Commit graph

13646 commits

Author SHA1 Message Date
Trond Myklebust d508afb437 NFS: Fix a double free in nfs_parse_mount_options()
Due to an apparent typo, commit a67d18f89f
(NFS: load the rpc/rdma transport module automatically) lead to the
'proto=' mount option doing a double free, while Opt_mountproto leaks a
string.

Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 17:19:48 -07:00
Linus Torvalds bbae8bcc49 ext3: make default data ordering mode configurable
This makes the defautl ext3 data ordering mode (when no explicit
ordering is set) configurable, so as to allow people to default to
'data=writeback' and get the resulting latency improvements.

This is a non-issue if a filesystem has been explicitly set to some
ordering (with 'tune2fs').

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 17:16:47 -07:00
Linus Torvalds e0724bf6e4 Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
* 'linux-next' of git://git.infradead.org/ubifs-2.6:
  UBIFS: fix recovery bug
  UBIFS: add R/O compatibility
  UBIFS: fix compiler warnings
  UBIFS: fully sort GCed nodes
  UBIFS: fix commentaries
  UBIFS: introduce a helpful variable
  UBIFS: use KERN_CONT
  UBIFS: fix lprops committing bug
  UBIFS: fix bogus assertion
  UBIFS: fix bug where page is marked uptodate when out of space
  UBIFS: amend key_hash return value
  UBIFS: improve find function interface
  UBIFS: list usage cleanup
  UBIFS: fix dbg_chk_lpt_sz()
2009-04-06 15:00:19 -07:00
Linus Torvalds 22ae77bc7a Merge git://git.infradead.org/mtd-2.6
* git://git.infradead.org/mtd-2.6: (53 commits)
  [MTD] struct device - replace bus_id with dev_name(), dev_set_name()
  [MTD] [NOR] Fixup for Numonyx M29W128 chips
  [MTD] mtdpart: Make ecc_stats more realistic.
  powerpc/85xx: TQM8548: Update DTS file for multi-chip support
  powerpc: NAND: FSL UPM: document new bindings
  [MTD] [NAND] FSL-UPM: Add wait flags to support board/chip specific delays
  [MTD] [NAND] FSL-UPM: add multi chip support
  [MTD] [NOR] Add device parent info to physmap_of
  [MTD] [NAND] Add support for NAND on the Socrates board
  [MTD] [NAND] Add support for 4KiB pages.
  [MTD] sysfs support should not depend on CONFIG_PROC_FS
  [MTD] [NAND] Add parent info for CAFÉ controller
  [MTD] support driver model updates
  [MTD] driver model updates (part 2)
  [MTD] driver model updates
  [MTD] [NAND] move gen_nand's probe function to .devinit.text
  [MTD] [MAPS] move sa1100 flash's probe function to .devinit.text
  [MTD] fix use after free in register_mtd_blktrans
  [MTD] [MAPS] Drop now unused sharpsl-flash map
  [MTD] ofpart: Check name property to determine partition nodes.
  ...

Manually fix trivial conflict in drivers/mtd/maps/Makefile
2009-04-06 14:56:26 -07:00
Linus Torvalds 12fe32e4f9 Merge branch 'kmemtrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'kmemtrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  kmemtrace: trace kfree() calls with NULL or zero-length objects
  kmemtrace: small cleanups
  kmemtrace: restore original tracing data binary format, improve ABI
  kmemtrace: kmemtrace_alloc() must fill type_id
  kmemtrace: use tracepoints
  kmemtrace, rcu: don't include unnecessary headers, allow kmemtrace w/ tracepoints
  kmemtrace, rcu: fix rcupreempt.c data structure dependencies
  kmemtrace, rcu: fix rcu_tree_trace.c data structure dependencies
  kmemtrace, rcu: fix linux/rcutree.h and linux/rcuclassic.h dependencies
  kmemtrace, mm: fix slab.h dependency problem in mm/failslab.c
  kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_unlzma.c
  kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_bunzip2.c
  kmemtrace, kbuild: fix slab.h dependency problem in lib/decompress_inflate.c
  kmemtrace, squashfs: fix slab.h dependency problem in squasfs
  kmemtrace, befs: fix slab.h dependency problem
  kmemtrace, security: fix linux/key.h header file dependencies
  kmemtrace, fs: fix linux/fdtable.h header file dependencies
  kmemtrace, fs: uninline simple_transaction_set()
  kmemtrace, fs, security: move alloc_secdata() and free_secdata() to linux/security.h
2009-04-06 13:30:00 -07:00
Linus Torvalds a63856252d Merge branch 'for-2.6.30' of git://linux-nfs.org/~bfields/linux
* 'for-2.6.30' of git://linux-nfs.org/~bfields/linux: (81 commits)
  nfsd41: define nfsd4_set_statp as noop for !CONFIG_NFSD_V4
  nfsd41: define NFSD_DRC_SIZE_SHIFT in set_max_drc
  nfsd41: Documentation/filesystems/nfs41-server.txt
  nfsd41: CREATE_EXCLUSIVE4_1
  nfsd41: SUPPATTR_EXCLCREAT attribute
  nfsd41: support for 3-word long attribute bitmask
  nfsd: dynamically skip encoded fattr bitmap in _nfsd4_verify
  nfsd41: pass writable attrs mask to nfsd4_decode_fattr
  nfsd41: provide support for minor version 1 at rpc level
  nfsd41: control nfsv4.1 svc via /proc/fs/nfsd/versions
  nfsd41: add OPEN4_SHARE_ACCESS_WANT nfs4_stateid bmap
  nfsd41: access_valid
  nfsd41: clientid handling
  nfsd41: check encode size for sessions maxresponse cached
  nfsd41: stateid handling
  nfsd: pass nfsd4_compound_state* to nfs4_preprocess_{state,seq}id_op
  nfsd41: destroy_session operation
  nfsd41: non-page DRC for solo sequence responses
  nfsd41: Add a create session replay cache
  nfsd41: create_session operation
  ...
2009-04-06 13:25:56 -07:00
Dave Chinner 8de2bf937a xfs: remove xfs_flush_space
The only thing we need to do now when we get an ENOSPC condition during delayed
allocation reservation is flush all the other inodes with delalloc blocks on
them and retry without EOF preallocation. Remove the unneeded mess that is
xfs_flush_space() and just call xfs_flush_inodes() directly from
xfs_iomap_write_delay().

Also, change the location of the retry label to avoid trying to do EOF
preallocation because we don't want to do that at ENOSPC. This enables us to
remove the BMAPI_SYNC flag as it is no longer used.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:49:12 +02:00
Dave Chinner 153fec43ce xfs: flush delayed allcoation blocks on ENOSPC in create
If we are creating lots of small files, we can fail to get
a reservation for inode create earlier than we should due to
EOF preallocation done during delayed allocation reservation.
Hence on the first reservation ENOSPC failure flush all the
delayed allocation blocks out of the system and retry.

This fixes the last commonly triggered spurious ENOSPC issue
that has been reported.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:48:30 +02:00
Dave Chinner e43afd72d2 xfs: block callers of xfs_flush_inodes() correctly
xfs_flush_inodes() currently uses a magic timeout to wait for
some inodes to be flushed before returning. This isn't
really reliable but used to be the best that could be done
due to deadlock potential of waiting for the entire flush.

Now the inode flush is safe to execute while we hold page
and inode locks, we can wait for all the inodes to flush
synchronously. Convert the wait mechanism to a completion
to do this efficiently. This should remove all remaining
spurious ENOSPC errors from the delayed allocation reservation
path.

This is extracted almost line for line from a larger patch
from Mikulas Patocka.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:47:27 +02:00
Dave Chinner 5825294edd xfs: make inode flush at ENOSPC synchronous
When we are writing to a single file and hit ENOSPC, we trigger a background
flush of the inode and try again.  Because we hold page locks and the iolock,
the flush won't proceed until after we release these locks. This occurs once
we've given up and ENOSPC has been reported. Hence if this one is the only
dirty inode in the system, we'll get an ENOSPC prematurely.

To fix this, remove the async flush from the allocation routines and move
it to the top of the write path where we can do a synchronous flush
and retry the write again. Only retry once as a second ENOSPC indicates
that we really are ENOSPC.

This avoids a page cache deadlock when trying to do this flush synchronously
in the allocation layer that was identified by Mikulas Patocka.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:45:44 +02:00
Dave Chinner a8d770d987 xfs: use xfs_sync_inodes() for device flushing
Currently xfs_device_flush calls sync_blockdev() which is
a no-op for XFS as all it's metadata is held in a different
address to the one sync_blockdev() works on.

Call xfs_sync_inodes() instead to flush all the delayed
allocation blocks out. To do this as efficiently as possible,
do it via two passes - one to do an async flush of all the
dirty blocks and a second to wait for all the IO to complete.
This requires some modification to the xfs-sync_inodes_ag()
flush code to do efficiently.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:44:54 +02:00
Dave Chinner 9d7fef74b2 xfs: inform the xfsaild of the push target before sleeping
When trying to reserve log space, we find the amount of space
we need, then go to sleep waiting for space. When we are
woken, we try to push the tail of the log forward to make
sure we have space available.

Unfortunately, this means that if there is not space available, and
everyone who needs space goes to sleep there is no-one left to push
the tail of the log to make space available. Once we have a thread
waiting for space to become available, the others queue up behind
it in a FIFO, and none of them push the tail of the log.

This can result in everyone going to sleep in xlog_grant_log_space()
if the first sleeper races with the last I/O that moves the tail
of the log forward. With no further I/O tomove the tail of the log,
there is nothing to wake the sleepers and hence all transactions
just stop.

Fix this by making sure the xfsaild will create enough space for the
transaction that is about to sleep by moving the push target far
enough forwards to ensure that that the curent proceeees will have
enough space available when it is woken. That is, we push the
AIL before we go to sleep.

Because we've inserted the log ticket into the queue before we've
pushed and gone to sleep, subsequent transactions will wait behind
this one. Hence we are guaranteed to have space available when we
are woken.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:42:59 +02:00
Dave Chinner c626d174cf xfs: prevent unwritten extent conversion from blocking I/O completion
Unwritten extent conversion can recurse back into the filesystem due
to memory allocation. Memory reclaim requires I/O completions to be
processed to allow the callers to make progress. If the I/O
completion workqueue thread is doing the recursion, then we have a
deadlock situation.

Move unwritten extent completion into it's own workqueue so it
doesn't block I/O completions for normal delayed allocation or
overwrite data.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:42:11 +02:00
Dave Chinner 705db3fd46 xfs: fix double free of inode
If we fail to initialise the VFS inode in inode_init_always(),
it will call ->delete_inode internally resulting in the inode being
freed. Hence we need to delay the call to inode_init_always()
until after the XFS inode is sufficient set up to handle a
call to ->delete_inode, and then if that fails do not touch
the inode again at all as it has been freed.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:40:17 +02:00
Dave Chinner a6cb767e24 xfs: validate log feature fields correctly
If the large log sector size feature bit is set in the
superblock by accident (say disk corruption), the then
fields that are now considered valid are not checked on
production kernels. The checks are present as ASSERT
statements so cause a panic on a debug kernel.

Change this so that the fields are validity checked if
the feature bit is set and abort the log mount if the
fields do not contain valid values.

