Commit graph

20 commits

Author SHA1 Message Date
Con Kolivas 69f7c0a1be [PATCH] sched: remove SMT nice
Remove the SMT-nice feature which idles sibling cpus on SMT cpus to
facilitiate nice working properly where cpu power is shared.  The idling of
cpus in the presence of runnable tasks is considered too fragile, easy to
break with outside code, and the complexity of managing this system if an
architecture comes along with many logical cores sharing cpu power will be
unworkable.

Remove the associated per_cpu_gain variable in sched_domains used only by
this code.

Also:

  The reason is that with dynticks enabled, this code breaks without yet
  further tweaks so dynticks brought on the rapid demise of this code.  So
  either we tweak this code or kill it off entirely.  It was Ingo's preference
  to kill it off.  Either way this needs to happen for 2.6.21 since dynticks
  has gone in.

Signed-off-by: Con Kolivas <kernel@kolivas.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-05 07:57:51 -08:00
Christoph Lameter 08c183f31b [PATCH] sched: add option to serialize load balancing
Large sched domains can be very expensive to scan.  Add an option SD_SERIALIZE
to the sched domain flags.  If that flag is set then we make sure that no
other such domain is being balanced.

[akpm@osdl.org: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Peter Williams <pwil3058@bigpond.net.au>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 09:55:43 -08:00
Siddha, Suresh B 1a84887080 [PATCH] sched: introduce child field in sched_domain
Introduce the child field in sched_domain struct and use it in
sched_balance_self().

We will also use this field in cleaning up the sched group cpu_power
setup(done in a different patch) code.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03 08:04:06 -07:00
Siddha, Suresh B 5c45bf279d [PATCH] sched: mc/smt power savings sched policy
sysfs entries 'sched_mc_power_savings' and 'sched_smt_power_savings' in
/sys/devices/system/cpu/ control the MC/SMT power savings policy for the
scheduler.

Based on the values (1-enable, 0-disable) for these controls, sched groups
cpu power will be determined for different domains.  When power savings
policy is enabled and under light load conditions, scheduler will minimize
the physical packages/cpu cores carrying the load and thus conserving
power(with a perf impact based on the workload characteristics...  see OLS
2005 CMP kernel scheduler paper for more details..)

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Con Kolivas <kernel@kolivas.org>
Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 17:32:45 -07:00
Rohit Seth f3fa8ebc25 [PATCH] x86_64: moving phys_proc_id and cpu_core_id to cpuinfo_x86
Most of the fields of cpuinfo are defined in cpuinfo_x86 structure.
This patch moves the phys_proc_id and cpu_core_id for each processor to
cpuinfo_x86 structure as well.

Signed-off-by: Rohit Seth <rohitseth@google.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-26 10:48:19 -07:00
Andi Kleen ed0a893fc8 [PATCH] x86_64: Remove bogus comment in topology.h
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-26 10:48:15 -07:00
David Woodhouse 62c4f0a2d5 Don't include linux/config.h from anywhere else in include/
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-04-26 12:56:16 +01:00
Siddha, Suresh B 1e9f28fa1e [PATCH] sched: new sched domain for representing multi-core
Add a new sched domain for representing multi-core with shared caches
between cores.  Consider a dual package system, each package containing two
cores and with last level cache shared between cores with in a package.  If
there are two runnable processes, with this appended patch those two
processes will be scheduled on different packages.

On such systems, with this patch we have observed 8% perf improvement with
specJBB(2 warehouse) benchmark and 35% improvement with CFP2000 rate(with 2
users).

This new domain will come into play only on multi-core systems with shared
caches.  On other systems, this sched domain will be removed by domain
degeneration code.  This new domain can be also used for implementing power
savings policy (see OLS 2005 CMP kernel scheduler paper for more details..
I will post another patch for power savings policy soon)

Most of the arch/* file changes are for cpu_coregroup_map() implementation.

Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:43 -08:00
Zhang, Yanmin 69dcc99199 [PATCH] Export cpu topology in sysfs
The patch implements cpu topology exportation by sysfs.

Items (attributes) are similar to /proc/cpuinfo.

1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
	represent the physical package id of  cpu X;
2) /sys/devices/system/cpu/cpuX/topology/core_id:
	represent the cpu core id to cpu X;
3) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
	represent the thread siblings to cpu X in the same core;
4) /sys/devices/system/cpu/cpuX/topology/core_siblings:
	represent the thread siblings to cpu X in the same physical package;

To implement it in an architecture-neutral way, a new source file,
driver/base/topology.c, is to export the 5 attributes.

