080 net/ipv4/ip_input.c:455
     __netif_receive_skb_core+0x1620/0x2f80 net/core/dev.c:4154
     __netif_receive_skb+0x2a/0x160 net/core/dev.c:4189
     netif_receive_skb_internal+0x1b5/0x390 net/core/dev.c:4217
     napi_skb_finish net/core/dev.c:4542
     napi_gro_receive+0x2bd/0x3c0 net/core/dev.c:4572
     e1000_clean_rx_irq+0x4e2/0x1100 drivers/net/ethernet/intel/e1000e/netdev.c:1038
     e1000_clean+0xa08/0x24a0 drivers/net/ethernet/intel/e1000/e1000_main.c:3819
     napi_poll net/core/dev.c:5074
     net_rx_action+0x7eb/0xdf0 net/core/dev.c:5139
     __do_softirq+0x26a/0x920 kernel/softirq.c:273
     invoke_softirq kernel/softirq.c:350
     irq_exit+0x18f/0x1d0 kernel/softirq.c:391
     exiting_irq ./arch/x86/include/asm/apic.h:659
     do_IRQ+0x86/0x1a0 arch/x86/kernel/irq.c:252
     ret_from_intr+0x0/0x20 arch/x86/entry/entry_64.S:520
     arch_safe_halt ./arch/x86/include/asm/paravirt.h:117
     default_idle+0x52/0x2e0 arch/x86/kernel/process.c:304
     arch_cpu_idle+0xa/0x10 arch/x86/kernel/process.c:295
     default_idle_call+0x48/0xa0 kernel/sched/idle.c:92
     cpuidle_idle_call kernel/sched/idle.c:156
     cpu_idle_loop kernel/sched/idle.c:252
     cpu_startup_entry+0x554/0x710 kernel/sched/idle.c:300
     rest_init+0x192/0x1a0 init/main.c:412
     start_kernel+0x678/0x69e init/main.c:683
     x86_64_start_reservations+0x2a/0x2c arch/x86/kernel/head64.c:195
     x86_64_start_kernel+0x158/0x167 arch/x86/kernel/head64.c:184

  to a SOFTIRQ-irq-unsafe lock:
   (split_queue_lock){+.+...}
   which became SOFTIRQ-irq-unsafe at:
     mark_irqflags kernel/locking/lockdep.c:2817
     __lock_acquire+0x146e/0x4700 kernel/locking/lockdep.c:3162
     lock_acquire+0x1dc/0x430 kernel/locking/lockdep.c:3585
     __raw_spin_lock include/linux/spinlock_api_smp.h:144
     _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151
     spin_lock include/linux/spinlock.h:302
     split_huge_page_to_list+0xcc0/0x1c50 mm/huge_memory.c:3399
     split_huge_page include/linux/huge_mm.h:99
     queue_pages_pte_range+0xa38/0xef0 mm/mempolicy.c:507
     walk_pmd_range mm/pagewalk.c:50
     walk_pud_range mm/pagewalk.c:90
     walk_pgd_range mm/pagewalk.c:116
     __walk_page_range+0x653/0xcd0 mm/pagewalk.c:204
     walk_page_range+0xfe/0x2b0 mm/pagewalk.c:281
     queue_pages_range+0xfb/0x130 mm/mempolicy.c:687
     migrate_to_node mm/mempolicy.c:1004
     do_migrate_pages+0x370/0x4e0 mm/mempolicy.c:1109
     SYSC_migrate_pages mm/mempolicy.c:1453
     SyS_migrate_pages+0x640/0x730 mm/mempolicy.c:1374
     entry_SYSCALL_64_fastpath+0x16/0x7a arch/x86/entry/entry_64.S:185

  other info that might help us debug this:

   Possible interrupt unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(split_queue_lock);
                                 local_irq_disable();
                                 lock(slock-AF_INET);
                                 lock(split_queue_lock);
    <Interrupt>
      lock(slock-AF_INET);

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Arnd Bergmann 629d9d1caf mm: avoid uninitialized variable in tracepoint
A newly added tracepoint in the hugepage code uses a variable in the
error handling that is not initialized at that point:

include/trace/events/huge_memory.h:81:230: error: 'isolated' may be used uninitialized in this function [-Werror=maybe-uninitialized]

The result is relatively harmless, as the trace data will in rare
cases contain incorrect data.