Reported-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2009-04-06 18:39:27 +02:00
Benny Halevy f0ad670d70 nfsd41: define NFSD_DRC_SIZE_SHIFT in set_max_drc
Fixes the following compiler error:
fs/nfsd/nfssvc.c: In function 'set_max_drc':
fs/nfsd/nfssvc.c:240: error: 'NFSD_DRC_SIZE_SHIFT' undeclared

CONFIG_NFSD_V4 is not set

Reported-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-06 09:17:53 -07:00
Jens Axboe 1aa2a7cc6f block: switch sync_dirty_buffer() over to WRITE_SYNC
We should now have the logic in place to handle this properly
without regressing on the write performance, so re-enable
the sync writes.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 08:04:54 -07:00
Jens Axboe aeb6fafb8f block: Add flag for telling the IO schedulers NOT to anticipate more IO
By default, CFQ will anticipate more IO from a given io context if the
previously completed IO was sync. This used to be fine, since the only
sync IO was reads and O_DIRECT writes. But with more "normal" sync writes
being used now, we don't want to anticipate for those.

Add a bio/request flag that informs the IO scheduler that this is a sync
request that we should not idle for. Introduce WRITE_ODIRECT specifically
for O_DIRECT writes, and make sure that the other sync writes set this
flag.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 08:04:54 -07:00
Jens Axboe 4194b1eaf1 jbd2: use WRITE_SYNC_PLUG instead of WRITE_SYNC
When you are going to be submitting several sync writes, we want to
give the IO scheduler a chance to merge some of them. Instead of
using the implicitly unplugging WRITE_SYNC variant, use WRITE_SYNC_PLUG
and rely on sync_buffer() doing the unplug when someone does a
wait_on_buffer()/lock_buffer().

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 08:04:54 -07:00
Jens Axboe 6c4bac6b33 jbd: use WRITE_SYNC_PLUG instead of WRITE_SYNC
When you are going to be submitting several sync writes, we want to
give the IO scheduler a chance to merge some of them. Instead of
using the implicitly unplugging WRITE_SYNC variant, use WRITE_SYNC_PLUG
and rely on sync_buffer() doing the unplug when someone does a
wait_on_buffer()/lock_buffer().

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 08:04:53 -07:00
Jens Axboe 9cf6b720f8 block: fsync_buffers_list() should use SWRITE_SYNC_PLUG
Then it can submit all the buffers without unplugging for each one.
We will kick off the pending IO if we come across a new address space.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-06 08:04:53 -07:00
Linus Torvalds 714f83d5d9 Merge branch 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (413 commits)
  tracing, net: fix net tree and tracing tree merge interaction
  tracing, powerpc: fix powerpc tree and tracing tree interaction
  ring-buffer: do not remove reader page from list on ring buffer free
  function-graph: allow unregistering twice
  trace: make argument 'mem' of trace_seq_putmem() const
  tracing: add missing 'extern' keywords to trace_output.h
  tracing: provide trace_seq_reserve()
  blktrace: print out BLK_TN_MESSAGE properly
  blktrace: extract duplidate code
  blktrace: fix memory leak when freeing struct blk_io_trace
  blktrace: fix blk_probes_ref chaos
  blktrace: make classic output more classic
  blktrace: fix off-by-one bug
  blktrace: fix the original blktrace
  blktrace: fix a race when creating blk_tree_root in debugfs
  blktrace: fix timestamp in binary output
  tracing, Text Edit Lock: cleanup
  tracing: filter fix for TRACE_EVENT_FORMAT events
  ftrace: Using FTRACE_WARN_ON() to check "freed record" in ftrace_release()
  x86: kretprobe-booster interrupt emulation code fix
  ...

Fix up trivial conflicts in
 arch/parisc/include/asm/ftrace.h
 include/linux/memory.h
 kernel/extable.c
 kernel/module.c
2009-04-05 11:04:19 -07:00
Thiemo Nagel e44543b83b ext4: Fix off-by-one-error in ext4_valid_extent_idx()
Signed-off-by: Thiemo Nagel <thiemo.nagel@ph.tum.de>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2009-04-04 23:30:44 -04:00
Thiemo Nagel f73953c065 ext4: Fix big-endian problem in __ext4_check_blockref()
Commit fe2c8191 introduced a regression on big-endian system, because
the checks to make sure block references in non-extent inodes are
valid failed to use le32_to_cpu().

Reported-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Thiemo Nagel <thiemo.nagel@ph.tum.de>
Tested-by: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
2009-04-07 18:46:47 -04:00
Linus Torvalds 601cc11d05 Make non-compat preadv/pwritev use native register size
Instead of always splitting the file offset into 32-bit 'high' and 'low'
parts, just split them into the largest natural word-size - which in C
terms is 'unsigned long'.

This allows 64-bit architectures to avoid the unnecessary 32-bit
shifting and masking for native format (while the compat interfaces will
obviously always have to do it).

This also changes the order of 'high' and 'low' to be "low first".  Why?
Because when we have it like this, the 64-bit system calls now don't use
the "pos_high" argument at all, and it makes more sense for the native
system call to simply match the user-mode prototype.

This results in a much more natural calling convention, and allows the
compiler to generate much more straightforward code.  On x86-64, we now
generate

        testq   %rcx, %rcx      # pos_l
        js      .L122   #,
        movq    %rcx, -48(%rbp) # pos_l, pos

from the C source

        loff_t pos = pos_from_hilo(pos_h, pos_l);
	...
        if (pos < 0)
                return -EINVAL;

and the 'pos_h' register isn't even touched.  It used to generate code
like

        mov     %r8d, %r8d      # pos_low, pos_low
        salq    $32, %rcx       #, tmp71
        movq    %r8, %rax       # pos_low, pos.386
        orq     %rcx, %rax      # tmp71, pos.386
        js      .L122   #,
        movq    %rax, -48(%rbp) # pos.386, pos

which isn't _that_ horrible, but it does show how the natural word size
is just a more sensible interface (same arguments will hold in the user
level glibc wrapper function, of course, so the kernel side is just half
of the equation!)

Note: in all cases the user code wrapper can again be the same. You can
just do

	#define HALF_BITS (sizeof(unsigned long)*4)
	__syscall(PWRITEV, fd, iov, count, offset, (offset >> HALF_BITS) >> HALF_BITS);

or something like that.  That way the user mode wrapper will also be
nicely passing in a zero (it won't actually have to do the shifts, the
compiler will understand what is going on) for the last argument.

And that is a good idea, even if nobody will necessarily ever care: if
we ever do move to a 128-bit lloff_t, this particular system call might
be left alone.  Of course, that will be the least of our worries if we
really ever need to care, so this may not be worth really caring about.

[ Fixed for lost 'loff_t' cast noticed by Andrew Morton ]

Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ralf Baechle <ralf@linux-mips.org>>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-04 14:20:34 -07:00
Benny Halevy 79fb54abd2 nfsd41: CREATE_EXCLUSIVE4_1
Implement the CREATE_EXCLUSIVE4_1 open mode conforming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26

This mode allows the client to atomically create a file
if it doesn't exist while setting some of its attributes.

It must be implemented if the server supports persistent
reply cache and/or pnfs.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:23 -07:00
Benny Halevy 8c18f2052e nfsd41: SUPPATTR_EXCLCREAT attribute
Return bitmask for supported EXCLUSIVE4_1 create attributes.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:23 -07:00
Andy Adamson 7e70570647 nfsd41: support for 3-word long attribute bitmask
Also, use client minorversion to generate supported attrs

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:23 -07:00
Benny Halevy 95ec28cda3 nfsd: dynamically skip encoded fattr bitmap in _nfsd4_verify
_nfsd4_verify currently skips 3 words from the encoded buffer begining.
With support for 3-word attr bitmaps in nfsd41, nfsd4_encode_fattr
may encode 1, 2, or 3 words, and not always 2 as it used to be, hence
we need to find out where to skip using the encoded bitmap length.

Note: This patch may be applied over pre-nfsd41 nfsd.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:22 -07:00
Benny Halevy c0d6fc8a2d nfsd41: pass writable attrs mask to nfsd4_decode_fattr
In preparation for EXCLUSIVE4_1

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:22 -07:00
Benny Halevy 8daf220a6a nfsd41: control nfsv4.1 svc via /proc/fs/nfsd/versions
Support enabling and disabling nfsv4.1 via /proc/fs/nfsd/versions
by writing the strings "+4.1" or "-4.1" correspondingly.

Use user mode nfs-utils (rpc.nfsd option) to enable.
This will allow us to get rid of CONFIG_NFSD_V4_1

[nfsd41: disable support for minorversion by default]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:21 -07:00
Andy Adamson 84459a1162 nfsd41: add OPEN4_SHARE_ACCESS_WANT nfs4_stateid bmap
Separate the access bits from the want bits and enable __set_bit to
work correctly with st_access_bmap.

Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:21 -07:00
Andy Adamson d87a8ade95 nfsd41: access_valid
For nfs41, the open share flags are used also for
delegation "wants" and "signals".  Check that they are valid.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:21 -07:00
Andy Adamson 60adfc50de nfsd41: clientid handling
Extract the clientid from sessionid to set the op_clientid on open.
Verify that the clid for other stateful ops is zero for minorversion != 0
Do all other checks for stateful ops without sessions.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamson <andros@netapp.com>
[fixed whitespace indent]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 remove sl_session from nfsd4_open]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:20 -07:00
Andy Adamson 496c262cf0 nfsd41: check encode size for sessions maxresponse cached
Calculate the space the compound response has taken after encoding the current
operation.

pad: add on 8 bytes for the next operation's op_code and status so that
there is room to cache a failure on the next operation.

Compare this length to the session se_fmaxresp_cached and return
nfserr_rep_too_big_to_cache if the length is too large.

Our se_fmaxresp_cached will always be a multiple of PAGE_SIZE, and so
will be at least a page and will therefore hold the xdr_buf head.

Signed-off-by: Andy Adamson <andros@netapp.com>
[nfsd41: non-page DRC for solo sequence responses]
[fixed nfsd4_check_drc_limit cosmetics]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use cstate session in nfsd4_check_drc_limit]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:20 -07:00
Andy Adamson 6668958fac nfsd41: stateid handling
When sessions are used, stateful operation sequenceid and stateid handling
are not used. When sessions are used,  on the first open set the seqid to 1,
mark state confirmed and skip seqid processing.

When sessionas are used the stateid generation number is ignored when it is zero
whereas without sessions bad_stateid or stale stateid is returned.

Add flags to propagate session use to all stateful ops and down to
check_stateid_generation.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamson <andros@netapp.com>
[nfsd4_has_session should return a boolean, not u32]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: pass nfsd4_compoundres * to nfsd4_process_open1]
[nfsd41: calculate HAS_SESSION in nfs4_preprocess_stateid_op]
[nfsd41: calculate HAS_SESSION in nfs4_preprocess_seqid_op]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:19 -07:00
Benny Halevy dd453dfd70 nfsd: pass nfsd4_compound_state* to nfs4_preprocess_{state,seq}id_op
Currently we only use cstate->current_fh,
will also be used by nfsd41 code.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:19 -07:00
Benny Halevy e10e0cfc2f nfsd41: destroy_session operation
Implement the destory_session operation confoming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26

[use sessionid_lock spin lock]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:19 -07:00
Andy Adamson bf864a31d5 nfsd41: non-page DRC for solo sequence responses
A session inactivity time compound (lease renewal) or a compound where the
sequence operation has sa_cachethis set to FALSE do not require any pages
to be held in the v4.1 DRC. This is because struct nfsd4_slot is already
caching the session information.

Add logic to the nfs41 server to not cache response pages for solo sequence
responses.

Return nfserr_replay_uncached_rep on the operation following the sequence
operation when sa_cachethis is FALSE.

Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use cstate session in nfsd4_replay_cache_entry]
[nfsd41: rename nfsd4_no_page_in_cache]
[nfsd41 rename nfsd4_enc_no_page_replay]
[nfsd41 nfsd4_is_solo_sequence]
[nfsd41 change nfsd4_not_cached return]
Signed-off-by: Andy Adamson <andros@netapp.com>
[changed return type to bool]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 drop parens in nfsd4_is_solo_sequence call]
Signed-off-by: Andy Adamson <andros@netapp.com>
[changed "== 0" to "!"]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:19 -07:00
Andy Adamson 38eb76a54d nfsd41: Add a create session replay cache
Replace the nfs4_client cl_seqid field with a single struct nfs41_slot used
for the create session replay cache.

The CREATE_SESSION slot sets the sl_session pointer to NULL. Otherwise, the
slot and it's replay cache are used just like the session slots.

Fix unconfirmed create_session replay response by initializing the
create_session slot sequence id to 0.

A future patch will set the CREATE_SESSION cache when a SEQUENCE operation
preceeds the CREATE_SESSION operation. This compound is currently only cached
in the session slot table.

Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: revert portion of nfsd4_set_cache_entry]
Signed-off-by: Andy Adamson <andros@netpp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:18 -07:00
Andy Adamson ec6b5d7b50 nfsd41: create_session operation
Implement the create_session operation confoming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26

Look up the client id (generated by the server on exchange_id,
given by the client on create_session).
If neither a confirmed or unconfirmed client is found
then the client id is stale
If a confirmed cilent is found (i.e. we already received
create_session for it) then compare the sequence id
to determine if it's a replay or possibly a mis-ordered rpc.
If the seqid is in order, update the confirmed client seqid
and procedd with updating the session parameters.

If an unconfirmed client_id is found then verify the creds
and seqid.  If both match move the client id to confirmed state
and proceed with processing the create_session.

Currently, we do not support persistent sessions, and RDMA.

alloc_init_session generates a new sessionid and creates
a session structure.

NFSD_PAGES_PER_SLOT is used for the max response cached calculation, and for
the counting of DRC pages using the hard limits set in struct srv_serv.

A note on NFSD_PAGES_PER_SLOT:

Other patches in this series allow for NFSD_PAGES_PER_SLOT + 1 pages to be
cached in a DRC slot when the response size is less than NFSD_PAGES_PER_SLOT *
PAGE_SIZE but xdr_buf pages are used. e.g. a READDIR operation will encode a
small amount of data in the xdr_buf head, and then the READDIR in the xdr_buf
pages.  So, the hard limit calculation use of pages by a session is
underestimated by the number of cached operations using the xdr_buf pages.

Yet another patch caches no pages for the solo sequence operation, or any
compound where cache_this is False.  So the hard limit calculation use of
pages by a session is overestimated by the number of these operations in the
cache.

TODO: improve resource pre-allocation and negotiate session
parameters accordingly.  Respect and possibly adjust
backchannel attributes.

Signed-off-by: Marc Eshel <eshel@almaden.ibm.com>
Signed-off-by: Dean Hildebrand <dhildeb@us.ibm.com>
[nfsd41: remove headerpadsz from channel attributes]
Our client and server only support a headerpadsz of 0.
[nfsd41: use DRC limits in fore channel init]
[nfsd41: do not change CREATE_SESSION back channel attrs]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[use sessionid_lock spin lock]
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 remove sl_session from alloc_init_session]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[simplify nfsd4_encode_create_session error handling]
[nfsd41: fix comment style in init_forechannel_attrs]
[nfsd41: allocate struct nfsd4_session and slot table in one piece]
[nfsd41: no need to INIT_LIST_HEAD in alloc_init_session just prior to list_add]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:18 -07:00
Andy Adamson 14778a133e nfsd41: clear DRC cache on free_session
Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:18 -07:00
Andy Adamson da3846a286 nfsd41: nfsd DRC logic
Replay a request in nfsd4_sequence.
Add a minorversion to struct nfsd4_compound_state.

Pass the current slot to nfs4svc_encode_compound res via struct
nfsd4_compoundres to set an NFSv4.1 DRC entry.

Signed-off-by: Andy Adamson<andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use cstate session in nfs4svc_encode_compoundres]
[nfsd41 replace nfsd4_set_cache_entry]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:17 -07:00
Andy Adamson c3d06f9ce8 nfsd41: hard page limit for DRC
Use no more than 1/128th of the number of free pages at nfsd startup for the
v4.1 DRC.

This is an arbitrary default which should probably end up under the control
of an administrator.

Signed-off-by: Andy Adamson <andros@netapp.com>
[moved added fields in struct svc_serv under CONFIG_NFSD_V4_1]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[fix set_max_drc calculation of sv_drc_max_pages]
[moved NFSD_DRC_SIZE_SHIFT's declaration up in header file]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:17 -07:00
Andy Adamson 074fe89753 nfsd41: DRC save, restore, and clear functions
Cache all the result pages, including the rpc header in rq_respages[0],
for a request in the slot table cache entry.

Cache the statp pointer from nfsd_dispatch which points into rq_respages[0]
just past the rpc header. When setting a cache entry, calculate and save the
length of the nfs data minus the rpc header for rq_respages[0].

When replaying a cache entry, replace the cached rpc header with the
replayed request rpc result header, unless there is not enough room in the
cached results first page. In that case, use the cached rpc header.

The sessions fore channel maxresponse size cached is set to NFSD_PAGES_PER_SLOT
* PAGE_SIZE. For compounds we are cacheing with operations such as READDIR
that use the xdr_buf->pages to hold data, we choose to cache the extra page of
data rather than copying data from xdr_buf->pages into the xdr_buf->head page.

[nfsd41: limit cache to maxresponsesize_cached]
[nfsd41: mv nfsd4_set_statp under CONFIG_NFSD_V4_1]
[nfsd41: rename nfsd4_move_pages]
[nfsd41: rename page_no variable]
[nfsd41: rename nfsd4_set_cache_entry]
[nfsd41: fix nfsd41_copy_replay_data comment]
[nfsd41: add to nfsd4_set_cache_entry]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:17 -07:00
Andy Adamson f9bb94c4c6 nfsd41: enforce NFS4ERR_SEQUENCE_POS operation order rules for minorversion != 0 only.
Signed-off-by: Andy Adamson<andros@netapp.com>
[nfsd41: do not verify nfserr_sequence_pos for minorversion 0]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:16 -07:00
Benny Halevy b85d4c01b7 nfsd41: sequence operation
Implement the sequence operation conforming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-26

Check for stale clientid (as derived from the sessionid).
Enforce slotid range and exactly-once semantics using
the slotid and seqid.

If everything went well renew the client lease and
mark the slot INPROGRESS.

Add a struct nfsd4_slot pointer to struct nfsd4_compound_state.
To be used for sessions DRC replay.

[nfsd41: rename sequence catchthis to cachethis]
Signed-off-by: Andy Adamson<andros@netapp.com>
[pulled some code to set cstate->slot from "nfsd DRC logic"]
[use sessionid_lock spin lock]
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd: add a struct nfsd4_slot pointer to struct nfsd4_compound_state]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: add nfsd4_session pointer to nfsd4_compound_state]
[nfsd41: set cstate session]
[nfsd41: use cstate session in nfsd4_sequence]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[simplify nfsd4_encode_sequence error handling]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:16 -07:00
Andy Adamson a1bcecd29c nfsd41: match clientid establishment method
We need to distinguish between client names provided by NFSv4.0 clients
SETCLIENTID and those provided by NFSv4.1 via EXCHANGE_ID when looking
up the clientid by string.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamson <andros@netapp.com>
[nfsd41: use boolean values for use_exchange_id argument]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: simplify match_clientid_establishment logic]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:15 -07:00
Andy Adamson 0733d21338 nfsd41: exchange_id operation
Implement the exchange_id operation confoming to
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-28

Based on the client provided name, hash a client id.
If a confirmed one is found, compare the op's creds and
verifier.  If the creds match and the verifier is different
then expire the old client (client re-incarnated), otherwise,
if both match, assume it's a replay and ignore it.

If an unconfirmed client is found, then copy the new creds
and verifer if need update, otherwise assume replay.

The client is moved to a confirmed state on create_session.

In the nfs41 branch set the exchange_id flags to
EXCHGID4_FLAG_USE_NON_PNFS | EXCHGID4_FLAG_SUPP_MOVED_REFER
(pNFS is not supported, Referrals are supported,
Migration is not.).

Address various scenarios from section 18.35 of the spec:

1. Check for EXCHGID4_FLAG_UPD_CONFIRMED_REC_A and set
   EXCHGID4_FLAG_CONFIRMED_R as appropriate.

2. Return error codes per 18.35.4 scenarios.

3. Update client records or generate new client ids depending on
   scenario.

Note: 18.35.4 case 3 probably still needs revisiting.  The handling
seems not quite right.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Andy Adamosn <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use utsname for major_id (and copy to server_scope)]
[nfsd41: fix handling of various exchange id scenarios]
Signed-off-by: Mike Sager <sager@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: reverse use of EXCHGID4_INVAL_FLAG_MASK_A]
[simplify nfsd4_encode_exchange_id error handling]
[nfsd41: embed an xdr_netobj in nfsd4_exchange_id]
[nfsd41: return nfserr_serverfault for spa_how == SP4_MACH_CRED]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:15 -07:00
Andy Adamson 069b6ad4bb nfsd41: proc stubs
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:14 -07:00
Andy Adamson 2db134eb3b nfsd41: xdr infrastructure
Define nfsd41_dec_ops vector and add it to nfsd4_minorversion for
minorversion 1.

Note: nfsd4_enc_ops vector is shared for v4.0 and v4.1
since we don't need to filter out obsolete ops as this is
done in the decoding phase.

exchange_id, create_session, destroy_session, and sequence ops are
implemented as stubs returning nfserr_opnotsupp at this stage.

[was nfsd41: xdr stubs]
[get rid of CONFIG_NFSD_V4_1]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:14 -07:00
Marc Eshel 5282fd724b nfsd41: sessionid hashing
Simple sessionid hashing using its monotonically increasing sequence number.

Locking considerations:
sessionid_hashtbl access is controlled by the sessionid_lock spin lock.
It must be taken for insert, delete, and lookup.
nfsd4_sequence looks up the session id and if the session is found,
it calls nfsd4_get_session (still under the sessionid_lock).
nfsd4_destroy_session calls nfsd4_put_session after unhashing
it, so when the session's kref reaches zero it's going to get freed.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[we don't use a prime for sessionid hash table size]
[use sessionid_lock spin lock]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:14 -07:00
Marc Eshel c4bf786806 nfsd41: release_session when client is expired
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[add CONFIG_NFSD_V4_1 to fix v4.0 regression bug]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:13 -07:00
Marc Eshel 9fb870702d nfsd41: introduce nfs4_client cl_sessions list
[get rid of CONFIG_NFSD_V4_1]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:13 -07:00
Andy Adamson 7116ed6b99 nfsd41: sessions basic data types
This patch provides basic data structures representing the nfs41
sessions and slots, plus helpers for keeping a reference count
on the session and freeing it.

Note that our server only support a headerpadsz of 0 and
it ignores backchannel attributes at the moment.

Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: remove headerpadsz from channel attributes]
[nfsd41: embed nfsd4_channel in nfsd4_session]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: use bool inuse for slot state]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41 remove sl_session from nfsd4_slot]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:13 -07:00
Andy Adamson 2f425878b6 nfsd: don't use the deferral service, return NFS4ERR_DELAY
On an NFSv4.1 server cache miss that causes an upcall, NFS4ERR_DELAY will be
returned. It is up to the NFSv4.1 client to resend only the operations that
have not been processed.