If one architecture wants to support this feature, it just needs to
implement 4 defines, typically in file include/asm-XXX/topology.h.
The 4 defines are:
#define topology_physical_package_id(cpu)
#define topology_core_id(cpu)
#define topology_thread_siblings(cpu)
#define topology_core_siblings(cpu)

The type of **_id is int.
The type of siblings is cpumask_t.

To be consistent on all architectures, the 4 attributes should have
deafult values if their values are unavailable. Below is the rule.

1) physical_package_id: If cpu has no physical package id, -1 is the
default value.

2) core_id: If cpu doesn't support multi-core, its core id is 0.

3) thread_siblings: Just include itself, if the cpu doesn't support
HT/multi-thread.

4) core_siblings: Just include itself, if the cpu doesn't support
multi-core and HT/Multi-thread.

So be careful when declaring the 4 defines in include/asm-XXX/topology.h.

If an attribute isn't defined on an architecture, it won't be exported.

Thank Nathan, Greg, Andi, Paul and Venki.

The patch provides defines for i386/x86_64/ia64.

Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-03 08:32:09 -08:00
akpm@osdl.org 198e2f1811 [PATCH] scheduler cache-hot-autodetect
)

From: Ingo Molnar <mingo@elte.hu>

This is the latest version of the scheduler cache-hot-auto-tune patch.

The first problem was that detection time scaled with O(N^2), which is
unacceptable on larger SMP and NUMA systems. To solve this:

- I've added a 'domain distance' function, which is used to cache
  measurement results. Each distance is only measured once. This means
  that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
  distances 0 and 1, and on SMP distance 0 is measured. The code walks
  the domain tree to determine the distance, so it automatically follows
  whatever hierarchy an architecture sets up. This cuts down on the boot
  time significantly and removes the O(N^2) limit. The only assumption
  is that migration costs can be expressed as a function of domain
  distance - this covers the overwhelming majority of existing systems,
  and is a good guess even for more assymetric systems.

  [ People hacking systems that have assymetries that break this
    assumption (e.g. different CPU speeds) should experiment a bit with
    the cpu_distance() function. Adding a ->migration_distance factor to
    the domain structure would be one possible solution - but lets first
    see the problem systems, if they exist at all. Lets not overdesign. ]

Another problem was that only a single cache-size was used for measuring
the cost of migration, and most architectures didnt set that variable
up. Furthermore, a single cache-size does not fit NUMA hierarchies with
L3 caches and does not fit HT setups, where different CPUs will often
have different 'effective cache sizes'. To solve this problem:

- Instead of relying on a single cache-size provided by the platform and
  sticking to it, the code now auto-detects the 'effective migration
  cost' between two measured CPUs, via iterating through a wide range of
  cachesizes. The code searches for the maximum migration cost, which
  occurs when the working set of the test-workload falls just below the
  'effective cache size'. I.e. real-life optimized search is done for
  the maximum migration cost, between two real CPUs.

  This, amongst other things, has the positive effect hat if e.g. two
  CPUs share a L2/L3 cache, a different (and accurate) migration cost
  will be found than between two CPUs on the same system that dont share
  any caches.

(The reliable measurement of migration costs is tricky - see the source
for details.)

Furthermore i've added various boot-time options to override/tune
migration behavior.

Firstly, there's a blanket override for autodetection:

	migration_cost=1000,2000,3000

will override the depth 0/1/2 values with 1msec/2msec/3msec values.

Secondly, there's a global factor that can be used to increase (or
decrease) the autodetected values:

	migration_factor=120

will increase the autodetected values by 20%. This option is useful to
tune things in a workload-dependent way - e.g. if a workload is
cache-insensitive then CPU utilization can be maximized by specifying
migration_factor=0.

I've tested the autodetection code quite extensively on x86, on 3
P3/Xeon/2MB, and the autodetected values look pretty good:

Dual Celeron (128K L2 cache):

 ---------------------
 migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
 ---------------------
           [00]    [01]
 [00]:     -     1.7(1)
 [01]:   1.7(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (0) 1.7 (1784008)
 ---------------------

Here the slow memory subsystem dominates system performance, and even
though caches are small, the migration cost is 1.7 msecs.