This works around the problem by adding an explicit initialization.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: 7d2eba0557 ("mm: add tracepoint for scanning pages")
Reviewed-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 09:21:41 -08:00
Linus Torvalds 25eedabe01 vm: fix incorrect unlock error path in madvise_free_huge_pmd
Commit b8d3c4c300 ("mm/huge_memory.c: don't split THP page when
MADV_FREE syscall is called") introduced this new function, but got the
error handling for when pmd_trans_huge_lock() fails wrong.  In the
failure case, the lock has not been taken, and we should not unlock on
the way out.

Cc: Minchan Kim <minchan@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-17 18:33:15 -08:00
Dan Williams 3565fce3a6 mm, x86: get_user_pages() for dax mappings
A dax mapping establishes a pte with _PAGE_DEVMAP set when the driver
has established a devm_memremap_pages() mapping, i.e.  when the pfn_t
return from ->direct_access() has PFN_DEV and PFN_MAP set.  Later, when
encountering _PAGE_DEVMAP during a page table walk we lookup and pin a
struct dev_pagemap instance to keep the result of pfn_to_page() valid
until put_page().

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Dan Williams 5c7fb56e5e mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd
A dax-huge-page mapping while it uses some thp helpers is ultimately not
a transparent huge page.  The distinction is especially important in the
get_user_pages() path.  pmd_devmap() is used to distinguish dax-pmds
from pmd_huge() and pmd_trans_huge() which have slightly different
semantics.

Explicitly mark the pmd_trans_huge() helpers that dax needs by adding
pmd_devmap() checks.

[kirill.shutemov@linux.intel.com: fix regression in handling mlocked pages in  __split_huge_pmd()]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Dan Williams f25748e3c3 mm, dax: convert vmf_insert_pfn_pmd() to pfn_t
Similar to the conversion of vm_insert_mixed() use pfn_t in the
vmf_insert_pfn_pmd() to tag the resulting pte with _PAGE_DEVICE when the
pfn is backed by a devm_memremap_pages() mapping.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Ross Zwisler 01871e59af mm, dax: fix livelock, allow dax pmd mappings to become writeable
Prior to this change DAX PMD mappings that were made read-only were
never able to be made writable again.  This is because the code in
insert_pfn_pmd() that calls pmd_mkdirty() and pmd_mkwrite() would skip
these calls if the PMD already existed in the page table.

Instead, if we are doing a write always mark the PMD entry as dirty and
writeable.  Without this code we can get into a condition where we mark
the PMD as read-only, and then on a subsequent write fault we get into
an infinite loop of PMD faults where we try unsuccessfully to make the
PMD writeable.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Jeff Moyer <jmoyer@redhat.com>
Reported-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov bd56086f10 thp: fix split_huge_page() after mremap() of THP
Sasha Levin has reported KASAN out-of-bounds bug[1].  It points to "if
(!is_swap_pte(pte[i]))" in unfreeze_page_vma() as a problematic access.

The cause is that split_huge_page() doesn't handle THP correctly if it's
not allingned to PMD boundary.  It can happen after mremap().

Test-case (not always triggers the bug):

	#define _GNU_SOURCE
	#include <stdio.h>
	#include <stdlib.h>
	#include <sys/mman.h>

	#define MB (1024UL*1024)
	#define SIZE (2*MB)
	#define BASE ((void *)0x400000000000)

	int main()
	{
		char *p;

		p = mmap(BASE, SIZE, PROT_READ | PROT_WRITE,
				MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE,
				-1, 0);
		if (p == MAP_FAILED)
			perror("mmap"), exit(1);
		p = mremap(BASE, SIZE, SIZE, MREMAP_FIXED | MREMAP_MAYMOVE,
				BASE + SIZE + 8192);
		if (p == MAP_FAILED)
			perror("mremap"), exit(1);
		system("echo 1 > /sys/kernel/debug/split_huge_pages");
		return 0;
	}

The patch fixes freeze and unfreeze paths to handle page table boundary
crossing.

It also makes mapcount vs count check in split_huge_page_to_list()
stricter:
 - after freeze we don't expect any subpage mapped as we remove them
   from rmap when setting up migration entries;
 - count must be 1, meaning only caller has reference to the page;

[1] https://gist.github.com/sashalevin/c67fbea55e7c0576972a

Signed-off-by: Kirill A.  Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Minchan Kim b8d3c4c300 mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called
We don't need to split THP page when MADV_FREE syscall is called if
[start, len] is aligned with THP size.  The split could be done when VM
decide to free it in reclaim path if memory pressure is heavy.  With
that, we could avoid unnecessary THP split.