Initialize rq_usedeferral to 1 in svc_process(). It sill be turned off in
nfsd4_proc_compound() only when NFSv4.1 Sessions are used.

Note: this isn't an adequate solution on its own. It's acceptable as a way
to get some minimal 4.1 up and working, but we're going to have to find a
way to avoid returning DELAY in all common cases before 4.1 can really be
considered ready.

Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[nfsd41: reverse rq_nodeferral negative logic]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
[sunrpc: initialize rq_usedeferral]
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
2009-04-03 17:41:12 -07:00
Linus Torvalds f945b7abcb Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
  fuse: allow private mappings of "direct_io" files
  fuse: allow kernel to access "direct_io" files
2009-04-03 15:27:58 -07:00
Linus Torvalds 811158b147 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (28 commits)
  trivial: Update my email address
  trivial: NULL noise: drivers/mtd/tests/mtd_*test.c
  trivial: NULL noise: drivers/media/dvb/frontends/drx397xD_fw.h
  trivial: Fix misspelling of "Celsius".
  trivial: remove unused variable 'path' in alloc_file()
  trivial: fix a pdlfush -> pdflush typo in comment
  trivial: jbd header comment typo fix for JBD_PARANOID_IOFAIL
  trivial: wusb: Storage class should be before const qualifier
  trivial: drivers/char/bsr.c: Storage class should be before const qualifier
  trivial: h8300: Storage class should be before const qualifier
  trivial: fix where cgroup documentation is not correctly referred to
  trivial: Give the right path in Documentation example
  trivial: MTD: remove EOL from MODULE_DESCRIPTION
  trivial: Fix typo in bio_split()'s documentation
  trivial: PWM: fix of #endif comment
  trivial: fix typos/grammar errors in Kconfig texts
  trivial: Fix misspelling of firmware
  trivial: cgroups: documentation typo and spelling corrections
  trivial: Update contact info for Jochen Hein
  trivial: fix typo "resgister" -> "register"
  ...
2009-04-03 15:24:35 -07:00
Linus Torvalds b983471794 Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
  Btrfs: BUG to BUG_ON changes
  Btrfs: remove dead code
  Btrfs: remove dead code
  Btrfs: fix typos in comments
  Btrfs: remove unused ftrace include
  Btrfs: fix __ucmpdi2 compile bug on 32 bit builds
  Btrfs: free inode struct when btrfs_new_inode fails
  Btrfs: fix race in worker_loop
  Btrfs: add flushoncommit mount option
  Btrfs: notreelog mount option
  Btrfs: introduce btrfs_show_options
  Btrfs: rework allocation clustering
  Btrfs: Optimize locking in btrfs_next_leaf()
  Btrfs: break up btrfs_search_slot into smaller pieces
  Btrfs: kill the pinned_mutex
  Btrfs: kill the block group alloc mutex
  Btrfs: clean up find_free_extent
  Btrfs: free space cache cleanups
  Btrfs: unplug in the async bio submission threads
  Btrfs: keep processing bios for a given bdev if our proc is batching
2009-04-03 15:14:44 -07:00
Srinivas Eeda 9140db04ef ocfs2: recover orphans in offline slots during recovery and mount
During recovery, a node recovers orphans in it's slot and the dead node(s). But
if the dead nodes were holding orphans in offline slots, they will be left
unrecovered.

If the dead node is the last one to die and is holding orphans in other slots
and is the first one to mount, then it only recovers it's own slot, which
leaves orphans in offline slots.

This patch queues complete_recovery to clean orphans for all offline slots
during mount and node recovery.

Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:26 -07:00
Hisashi Hifumi 1fca3a05ef ocfs2: Pagecache usage optimization on ocfs2
A page can have multiple buffers and even if a page is not uptodate, some buffers
can be uptodate on pagesize != blocksize environment.
This aops checks that all buffers which correspond to a part of a file
that we want to read are uptodate. If so, we do not have to issue actual
read IO to HDD even if a page is not uptodate because the portion we
want to read are uptodate.
"block_is_partially_uptodate" function is already used by ext2/3/4.
With the following patch random read/write mixed workloads or random read after
random write workloads can be optimized and we can get performance improvement.

Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:26 -07:00
wengang wang 6ca497a83e ocfs2: fix rare stale inode errors when exporting via nfs
For nfs exporting, ocfs2_get_dentry() returns the dentry for fh.
ocfs2_get_dentry() may read from disk when the inode is not in memory,
without any cross cluster lock. this leads to the file system loading a
stale inode.

This patch fixes above problem.

Solution is that in case of inode is not in memory, we get the cluster
lock(PR) of alloc inode where the inode in question is allocated from (this
causes node on which deletion is done sync the alloc inode) before reading
out the inode itsself. then we check the bitmap in the group (the inode in
question allcated from) to see if the bit is clear. if it's clear then it's
stale. if the bit is set, we then check generation as the existing code
does.

We have to read out the inode in question from disk first to know its alloc
slot and allot bit. And if its not stale we read it out using ocfs2_iget().
The second read should then be from cache.

And also we have to add a per superblock nfs_sync_lock to cover the lock for
alloc inode and that for inode in question. this is because ocfs2_get_dentry()
and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked
in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so
that mutliple ocfs2_delete_inode() can run concurrently in normal case.

[mfasheh@suse.com: build warning fixes and comment cleanups]
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:25 -07:00
Sunil Mushran 9405dccfd3 ocfs2/dlm: Tweak mle_state output
The debugfs file, mle_state, now prints the number of largest number of mles
in one hash link.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:25 -07:00
Sunil Mushran 516b7e52ab ocfs2/dlm: Do not purge lockres that is being migrated dlm_purge_lockres()
This patch attempts to fix a fine race between purging and migration.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:24 -07:00
Sunil Mushran 7141514b83 ocfs2/dlm: Remove struct dlm_lock_name in struct dlm_master_list_entry
This patch removes struct dlm_lock_name and adds the entries directly
to struct dlm_master_list_entry. Under the new scheme, both mles that
are backed by a lockres or not, will have the name populated in mle->mname.
This allows us to get rid of code that was figuring out the location of
the mle name.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:23 -07:00
Sunil Mushran e64ff14607 ocfs2/dlm: Show the number of lockres/mles in dlm_state
This patch shows the number of lockres' and mles in the debugfs file, dlm_state.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:22 -07:00
Sunil Mushran 7d62a978a8 ocfs2/dlm: dlm_set_lockres_owner() and dlm_change_lockres_owner() inlined
This patch inlines dlm_set_lockres_owner() and dlm_change_lockres_owner().

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:21 -07:00
Sunil Mushran 6800791ab7 ocfs2/dlm: Improve lockres counts
This patch replaces the lockres counts that tracked the number number of
locally and remotely mastered lockres' with a current and total count. The
total count is the number of lockres' that have been created since the dlm
domain was created.

The number of locally and remotely mastered counts can be computed using
the locking_state output.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:21 -07:00
Sunil Mushran 2041d8fdce ocfs2/dlm: Track number of mles
The lifetime of a mle is limited to the duration of the lockres mastery
process. While typically this lifetime is fairly short, we have noticed
the number of mles explode under certain circumstances. This patch tracks
the number of each different types of mles and should help us determine
how best to speed up the mastery process.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:21 -07:00
Sunil Mushran 67ae1f0604 ocfs2/dlm: Indent dlm_cleanup_master_list()
The previous patch explicitly did not indent dlm_cleanup_master_list()
so as to make the patch readable. This patch properly indents the
function.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:21 -07:00
Sunil Mushran 2ed6c750d6 ocfs2/dlm: Activate dlm->master_hash for master list entries
With this patch, the mles are stored in a hash and not a simple list.
This should improve the mle lookup time when the number of outstanding
masteries is large.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:19 -07:00
Sunil Mushran e2b66ddcce ocfs2/dlm: Create and destroy the dlm->master_hash
This patch adds code to create and destroy the dlm->master_hash.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:18 -07:00
Sunil Mushran c2cd4a4433 ocfs2/dlm: Refactor dlm_clean_master_list()
This patch refactors dlm_clean_master_list() so as to make it
easier to convert the mle list to a hash.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:18 -07:00
Sunil Mushran f77a9a78c3 ocfs2/dlm: Clean up struct dlm_lock_name
For master mle, the name it stored in the attached lockres in struct qstr.
For block and migration mle, the name is stored inline in struct dlm_lock_name.
This patch attempts to make struct dlm_lock_name look like a struct qstr. While
we could use struct qstr, we don't because we want to avoid having to malloc
and free the lockname string as the mle's lifetime is fairly short.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:18 -07:00
Sunil Mushran 1c0845773a ocfs2/dlm: Encapsulate adding and removing of mle from dlm->master_list
This patch encapsulates adding and removing of the mle from the
dlm->master_list. This patch is part of the series of patches that
converts the mle list to a mle hash.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:18 -07:00
Tao Ma feb473a6e8 ocfs2: Optimize inode group allocation by recording last used group.
In ocfs2, the block group search looks for the "emptiest" group
to allocate from. So if the allocator has many equally(or almost
equally) empty groups, new block group will tend to get spread
out amongst them.

So we add osb_inode_alloc_group in ocfs2_super to record the last
used inode allocation group.
For more details, please see
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/InodeAllocationStrategy.

I have done some basic test and the results are a ten times improvement on
some cold-cache stat workloads.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:18 -07:00
Tao Ma 60ca81e82d ocfs2: Allocate inode groups from global_bitmap.
Inode groups used to be allocated from local alloc file,
but since we want all inodes to be contiguous enough, we
will try to allocate them directly from global_bitmap.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:17 -07:00
Tao Ma 138211515c ocfs2: Optimize inode allocation by remembering last group
In ocfs2, the inode block search looks for the "emptiest" inode
group to allocate from. So if an inode alloc file has many equally
(or almost equally) empty groups, new inodes will tend to get
spread out amongst them, which in turn can put them all over the
disk. This is undesirable because directory operations on conceptually
"nearby" inodes force a large number of seeks.

So we add ip_last_used_group in core directory inodes which records
the last used allocation group. Another field named ip_last_used_slot
is also added in case inode stealing happens. When claiming new inode,
we passed in directory's inode so that the allocation can use this
information.
For more details, please see
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/InodeAllocationStrategy.

Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:17 -07:00
Mark Fasheh 1d46dc08d3 ocfs2: fix leaf start calculation in ocfs2_dx_dir_rebalance()
ocfs2_dx_dir_rebalance() is passed the block offset of a dx leaf which needs
rebalancing. Since we rebalance an entire cluster at a time however, this
function needs to calculate the beginning of that cluster, in blocks. The
calculation was wrong, which would result in a read of non-leaf blocks. Fix
the calculation by adding ocfs2_block_to_cluster_start() which is a more
straight-forward way of determining this.