Dual HT P4 (512K L2 cache):

 ---------------------
 migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
 ---------------------
           [00]    [01]    [02]    [03]
 [00]:     -     0.4(1)  0.0(0)  0.4(1)
 [01]:   0.4(1)    -     0.4(1)  0.0(0)
 [02]:   0.0(0)  0.4(1)    -     0.4(1)
 [03]:   0.4(1)  0.0(0)  0.4(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (33900) 0.4 (448514)
 ---------------------

Here it can be seen that there is no migration cost between two HT
siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.

8-way P3/Xeon [2MB L2 cache]:

 ---------------------
 migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
 ---------------------
           [00]    [01]    [02]    [03]    [04]    [05]    [06]    [07]
 [00]:     -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [01]:  19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [02]:  19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [03]:  19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1) 19.2(1)
 [04]:  19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1) 19.2(1)
 [05]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1) 19.2(1)
 [06]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -    19.2(1)
 [07]:  19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)    -
 ---------------------
 cacheflush times [2]: 0.0 (0) 19.2 (19281756)
 ---------------------

This one has huge caches and a relatively slow memory subsystem - so the
migration cost is 19 msecs.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: <wilder@us.ibm.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-12 09:08:50 -08:00
Ravikiran G Thirumalai c660439ba9 [PATCH] x86_64/ia64 : Fix compilation error for node_to_first_cpu
Fixes a compiler error in node_to_first_cpu, __ffs expects unsigned long as
a parameter; instead cpumask_t was being passed.  The macro
node_to_first_cpu was not yet used in x86_64 and ia64 arches, and so we never
hit this.  This patch replaces __ffs with first_cpu macro, similar to other
arches.

Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Ravikiran G Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-12-24 12:30:22 -08:00
Andi Kleen 69d81fcde7 [PATCH] x86_64: Speed up numa_node_id by putting it directly into the PDA
Not go from the CPU number to an mapping array.
Mode number is often used now in fast paths.

This also adds a generic numa_node_id to all the topology includes

Suggested by Eric Dumazet

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:14 -08:00
Andi Kleen 69e1a33f62 [PATCH] x86-64: Use ACPI PXM to parse PCI<->node assignments
Since this is shared code I had to implement it for i386 too

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-12 10:49:57 -07:00
Nick Piggin 687f1661d3 [PATCH] sched: sched tuning
Do some basic initial tuning.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:42 -07:00
Nick Piggin 147cbb4bbe [PATCH] sched: balance on fork
Reimplement the balance on exec balancing to be sched-domains aware.  Use this
to also do balance on fork balancing.  Make x86_64 do balance on fork over the
NUMA domain.

The problem that the non sched domains aware blancing became apparent on dual
core, multi socket opterons.  What we want is for the new tasks to be sent to
a different socket, but more often than not, we would first load up our
sibling core, or fill two cores of a single remote socket before selecting a
new one.

This gives large improvements to STREAM on such systems.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:42 -07:00
Nick Piggin cafb20c1f9 [PATCH] sched: no aggressive idle balancing
Remove the very aggressive idle stuff that has recently gone into 2.6 - it is
going against the direction we are trying to go.  Hopefully we can regain
performance through other methods.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:42 -07:00
Nick Piggin 7897986bad [PATCH] sched: balance timers
Do CPU load averaging over a number of different intervals.  Allow each
interval to be chosen by sending a parameter to source_load and target_load.
0 is instantaneous, idx > 0 returns a decaying average with the most recent
sample weighted at 2^(idx-1).  To a maximum of 3 (could be easily increased).

So generally a higher number will result in more conservative balancing.

Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:41 -07:00
Christoph Lameter 8c5a09082f [PATCH] x86/x86_64: pcibus_to_node
Define pcibus_to_node to be able to figure out which NUMA node contains a
given PCI device.  This defines pcibus_to_node(bus) in
include/linux/topology.h and adjusts the macros for i386 and x86_64 that
already provided a way to determine the cpumask of a pci device.

x86_64 was changed to not build an array of cpumasks anymore.  Instead an
array of nodes is build which can be used to generate the cpumask via
node_to_cpumask.

Signed-off-by: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:08 -07:00
Matt Tolentino 2b97690f4c [PATCH] reorganize x86-64 NUMA and DISCONTIGMEM config options
In order to use the alternative sparsemem implmentation for NUMA kernels,
we need to reorganize the config options.  This patch effectively abstracts
out the CONFIG_DISCONTIGMEM options to CONFIG_NUMA in most cases.  Thus,
the discontigmem implementation may be employed as always, but the
sparsemem implementation may be used alternatively.

Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:06 -07:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00