For the feature, this patch changes pte dirtness marking logic of THP.
Now, it marks every ptes of pages dirty unconditionally in splitting,
which makes MADV_FREE void.  So, instead, this patch propagates pmd
dirtiness to all pages via PG_dirty and restores pte dirtiness from
PG_dirty.  With this, if pmd is clean(ie, MADV_FREEed) when split
happens(e,g, shrink_page_list), all of pages are clean too so we could
discard them.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jason Evans <je@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Roland Dreier <roland@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov d965432234 thp: increase split_huge_page() success rate
During freeze_page(), we remove the page from rmap.  It munlocks the
page if it was mlocked.  clear_page_mlock() uses thelru cache, which
temporary pins the page.

Let's drain the lru cache before checking page's count vs.  mapcount.
The change makes mlocked page split on first attempt, if it was not
pinned by somebody else.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 49071d436b thp: add debugfs handle to split all huge pages
Writing 1 into 'split_huge_pages' will try to find and split all huge
pages in the system.  This is useful for debuging.

[akpm@linux-foundation.org: fix printk text, per Vlastimil]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov b20ce5e03b mm: prepare page_referenced() and page_idle to new THP refcounting
Both page_referenced() and page_idle_clear_pte_refs_one() assume that
THP can only be mapped with PMD, so there's no reason to look on PTEs
for PageTransHuge() pages.  That's no true anymore: THP can be mapped
with PTEs too.

The patch removes PageTransHuge() test from the functions and opencode
page table check.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov e90309c9f7 thp: allow mlocked THP again
Before THP refcounting rework, THP was not allowed to cross VMA
boundary.  So, if we have THP and we split it, PG_mlocked can be safely
transferred to small pages.

With new THP refcounting and naive approach to mlocking we can end up
with this scenario:
 1. we have a mlocked THP, which belong to one VM_LOCKED VMA.
 2. the process does munlock() on the *part* of the THP:
      - the VMA is split into two, one of them VM_LOCKED;
      - huge PMD split into PTE table;
      - THP is still mlocked;
 3. split_huge_page():
      - it transfers PG_mlocked to *all* small pages regrardless if it
	blong to any VM_LOCKED VMA.

We probably could munlock() all small pages on split_huge_page(), but I
think we have accounting issue already on step two.

Instead of forbidding mlocked pages altogether, we just avoid mlocking
PTE-mapped THPs and munlock THPs on split_huge_pmd().

This means PTE-mapped THPs will be on normal lru lists and will be split
under memory pressure by vmscan.  After the split vmscan will detect
unevictable small pages and mlock them.

With this approach we shouldn't hit situation like described above.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 9a982250f7 thp: introduce deferred_split_huge_page()
Currently we don't split huge page on partial unmap.  It's not an ideal
situation.  It can lead to memory overhead.

Furtunately, we can detect partial unmap on page_remove_rmap().  But we
cannot call split_huge_page() from there due to locking context.

It's also counterproductive to do directly from munmap() codepath: in
many cases we will hit this from exit(2) and splitting the huge page
just to free it up in small pages is not what we really want.

The patch introduce deferred_split_huge_page() which put the huge page
into queue for splitting.  The splitting itself will happen when we get
memory pressure via shrinker interface.  The page will be dropped from
list on freeing through compound page destructor.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov e9b61f1985 thp: reintroduce split_huge_page()
This patch adds implementation of split_huge_page() for new
refcountings.

Unlike previous implementation, new split_huge_page() can fail if
somebody holds GUP pin on the page.  It also means that pin on page
would prevent it from bening split under you.  It makes situation in
many places much cleaner.

The basic scheme of split_huge_page():

  - Check that sum of mapcounts of all subpage is equal to page_count()
    plus one (caller pin). Foll off with -EBUSY. This way we can avoid
    useless PMD-splits.

  - Freeze the page counters by splitting all PMD and setup migration
    PTEs.

  - Re-check sum of mapcounts against page_count(). Page's counts are
    stable now. -EBUSY if page is pinned.

  - Split compound page.