Reported-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:17 -07:00
Mark Fasheh b80b549c35 ocfs2: re-order ocfs2_empty_dir checks
ocfs2_empty_dir() is far more expensive than checking link count. Since both
need to be checked at the same time, we can improve performance by checking
link count first.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:17 -07:00
Mark Fasheh 3a8df2b9c3 ocfs2: Enable indexed directories
Since the disk format is finalized, we can set this feature bit in the
supported mask.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <Joel.Becker@oracle.com>
2009-04-03 11:39:16 -07:00
Mark Fasheh e3a93c2db6 ocfs2: Add total entry count to dx_root_block
This little bit of extra accounting speeds up ocfs2_empty_dir()
dramatically by allowing us to short-circuit the full directory scan.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:16 -07:00
Mark Fasheh 198a1ca3b7 ocfs2: Increase max links count
Since we've now got a directory format capable of handling a large number of
entries, we can increase the maximum link count supported. This only gets
increased if the directory indexing feature is turned on.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
2009-04-03 11:39:16 -07:00
Mark Fasheh e7c17e4309 ocfs2: Introduce dir free space list
The only operation which doesn't get faster with directory indexing is
insert, which still has to walk the entire unindexed directory portion to
find a free block. This patch provides an improvement in directory insert
performance by maintaining a singly linked list of directory leaf blocks
which have space for additional dirents.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
2009-04-03 11:39:16 -07:00
Mark Fasheh 4ed8a6bb08 ocfs2: Store dir index records inline
Allow us to store a small number of directory index records in the
ocfs2_dx_root_block. This saves us a disk read on small to medium sized
directories (less than about 250 entries). The inline root is automatically
turned into a root block with extents if the directory size increases beyond
it's capacity.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
2009-04-03 11:39:16 -07:00
Mark Fasheh 9b7895efac ocfs2: Add a name indexed b-tree to directory inodes
This patch makes use of Ocfs2's flexible btree code to add an additional
tree to directory inodes. The new tree stores an array of small,
fixed-length records in each leaf block. Each record stores a hash value,
and pointer to a block in the traditional (unindexed) directory tree where a
dirent with the given name hash resides. Lookup exclusively uses this tree
to find dirents, thus providing us with constant time name lookups.

Some of the hashing code was copied from ext3. Unfortunately, it has lots of
unfixed checkpatch errors. I left that as-is so that tracking changes would
be easier.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
2009-04-03 11:39:15 -07:00
Mark Fasheh 4a12ca3a00 ocfs2: Introduce dir lookup helper struct
Many directory manipulation calls pass around a tuple of dirent, and it's
containing buffer_head. Dir indexing has a bit more state, but instead of
adding yet more arguments to functions, we introduce 'struct
ocfs2_dir_lookup_result'. In this patch, it simply holds the same tuple, but
future patches will add more state.

Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
2009-04-03 11:39:15 -07:00
Sunil Mushran 59b526a307 ocfs2: Remove debugfs file local_alloc_stats
This patch removes the debugfs file local_alloc_stats as that information
is now included in the fs_state debugfs file.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:15 -07:00
Sunil Mushran 50397507e8 ocfs2: Expose the file system state via debugfs
This patch creates a per mount debugfs file, fs_state, which exposes
information like, cluster stack in use, states of the downconvert, recovery
and commit threads, number of journal txns, some allocation stats, list of
all slots, etc.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:15 -07:00
Sunil Mushran 96a6c64b53 ocfs2: Move struct recovery_map to a header file
Move the definition of struct recovery_map from journal.c to journal.h. This
is preparation for the next patch.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:14 -07:00
Sunil Mushran 87d3d3f393 ocfs2/hb: Expose the list of heartbeating nodes via debugfs
This patch creates a debugfs file, o2hb/livesnodes, which exposes the
aggregate list of heartbeating node across all heartbeat regions.

Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2009-04-03 11:39:14 -07:00
Linus Torvalds 20bec8ab14 Merge branch 'ext3-latency-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
* 'ext3-latency-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
  ext3: Add replace-on-rename hueristics for data=writeback mode
  ext3: Add replace-on-truncate hueristics for data=writeback mode
  ext3: Use WRITE_SYNC for commits which are caused by fsync()
  block_write_full_page: Use synchronous writes for WBC_SYNC_ALL writebacks
2009-04-03 11:10:33 -07:00
Linus Torvalds 3cc50ac0db Merge git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-fscache
* git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-fscache: (41 commits)
  NFS: Add mount options to enable local caching on NFS
  NFS: Display local caching state
  NFS: Store pages from an NFS inode into a local cache
  NFS: Read pages from FS-Cache into an NFS inode
  NFS: nfs_readpage_async() needs to be accessible as a fallback for local caching
  NFS: Add read context retention for FS-Cache to call back with
  NFS: FS-Cache page management
  NFS: Add some new I/O counters for FS-Cache doing things for NFS
  NFS: Invalidate FsCache page flags when cache removed
  NFS: Use local disk inode cache
  NFS: Define and create inode-level cache objects
  NFS: Define and create superblock-level objects
  NFS: Define and create server-level objects
  NFS: Register NFS for caching and retrieve the top-level index
  NFS: Permit local filesystem caching to be enabled for NFS
  NFS: Add FS-Cache option bit and debug bit
  NFS: Add comment banners to some NFS functions
  FS-Cache: Make kAFS use FS-Cache
  CacheFiles: A cache that backs onto a mounted filesystem
  CacheFiles: Export things for CacheFiles
  ...
2009-04-03 10:07:43 -07:00
Linus Torvalds 9b59f0316b Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd
* 'for-linus' of git://git.open-osd.org/linux-open-osd:
  fs: Add exofs to Kernel build
  exofs: Documentation
  exofs: export_operations
  exofs: super_operations and file_system_type
  exofs: dir_inode and directory operations
  exofs: address_space_operations
  exofs: symlink_inode and fast_symlink_inode operations
  exofs: file and file_inode operations
  exofs: Kbuild, Headers and osd utils
2009-04-03 09:53:22 -07:00
Linus Torvalds ac7c1a776d Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
* 'for-linus' of git://oss.sgi.com/xfs/xfs: (61 commits)
  Revert "xfs: increase the maximum number of supported ACL entries"
  xfs: cleanup uuid handling
  xfs: remove m_attroffset
  xfs: fix various typos
  xfs: pagecache usage optimization
  xfs: remove m_litino
  xfs: kill ino64 mount option
  xfs: kill mutex_t typedef
  xfs: increase the maximum number of supported ACL entries
  xfs: factor out code to find the longest free extent in the AG
  xfs: kill VN_BAD
  xfs: kill vn_atime_* helpers.
  xfs: cleanup xlog_bread
  xfs: cleanup xlog_recover_do_trans
  xfs: remove another leftover of the old inode log item format
  xfs: cleanup log unmount handling
  Fix xfs debug build breakage by pushing xfs_error.h after
  xfs: include header files for prototypes
  xfs: make symbols static
  xfs: move declaration to header file
  ...
2009-04-03 09:52:29 -07:00
Linus Torvalds 03c3fa0a3b Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-udf-2.6
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-udf-2.6:
  udf: Don't write integrity descriptor too often
  udf: Try anchor in block 256 first
  udf: Some type fixes and cleanups
  udf: use hardware sector size
  udf: fix novrs mount option
  udf: Fix oops when invalid character in filename occurs
  udf: return f_fsid for statfs(2)
  udf: Add checks to not underflow sector_t
  udf: fix default mode and dmode options handling
  udf: fix sparse warnings:
  udf: unsigned last[i] cannot be less than 0
  udf: implement mode and dmode mounting options
  udf: reduce stack usage of udf_get_filename
  udf: reduce stack usage of udf_load_pvoldesc
  Fix the udf code not to pass structs on stack where possible.
  Remove struct typedefs from fs/udf/ecma_167.h et al.
2009-04-03 09:50:39 -07:00
Linus Torvalds 223cdea4c4 Merge branch 'for-linus' of git://neil.brown.name/md
* 'for-linus' of git://neil.brown.name/md: (53 commits)
  md/raid5 revise rules for when to update metadata during reshape
  md/raid5: minor code cleanups in make_request.
  md: remove CONFIG_MD_RAID_RESHAPE config option.
  md/raid5: be more careful about write ordering when reshaping.
  md: don't display meaningless values in sysfs files resync_start and sync_speed
  md/raid5: allow layout and chunksize to be changed on active array.
  md/raid5: reshape using largest of old and new chunk size
  md/raid5: prepare for allowing reshape to change layout
  md/raid5: prepare for allowing reshape to change chunksize.
  md/raid5: clearly differentiate 'before' and 'after' stripes during reshape.
  Documentation/md.txt update
  md: allow number of drives in raid5 to be reduced
  md/raid5: change reshape-progress measurement to cope with reshaping backwards.
  md: add explicit method to signal the end of a reshape.
  md/raid5: enhance raid5_size to work correctly with negative delta_disks
  md/raid5: drop qd_idx from r6_state
  md/raid6: move raid6 data processing to raid6_pq.ko
  md: raid5 run(): Fix max_degraded for raid level 4.
  md: 'array_size' sysfs attribute
  md: centralize ->array_sectors modifications
  ...
2009-04-03 09:08:19 -07:00
David Howells b797cac748 NFS: Add mount options to enable local caching on NFS
Add NFS mount options to allow the local caching support to be enabled.

The attached patch makes it possible for the NFS filesystem to be told to make
use of the network filesystem local caching service (FS-Cache).

To be able to use this, a recent nfsutils package is required.

There are three variant NFS mount options that can be added to a mount command
to control caching for a mount.  Only the last one specified takes effect:

 (*) Adding "fsc" will request caching.

 (*) Adding "fsc=<string>" will request caching and also specify a uniquifier.

 (*) Adding "nofsc" will disable caching.

For example:

	mount warthog:/ /a -o fsc

The cache of a particular superblock (NFS FSID) will be shared between all
mounts of that volume, provided they have the same connection parameters and
are not marked 'nosharecache'.

Where it is otherwise impossible to distinguish superblocks because all the
parameters are identical, but the 'nosharecache' option is supplied, a
uniquifying string must be supplied, else only the first mount will be
permitted to use the cache.

If there's a key collision, then the second mount will disable caching and give
a warning into the kernel log.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:48 +01:00
David Howells 5d1acff159 NFS: Display local caching state
Display the local caching state in /proc/fs/nfsfs/volumes.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:47 +01:00
David Howells 7f8e05f60c NFS: Store pages from an NFS inode into a local cache
Store pages from an NFS inode into the cache data storage object associated
with that inode.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:45 +01:00
David Howells 9a9fc1c033 NFS: Read pages from FS-Cache into an NFS inode
Read pages from an FS-Cache data storage object representing an inode into an
NFS inode.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:44 +01:00
David Howells f42b293d6d NFS: nfs_readpage_async() needs to be accessible as a fallback for local caching
nfs_readpage_async() needs to be non-static so that it can be used as a
fallback for the local on-disk caching should an EIO crop up when reading the
cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:44 +01:00
David Howells 1fcdf53488 NFS: Add read context retention for FS-Cache to call back with
Add read context retention so that FS-Cache can call back into NFS when a read
operation on the cache fails EIO rather than reading data.  This permits NFS to
then fetch the data from the server instead using the appropriate security
context.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:44 +01:00
David Howells 545db45f0f NFS: FS-Cache page management
FS-Cache page management for NFS.  This includes hooking the releasing and
invalidation of pages marked with PG_fscache (aka PG_private_2) and waiting for
completion of the write-to-cache flag (PG_fscache_write aka PG_owner_priv_2).

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:44 +01:00
David Howells 6a51091d07 NFS: Add some new I/O counters for FS-Cache doing things for NFS
Add some new NFS I/O counters for FS-Cache doing things for NFS.  A new line is
emitted into /proc/pid/mountstats if caching is enabled that looks like:

	fsc: <rok> <rfl> <wok> <wfl> <unc>

Where <rok> is the number of pages read successfully from the cache, <rfl> is
the number of failed page reads against the cache, <wok> is the number of
successful page writes to the cache, <wfl> is the number of failed page writes
to the cache, and <unc> is the number of NFS pages that have been disconnected
from the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:43 +01:00
David Howells d599064a1b NFS: Invalidate FsCache page flags when cache removed
Invalidate the FsCache page flags on the pages belonging to an inode when the
cache backing that NFS inode is removed.