  - Unfreeze the page by removing migration entries.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov ba98828088 thp: add option to setup migration entries during PMD split
We are going to use migration PTE entries to stabilize page counts.  If
the page is mapped with PMDs we need to split the PMD and setup
migration entries.  It's reasonable to combine these operations to avoid
double-scanning over the page table.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov eef1b3ba05 thp: implement split_huge_pmd()
Original split_huge_page() combined two operations: splitting PMDs into
tables of PTEs and splitting underlying compound page.  This patch
implements split_huge_pmd() which split given PMD without splitting
other PMDs this page mapped with or underlying compound page.

Without tail page refcounting, implementation of split_huge_pmd() is
pretty straight-forward.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 4b471e8898 mm, thp: remove infrastructure for handling splitting PMDs
With new refcounting we don't need to mark PMDs splitting.  Let's drop
code to handle this.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov ddc58f27f9 mm: drop tail page refcounting
Tail page refcounting is utterly complicated and painful to support.

It uses ->_mapcount on tail pages to store how many times this page is
pinned.  get_page() bumps ->_mapcount on tail page in addition to
->_count on head.  This information is required by split_huge_page() to
be able to distribute pins from head of compound page to tails during
the split.

We will need ->_mapcount to account PTE mappings of subpages of the
compound page.  We eliminate need in current meaning of ->_mapcount in
tail pages by forbidding split entirely if the page is pinned.

The only user of tail page refcounting is THP which is marked BROKEN for
now.

Let's drop all this mess.  It makes get_page() and put_page() much
simpler.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov ad0bed24e9 thp: drop all split_huge_page()-related code
We will re-introduce new version with new refcounting later in patchset.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 122afea962 mm, vmstats: new THP splitting event
The patch replaces THP_SPLIT with tree events: THP_SPLIT_PAGE,
THP_SPLIT_PAGE_FAILED and THP_SPLIT_PMD.  It reflects the fact that we
are going to be able split PMD without the compound page and that
split_huge_page() can fail.

Signed-off-by: Kirill A.  Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 78ddc53473 thp: rename split_huge_page_pmd() to split_huge_pmd()
We are going to decouple splitting THP PMD from splitting underlying
compound page.

This patch renames split_huge_page_pmd*() functions to split_huge_pmd*()
to reflect the fact that it doesn't imply page splitting, only PMD.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov b1caa957ae khugepaged: ignore pmd tables with THP mapped with ptes
Prepare khugepaged to see compound pages mapped with pte.  For now we
won't collapse the pmd table with such pte.

khugepaged is subject for future rework wrt new refcounting.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 7479df6da9 thp, mlock: do not allow huge pages in mlocked area
With new refcounting THP can belong to several VMAs.  This makes tricky
to track THP pages, when they partially mlocked.  It can lead to leaking
mlocked pages to non-VM_LOCKED vmas and other problems.

With this patch we will split all pages on mlock and avoid
fault-in/collapse new THP in VM_LOCKED vmas.

I've tried alternative approach: do not mark THP pages mlocked and keep
them on normal LRUs.  This way vmscan could try to split huge pages on
memory pressure and free up subpages which doesn't belong to VM_LOCKED
vmas.  But this is user-visible change: we screw up Mlocked accouting
reported in meminfo, so I had to leave this approach aside.

We can bring something better later, but this should be good enough for
now.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 1f25fe20a7 mm, thp: adjust conditions when we can reuse the page on WP fault
With new refcounting we will be able map the same compound page with
PTEs and PMDs.  It requires adjustment to conditions when we can reuse
the page on write-protection fault.

For PTE fault we can't reuse the page if it's part of huge page.

For PMD we can only reuse the page if nobody else maps the huge page or
it's part.  We can do it by checking page_mapcount() on each sub-page,
but it's expensive.

The cheaper way is to check page_count() to be equal 1: every mapcount
takes page reference, so this way we can guarantee, that the PMD is the
only mapping.

This approach can give false negative if somebody pinned the page, but
that doesn't affect correctness.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov f627c2f537 memcg: adjust to support new THP refcounting
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup.  We need
to get information from caller to know whether it was mapped with PMD or
PTE.

We do uncharge when last reference on the page gone.  At that point if
we see PageTransHuge() it means we need to unchange whole huge page.

The tricky part is partial unmap -- when we try to unmap part of huge
page.  We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered.  In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker.  This
should be good enough.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00