This allows a live cache to be withdrawn.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:43 +01:00
David Howells ef79c097bb NFS: Use local disk inode cache
Bind data storage objects in the local cache to NFS inodes.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:43 +01:00
David Howells 10329a5d48 NFS: Define and create inode-level cache objects
Define and create inode-level cache data storage objects (as managed by
nfs_inode structs).

Each inode-level object is created in a superblock-level index object and is
itself a data storage object into which pages from the inode are stored.

The inode object key is the NFS file handle for the inode.

The inode object is given coherency data to carry in the auxiliary data
permitted by the cache.  This is a sequence made up of:

 (1) i_mtime from the NFS inode.

 (2) i_ctime from the NFS inode.

 (3) i_size from the NFS inode.

 (4) change_attr from the NFSv4 attribute data.

As the cache is a persistent cache, the auxiliary data is checked when a new
NFS in-memory inode is set up that matches an already existing data storage
object in the cache.  If the coherency data is the same, the on-disk object is
retained and used; if not, it is scrapped and a new one created.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:43 +01:00
David Howells 08734048b3 NFS: Define and create superblock-level objects
Define and create superblock-level cache index objects (as managed by
nfs_server structs).

Each superblock object is created in a server level index object and is itself
an index into which inode-level objects are inserted.

Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.

The superblock object key is a sequence consisting of:

 (1) Certain superblock s_flags.

 (2) Various connection parameters that serve to distinguish superblocks for
     sget().

 (3) The volume FSID.

 (4) The security flavour.

 (5) The uniquifier length.

 (6) The uniquifier text.  This is normally an empty string, unless the fsc=xyz
     mount option was used to explicitly specify a uniquifier.

The key blob is of variable length, depending on the length of (6).

The superblock object is given no coherency data to carry in the auxiliary data
permitted by the cache.  It is assumed that the superblock is always coherent.

This patch also adds uniquification handling such that two otherwise identical
superblocks, at least one of which is marked "nosharecache", won't end up
trying to share the on-disk cache.  It will be possible to manually provide a
uniquifier through a mount option with a later patch to avoid the error
otherwise produced.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:42 +01:00
David Howells 147272813e NFS: Define and create server-level objects
Define and create server-level cache index objects (as managed by nfs_client
structs).

Each server object is created in the NFS top-level index object and is itself
an index into which superblock-level objects are inserted.

Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.

The server object key is a sequence consisting of:

 (1) NFS version

 (2) Server address family (eg: AF_INET or AF_INET6)

 (3) Server port.

 (4) Server IP address.

The key blob is of variable length, depending on the length of (4).

The server object is given no coherency data to carry in the auxiliary data
permitted by the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:42 +01:00
David Howells 8ec442ae4c NFS: Register NFS for caching and retrieve the top-level index
Register NFS for caching and retrieve the top-level cache index object cookie.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:42 +01:00
David Howells 3b9ce977b2 NFS: Permit local filesystem caching to be enabled for NFS
Permit local filesystem caching to be enabled for NFS in the kernel
configuration.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:42 +01:00
David Howells 6b9b3514aa NFS: Add comment banners to some NFS functions
Add comment banners to some NFS functions so that they can be modified by the
NFS fscache patches for further information.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:41 +01:00
David Howells 9b3f26c911 FS-Cache: Make kAFS use FS-Cache
The attached patch makes the kAFS filesystem in fs/afs/ use FS-Cache, and
through it any attached caches.  The kAFS filesystem will use caching
automatically if it's available.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:41 +01:00
David Howells 9ae326a690 CacheFiles: A cache that backs onto a mounted filesystem
Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
backing store for the cache.

CacheFiles uses a userspace daemon to do some of the cache management - such as
reaping stale nodes and culling.  This is called cachefilesd and lives in
/sbin.  The source for the daemon can be downloaded from:

	http://people.redhat.com/~dhowells/cachefs/cachefilesd.c

And an example configuration from:

	http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf

The filesystem and data integrity of the cache are only as good as those of the
filesystem providing the backing services.  Note that CacheFiles does not
attempt to journal anything since the journalling interfaces of the various
filesystems are very specific in nature.

CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon.  Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence.  The daemon
opens this and sends commands down it to control the cache.

CacheFiles is currently limited to a single cache.

CacheFiles attempts to maintain at least a certain percentage of free space on
the filesystem, shrinking the cache by culling the objects it contains to make
space if necessary - see the "Cache Culling" section.  This means it can be
placed on the same medium as a live set of data, and will expand to make use of
spare space and automatically contract when the set of data requires more
space.

============
REQUIREMENTS
============

The use of CacheFiles and its daemon requires the following features to be
available in the system and in the cache filesystem:

	- dnotify.

	- extended attributes (xattrs).

	- openat() and friends.

	- bmap() support on files in the filesystem (FIBMAP ioctl).

	- The use of bmap() to detect a partial page at the end of the file.

It is strongly recommended that the "dir_index" option is enabled on Ext3
filesystems being used as a cache.

=============
CONFIGURATION
=============

The cache is configured by a script in /etc/cachefilesd.conf.  These commands
set up cache ready for use.  The following script commands are available:

 (*) brun <N>%
 (*) bcull <N>%
 (*) bstop <N>%
 (*) frun <N>%
 (*) fcull <N>%
 (*) fstop <N>%

	Configure the culling limits.  Optional.  See the section on culling
	The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.

	The commands beginning with a 'b' are file space (block) limits, those
	beginning with an 'f' are file count limits.

 (*) dir <path>

	Specify the directory containing the root of the cache.  Mandatory.

 (*) tag <name>

	Specify a tag to FS-Cache to use in distinguishing multiple caches.
	Optional.  The default is "CacheFiles".

 (*) debug <mask>

	Specify a numeric bitmask to control debugging in the kernel module.
	Optional.  The default is zero (all off).  The following values can be
	OR'd into the mask to collect various information:

		1	Turn on trace of function entry (_enter() macros)
		2	Turn on trace of function exit (_leave() macros)
		4	Turn on trace of internal debug points (_debug())

	This mask can also be set through sysfs, eg:

		echo 5 >/sys/modules/cachefiles/parameters/debug

==================
STARTING THE CACHE
==================

The cache is started by running the daemon.  The daemon opens the cache device,
configures the cache and tells it to begin caching.  At that point the cache
binds to fscache and the cache becomes live.

The daemon is run as follows:

	/sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]

The flags are:

 (*) -d

	Increase the debugging level.  This can be specified multiple times and
	is cumulative with itself.

 (*) -s

	Send messages to stderr instead of syslog.

 (*) -n

	Don't daemonise and go into background.

 (*) -f <configfile>

	Use an alternative configuration file rather than the default one.

===============
THINGS TO AVOID
===============

Do not mount other things within the cache as this will cause problems.  The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.

Do not create, rename or unlink files and directories in the cache whilst the
cache is active, as this may cause the state to become uncertain.

Renaming files in the cache might make objects appear to be other objects (the
filename is part of the lookup key).

Do not change or remove the extended attributes attached to cache files by the
cache as this will cause the cache state management to get confused.

Do not create files or directories in the cache, lest the cache get confused or
serve incorrect data.

Do not chmod files in the cache.  The module creates things with minimal
permissions to prevent random users being able to access them directly.

=============
CACHE CULLING
=============

The cache may need culling occasionally to make space.  This involves
discarding objects from the cache that have been used less recently than
anything else.  Culling is based on the access time of data objects.  Empty
directories are culled if not in use.

Cache culling is done on the basis of the percentage of blocks and the
percentage of files available in the underlying filesystem.  There are six
"limits":

 (*) brun
 (*) frun

     If the amount of free space and the number of available files in the cache
     rises above both these limits, then culling is turned off.

 (*) bcull
 (*) fcull

     If the amount of available space or the number of available files in the
     cache falls below either of these limits, then culling is started.

 (*) bstop
 (*) fstop

     If the amount of available space or the number of available files in the
     cache falls below either of these limits, then no further allocation of
     disk space or files is permitted until culling has raised things above
     these limits again.

These must be configured thusly:

	0 <= bstop < bcull < brun < 100
	0 <= fstop < fcull < frun < 100

Note that these are percentages of available space and available files, and do
_not_ appear as 100 minus the percentage displayed by the "df" program.

The userspace daemon scans the cache to build up a table of cullable objects.
These are then culled in least recently used order.  A new scan of the cache is
started as soon as space is made in the table.  Objects will be skipped if
their atimes have changed or if the kernel module says it is still using them.

===============
CACHE STRUCTURE
===============

The CacheFiles module will create two directories in the directory it was
given:

 (*) cache/

 (*) graveyard/

The active cache objects all reside in the first directory.  The CacheFiles
kernel module moves any retired or culled objects that it can't simply unlink
to the graveyard from which the daemon will actually delete them.

The daemon uses dnotify to monitor the graveyard directory, and will delete
anything that appears therein.

The module represents index objects as directories with the filename "I..." or
"J...".  Note that the "cache/" directory is itself a special index.

Data objects are represented as files if they have no children, or directories
if they do.  Their filenames all begin "D..." or "E...".  If represented as a
directory, data objects will have a file in the directory called "data" that
actually holds the data.

Special objects are similar to data objects, except their filenames begin
"S..." or "T...".

If an object has children, then it will be represented as a directory.
Immediately in the representative directory are a collection of directories
named for hash values of the child object keys with an '@' prepended.  Into
this directory, if possible, will be placed the representations of the child
objects:

	INDEX     INDEX      INDEX                             DATA FILES
	========= ========== ================================= ================
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
	cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry

If the key is so long that it exceeds NAME_MAX with the decorations added on to
it, then it will be cut into pieces, the first few of which will be used to
make a nest of directories, and the last one of which will be the objects
inside the last directory.  The names of the intermediate directories will have
'+' prepended:

	J1223/@23/+xy...z/+kl...m/Epqr

Note that keys are raw data, and not only may they exceed NAME_MAX in size,
they may also contain things like '/' and NUL characters, and so they may not
be suitable for turning directly into a filename.

To handle this, CacheFiles will use a suitably printable filename directly and
"base-64" encode ones that aren't directly suitable.  The two versions of
object filenames indicate the encoding:

	OBJECT TYPE	PRINTABLE	ENCODED
	===============	===============	===============
	Index		"I..."		"J..."
	Data		"D..."		"E..."
	Special		"S..."		"T..."

Intermediate directories are always "@" or "+" as appropriate.

Each object in the cache has an extended attribute label that holds the object
type ID (required to distinguish special objects) and the auxiliary data from
the netfs.  The latter is used to detect stale objects in the cache and update
or retire them.

Note that CacheFiles will erase from the cache any file it doesn't recognise or
any file of an incorrect type (such as a FIFO file or a device file).

==========================
SECURITY MODEL AND SELINUX
==========================

CacheFiles is implemented to deal properly with the LSM security features of
the Linux kernel and the SELinux facility.

One of the problems that CacheFiles faces is that it is generally acting on
behalf of a process, and running in that process's context, and that includes a
security context that is not appropriate for accessing the cache - either
because the files in the cache are inaccessible to that process, or because if
the process creates a file in the cache, that file may be inaccessible to other
processes.

The way CacheFiles works is to temporarily change the security context (fsuid,
fsgid and actor security label) that the process acts as - without changing the
security context of the process when it the target of an operation performed by
some other process (so signalling and suchlike still work correctly).

When the CacheFiles module is asked to bind to its cache, it:

 (1) Finds the security label attached to the root cache directory and uses
     that as the security label with which it will create files.  By default,
     this is:

	cachefiles_var_t

 (2) Finds the security label of the process which issued the bind request
     (presumed to be the cachefilesd daemon), which by default will be:

	cachefilesd_t

     and asks LSM to supply a security ID as which it should act given the
     daemon's label.  By default, this will be:

	cachefiles_kernel_t

     SELinux transitions the daemon's security ID to the module's security ID
     based on a rule of this form in the policy.

	type_transition <daemon's-ID> kernel_t : process <module's-ID>;

     For instance:

	type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;

The module's security ID gives it permission to create, move and remove files
and directories in the cache, to find and access directories and files in the
cache, to set and access extended attributes on cache objects, and to read and
write files in the cache.

The daemon's security ID gives it only a very restricted set of permissions: it
may scan directories, stat files and erase files and directories.  It may
not read or write files in the cache, and so it is precluded from accessing the
data cached therein; nor is it permitted to create new files in the cache.

There are policy source files available in:

	http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2

and later versions.  In that tarball, see the files:

	cachefilesd.te
	cachefilesd.fc
	cachefilesd.if

They are built and installed directly by the RPM.

If a non-RPM based system is being used, then copy the above files to their own
directory and run:

	make -f /usr/share/selinux/devel/Makefile
	semodule -i cachefilesd.pp

You will need checkpolicy and selinux-policy-devel installed prior to the
build.

By default, the cache is located in /var/fscache, but if it is desirable that
it should be elsewhere, than either the above policy files must be altered, or
an auxiliary policy must be installed to label the alternate location of the
cache.

For instructions on how to add an auxiliary policy to enable the cache to be
located elsewhere when SELinux is in enforcing mode, please see:

	/usr/share/doc/cachefilesd-*/move-cache.txt

When the cachefilesd rpm is installed; alternatively, the document can be found
in the sources.

==================
A NOTE ON SECURITY
==================

CacheFiles makes use of the split security in the task_struct.  It allocates
its own task_security structure, and redirects current->act_as to point to it
when it acts on behalf of another process, in that process's context.

The reason it does this is that it calls vfs_mkdir() and suchlike rather than
bypassing security and calling inode ops directly.  Therefore the VFS and LSM
may deny the CacheFiles access to the cache data because under some
circumstances the caching code is running in the security context of whatever
process issued the original syscall on the netfs.

Furthermore, should CacheFiles create a file or directory, the security
parameters with that object is created (UID, GID, security label) would be
derived from that process that issued the system call, thus potentially
preventing other processes from accessing the cache - including CacheFiles's
cache management daemon (cachefilesd).

What is required is to temporarily override the security of the process that
issued the system call.  We can't, however, just do an in-place change of the
security data as that affects the process as an object, not just as a subject.
This means it may lose signals or ptrace events for example, and affects what
the process looks like in /proc.

So CacheFiles makes use of a logical split in the security between the
objective security (task->sec) and the subjective security (task->act_as).  The
objective security holds the intrinsic security properties of a process and is
never overridden.  This is what appears in /proc, and is what is used when a
process is the target of an operation by some other process (SIGKILL for
example).

The subjective security holds the active security properties of a process, and
may be overridden.  This is not seen externally, and is used whan a process
acts upon another object, for example SIGKILLing another process or opening a
file.

LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
for CacheFiles to run in a context of a specific security label, or to create
files and directories with another security label.

This documentation is added by the patch to:

	Documentation/filesystems/caching/cachefiles.txt

Signed-Off-By: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:41 +01:00
David Howells 800a964787 CacheFiles: Export things for CacheFiles
Export a number of functions for CacheFiles's use.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:40 +01:00
David Howells b510882281 FS-Cache: Implement data I/O part of netfs API
Implement the data I/O part of the FS-Cache netfs API.  The documentation and
API header file were added in a previous patch.

This patch implements the following functions for the netfs to call:

 (*) fscache_attr_changed().

     Indicate that the object has changed its attributes.  The only attribute
     currently recorded is the file size.  Only pages within the set file size
     will be stored in the cache.

     This operation is submitted for asynchronous processing, and will return
     immediately.  It will return -ENOMEM if an out of memory error is
     encountered, -ENOBUFS if the object is not actually cached, or 0 if the
     operation is successfully queued.

 (*) fscache_read_or_alloc_page().
 (*) fscache_read_or_alloc_pages().

     Request data be fetched from the disk, and allocate internal metadata to
     track the netfs pages and reserve disk space for unknown pages.

     These operations perform semi-asynchronous data reads.  Upon returning
     they will indicate which pages they think can be retrieved from disk, and
     will have set in progress attempts to retrieve those pages.

     These will return, in order of preference, -ENOMEM on memory allocation
     error, -ERESTARTSYS if a signal interrupted proceedings, -ENODATA if one
     or more requested pages are not yet cached, -ENOBUFS if the object is not
     actually cached or if there isn't space for future pages to be cached on
     this object, or 0 if successful.

     In the case of the multipage function, the pages for which reads are set
     in progress will be removed from the list and the page count decreased
     appropriately.

     If any read operations should fail, the completion function will be given
     an error, and will also be passed contextual information to allow the
     netfs to fall back to querying the server for the absent pages.

     For each successful read, the page completion function will also be
     called.

     Any pages subsequently tracked by the cache will have PG_fscache set upon
     them on return.  fscache_uncache_page() must be called for such pages.

     If supplied by the netfs, the mark_pages_cached() cookie op will be
     invoked for any pages now tracked.

 (*) fscache_alloc_page().

     Allocate internal metadata to track a netfs page and reserve disk space.

     This will return -ENOMEM on memory allocation error, -ERESTARTSYS on
     signal, -ENOBUFS if the object isn't cached, or there isn't enough space
     in the cache, or 0 if successful.

     Any pages subsequently tracked by the cache will have PG_fscache set upon
     them on return.  fscache_uncache_page() must be called for such pages.

     If supplied by the netfs, the mark_pages_cached() cookie op will be
     invoked for any pages now tracked.

 (*) fscache_write_page().

     Request data be stored to disk.  This may only be called on pages that
     have been read or alloc'd by the above three functions and have not yet
     been uncached.

     This will return -ENOMEM on memory allocation error, -ERESTARTSYS on
     signal, -ENOBUFS if the object isn't cached, or there isn't immediately
     enough space in the cache, or 0 if successful.

     On a successful return, this operation will have queued the page for
     asynchronous writing to the cache.  The page will be returned with
     PG_fscache_write set until the write completes one way or another.  The
     caller will not be notified if the write fails due to an I/O error.  If
     that happens, the object will become available and all pending writes will
     be aborted.

     Note that the cache may batch up page writes, and so it may take a while
     to get around to writing them out.

     The caller must assume that until PG_fscache_write is cleared the page is
     use by the cache.  Any changes made to the page may be reflected on disk.
     The page may even be under DMA.

 (*) fscache_uncache_page().

     Indicate that the cache should stop tracking a page previously read or
     alloc'd from the cache.  If the page was alloc'd only, but unwritten, it
     will not appear on disk.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:39 +01:00
David Howells 952efe7b78 FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.

The following documentation is added to:

	Documentation/filesystems/caching/operations.txt

		       ================================
		       ASYNCHRONOUS OPERATIONS HANDLING
		       ================================

========
OVERVIEW
========

FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines.  Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.

This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.

To make use of this facility, <linux/fscache-cache.h> should be #included.

===============================
OPERATION RECORD INITIALISATION
===============================

An operation is recorded in an fscache_operation struct:

	struct fscache_operation {
		union {
			struct work_struct fast_work;
			struct slow_work slow_work;
		};
		unsigned long		flags;
		fscache_operation_processor_t processor;
		...
	};

Someone wanting to issue an operation should allocate something with this
struct embedded in it.  They should initialise it by calling:

	void fscache_operation_init(struct fscache_operation *op,
				    fscache_operation_release_t release);

with the operation to be initialised and the release function to use.

The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).

The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).

FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.

==========
PARAMETERS
==========

There are a number of parameters that can be set in the operation record's flag
parameter.  There are three options for the provision of CPU time in these
operations:

 (1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD).  A thread
     may decide it wants to handle an operation itself without deferring it to
     another thread.

     This is, for example, used in read operations for calling readpages() on
     the backing filesystem in CacheFiles.  Although readpages() does an
     asynchronous data fetch, the determination of whether pages exist is done
     synchronously - and the netfs does not proceed until this has been
     determined.

     If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
     before submitting the operation, and the operating thread must wait for it
     to be cleared before proceeding:

		wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
			    fscache_wait_bit, TASK_UNINTERRUPTIBLE);

 (2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
     will be given to keventd to process.  Such an operation is not permitted
     to sleep on I/O.

     This is, for example, used by CacheFiles to copy data from a backing fs
     page to a netfs page after the backing fs has read the page in.

     If this option is used, op->fast_work and op->processor must be
     initialised before submitting the operation:

		INIT_WORK(&op->fast_work, do_some_work);

 (3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
     will be given to the slow work facility to process.  Such an operation is
     permitted to sleep on I/O.

     This is, for example, used by FS-Cache to handle background writes of
     pages that have just been fetched from a remote server.

     If this option is used, op->slow_work and op->processor must be
     initialised before submitting the operation:

		fscache_operation_init_slow(op, processor)

Furthermore, operations may be one of two types:

 (1) Exclusive (FSCACHE_OP_EXCLUSIVE).  Operations of this type may not run in
     conjunction with any other operation on the object being operated upon.

     An example of this is the attribute change operation, in which the file
     being written to may need truncation.

 (2) Shareable.  Operations of this type may be running simultaneously.  It's
     up to the operation implementation to prevent interference between other
     operations running at the same time.

=========
PROCEDURE
=========

Operations are used through the following procedure:

 (1) The submitting thread must allocate the operation and initialise it
     itself.  Normally this would be part of a more specific structure with the
     generic op embedded within.

 (2) The submitting thread must then submit the operation for processing using
     one of the following two functions:

	int fscache_submit_op(struct fscache_object *object,
			      struct fscache_operation *op);

	int fscache_submit_exclusive_op(struct fscache_object *object,
					struct fscache_operation *op);

     The first function should be used to submit non-exclusive ops and the
     second to submit exclusive ones.  The caller must still set the
     FSCACHE_OP_EXCLUSIVE flag.

     If successful, both functions will assign the operation to the specified
     object and return 0.  -ENOBUFS will be returned if the object specified is
     permanently unavailable.

     The operation manager will defer operations on an object that is still
     undergoing lookup or creation.  The operation will also be deferred if an
     operation of conflicting exclusivity is in progress on the object.

     If the operation is asynchronous, the manager will retain a reference to
     it, so the caller should put their reference to it by passing it to:

	void fscache_put_operation(struct fscache_operation *op);

 (3) If the submitting thread wants to do the work itself, and has marked the
     operation with FSCACHE_OP_MYTHREAD, then it should monitor
     FSCACHE_OP_WAITING as described above and check the state of the object if
     necessary (the object might have died whilst the thread was waiting).

     When it has finished doing its processing, it should call
     fscache_put_operation() on it.

 (4) The operation holds an effective lock upon the object, preventing other
     exclusive ops conflicting until it is released.  The operation can be
     enqueued for further immediate asynchronous processing by adjusting the
     CPU time provisioning option if necessary, eg:

	op->flags &= ~FSCACHE_OP_TYPE;
	op->flags |= ~FSCACHE_OP_FAST;

     and calling:

	void fscache_enqueue_operation(struct fscache_operation *op)

     This can be used to allow other things to have use of the worker thread
     pools.

=====================
ASYNCHRONOUS CALLBACK
=====================

When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation.  This should then get at the
container struct by using container_of():

	static void fscache_write_op(struct fscache_operation *_op)
	{
		struct fscache_storage *op =
			container_of(_op, struct fscache_storage, op);
	...
	}

The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns.  The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:39 +01:00
David Howells ccc4fc3d11 FS-Cache: Implement the cookie management part of the netfs API
Implement the cookie management part of the FS-Cache netfs client API.  The
documentation and API header file were added in a previous patch.

This patch implements the following three functions:

 (1) fscache_acquire_cookie().

     Acquire a cookie to represent an object to the netfs.  If the object in
     question is a non-index object, then that object and its parent indices
     will be created on disk at this point if they don't already exist.  Index
     creation is deferred because an index may reside in multiple caches.

 (2) fscache_relinquish_cookie().

     Retire or release a cookie previously acquired.  At this point, the
     object on disk may be destroyed.

 (3) fscache_update_cookie().

     Update the in-cache representation of a cookie.  This is used to update
     the auxiliary data for coherency management purposes.

With this patch it is possible to have a netfs instruct a cache backend to
look up, validate and create metadata on disk and to destroy it again.
The ability to actually store and retrieve data in the objects so created is
added in later patches.

Note that these functions will never return an error.  _All_ errors are
handled internally to FS-Cache.

The worst that can happen is that fscache_acquire_cookie() may return a NULL
pointer - which is considered a negative cookie pointer and can be passed back
to any function that takes a cookie without harm.  A negative cookie pointer
merely suppresses caching at that level.

The stub in linux/fscache.h will detect inline the negative cookie pointer and
abort the operation as fast as possible.  This means that the compiler doesn't
have to set up for a call in that case.

See the documentation in Documentation/filesystems/caching/netfs-api.txt for
more information.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells 36c9559022 FS-Cache: Object management state machine
Implement the cache object management state machine.

The following documentation is added to illuminate the working of this state
machine.  It will also be added as:

	Documentation/filesystems/caching/object.txt

	     ====================================================
	     IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT
	     ====================================================

==============
REPRESENTATION
==============

FS-Cache maintains an in-kernel representation of each object that a netfs is
currently interested in.  Such objects are represented by the fscache_cookie
struct and are referred to as cookies.

FS-Cache also maintains a separate in-kernel representation of the objects that
a cache backend is currently actively caching.  Such objects are represented by
the fscache_object struct.  The cache backends allocate these upon request, and
are expected to embed them in their own representations.  These are referred to
as objects.

There is a 1:N relationship between cookies and objects.  A cookie may be
represented by multiple objects - an index may exist in more than one cache -
or even by no objects (it may not be cached).

Furthermore, both cookies and objects are hierarchical.  The two hierarchies
correspond, but the cookies tree is a superset of the union of the object trees
of multiple caches:

	    NETFS INDEX TREE               :      CACHE 1     :      CACHE 2
	                                   :                  :
	                                   :   +-----------+  :
	                          +----------->|  IObject  |  :
	      +-----------+       |        :   +-----------+  :
	      |  ICookie  |-------+        :         |        :
	      +-----------+       |        :         |        :   +-----------+
	            |             +------------------------------>|  IObject  |
	            |                      :         |        :   +-----------+
	            |                      :         V        :         |
	            |                      :   +-----------+  :         |
	            V             +----------->|  IObject  |  :         |
	      +-----------+       |        :   +-----------+  :         |
	      |  ICookie  |-------+        :         |        :         V
	      +-----------+       |        :         |        :   +-----------+
	            |             +------------------------------>|  IObject  |
	      +-----+-----+                :         |        :   +-----------+
	      |           |                :         |        :         |
	      V           |                :         V        :         |
	+-----------+     |                :   +-----------+  :         |
	|  ICookie  |------------------------->|  IObject  |  :         |
	+-----------+     |                :   +-----------+  :         |
	      |           V                :         |        :         V
	      |     +-----------+          :         |        :   +-----------+
	      |     |  ICookie  |-------------------------------->|  IObject  |
	      |     +-----------+          :         |        :   +-----------+
	      V           |                :         V        :         |
	+-----------+     |                :   +-----------+  :         |
	|  DCookie  |------------------------->|  DObject  |  :         |
	+-----------+     |                :   +-----------+  :         |
	                  |                :                  :         |
	          +-------+-------+        :                  :         |
	          |               |        :                  :         |
	          V               V        :                  :         V
	    +-----------+   +-----------+  :                  :   +-----------+
	    |  DCookie  |   |  DCookie  |------------------------>|  DObject  |
	    +-----------+   +-----------+  :                  :   +-----------+
	                                   :                  :

In the above illustration, ICookie and IObject represent indices and DCookie
and DObject represent data storage objects.  Indices may have representation in
multiple caches, but currently, non-index objects may not.  Objects of any type
may also be entirely unrepresented.

As far as the netfs API goes, the netfs is only actually permitted to see
pointers to the cookies.  The cookies themselves and any objects attached to
those cookies are hidden from it.

===============================
OBJECT MANAGEMENT STATE MACHINE
===============================

Within FS-Cache, each active object is managed by its own individual state
machine.  The state for an object is kept in the fscache_object struct, in
object->state.  A cookie may point to a set of objects that are in different
states.

Each state has an action associated with it that is invoked when the machine
wakes up in that state.  There are four logical sets of states:

 (1) Preparation: states that wait for the parent objects to become ready.  The
     representations are hierarchical, and it is expected that an object must
     be created or accessed with respect to its parent object.

 (2) Initialisation: states that perform lookups in the cache and validate
     what's found and that create on disk any missing metadata.

 (3) Normal running: states that allow netfs operations on objects to proceed
     and that update the state of objects.

 (4) Termination: states that detach objects from their netfs cookies, that
     delete objects from disk, that handle disk and system errors and that free
     up in-memory resources.

In most cases, transitioning between states is in response to signalled events.
When a state has finished processing, it will usually set the mask of events in
which it is interested (object->event_mask) and relinquish the worker thread.
Then when an event is raised (by calling fscache_raise_event()), if the event
is not masked, the object will be queued for processing (by calling
fscache_enqueue_object()).

PROVISION OF CPU TIME
---------------------

The work to be done by the various states is given CPU time by the threads of
the slow work facility (see Documentation/slow-work.txt).  This is used in
preference to the workqueue facility because:

 (1) Threads may be completely occupied for very long periods of time by a
     particular work item.  These state actions may be doing sequences of
     synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
     getxattr, truncate, unlink, rmdir, rename).

 (2) Threads may do little actual work, but may rather spend a lot of time
     sleeping on I/O.  This means that single-threaded and 1-per-CPU-threaded
     workqueues don't necessarily have the right numbers of threads.

LOCKING SIMPLIFICATION
----------------------

Because only one worker thread may be operating on any particular object's
state machine at once, this simplifies the locking, particularly with respect
to disconnecting the netfs's representation of a cache object (fscache_cookie)
from the cache backend's representation (fscache_object) - which may be
requested from either end.

=================
THE SET OF STATES
=================

The object state machine has a set of states that it can be in.  There are
preparation states in which the object sets itself up and waits for its parent
object to transit to a state that allows access to its children:

 (1) State FSCACHE_OBJECT_INIT.

     Initialise the object and wait for the parent object to become active.  In
     the cache, it is expected that it will not be possible to look an object
     up from the parent object, until that parent object itself has been looked
     up.

There are initialisation states in which the object sets itself up and accesses
disk for the object metadata:

 (2) State FSCACHE_OBJECT_LOOKING_UP.

     Look up the object on disk, using the parent as a starting point.
     FS-Cache expects the cache backend to probe the cache to see whether this
     object is represented there, and if it is, to see if it's valid (coherency
     management).

     The cache should call fscache_object_lookup_negative() to indicate lookup
     failure for whatever reason, and should call fscache_obtained_object() to
     indicate success.

     At the completion of lookup, FS-Cache will let the netfs go ahead with
     read operations, no matter whether the file is yet cached.  If not yet
     cached, read operations will be immediately rejected with ENODATA until
     the first known page is uncached - as to that point there can be no data
     to be read out of the cache for that file that isn't currently also held
     in the pagecache.

 (3) State FSCACHE_OBJECT_CREATING.

     Create an object on disk, using the parent as a starting point.  This
     happens if the lookup failed to find the object, or if the object's
     coherency data indicated what's on disk is out of date.  In this state,
     FS-Cache expects the cache to create

     The cache should call fscache_obtained_object() if creation completes
     successfully, fscache_object_lookup_negative() otherwise.

     At the completion of creation, FS-Cache will start processing write
     operations the netfs has queued for an object.  If creation failed, the
     write ops will be transparently discarded, and nothing recorded in the
     cache.

There are some normal running states in which the object spends its time
servicing netfs requests:

 (4) State FSCACHE_OBJECT_AVAILABLE.

     A transient state in which pending operations are started, child objects
     are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
     lookup data is freed.

 (5) State FSCACHE_OBJECT_ACTIVE.

     The normal running state.  In this state, requests the netfs makes will be
     passed on to the cache.

 (6) State FSCACHE_OBJECT_UPDATING.

     The state machine comes here to update the object in the cache from the
     netfs's records.  This involves updating the auxiliary data that is used
     to maintain coherency.

And there are terminal states in which an object cleans itself up, deallocates
memory and potentially deletes stuff from disk:

 (7) State FSCACHE_OBJECT_LC_DYING.

     The object comes here if it is dying because of a lookup or creation
     error.  This would be due to a disk error or system error of some sort.
     Temporary data is cleaned up, and the parent is released.

 (8) State FSCACHE_OBJECT_DYING.

     The object comes here if it is dying due to an error, because its parent
     cookie has been relinquished by the netfs or because the cache is being
     withdrawn.

     Any child objects waiting on this one are given CPU time so that they too
     can destroy themselves.  This object waits for all its children to go away
     before advancing to the next state.

 (9) State FSCACHE_OBJECT_ABORT_INIT.

     The object comes to this state if it was waiting on its parent in
     FSCACHE_OBJECT_INIT, but its parent died.  The object will destroy itself
     so that the parent may proceed from the FSCACHE_OBJECT_DYING state.

(10) State FSCACHE_OBJECT_RELEASING.
(11) State FSCACHE_OBJECT_RECYCLING.

     The object comes to one of these two states when dying once it is rid of
     all its children, if it is dying because the netfs relinquished its
     cookie.  In the first state, the cached data is expected to persist, and
     in the second it will be deleted.

(12) State FSCACHE_OBJECT_WITHDRAWING.

     The object transits to this state if the cache decides it wants to
     withdraw the object from service, perhaps to make space, but also due to
     error or just because the whole cache is being withdrawn.

(13) State FSCACHE_OBJECT_DEAD.

     The object transits to this state when the in-memory object record is
     ready to be deleted.  The object processor shouldn't ever see an object in
     this state.

THE SET OF EVENTS
-----------------

There are a number of events that can be raised to an object state machine:

 (*) FSCACHE_OBJECT_EV_UPDATE

     The netfs requested that an object be updated.  The state machine will ask
     the cache backend to update the object, and the cache backend will ask the
     netfs for details of the change through its cookie definition ops.

 (*) FSCACHE_OBJECT_EV_CLEARED

     This is signalled in two circumstances:

     (a) when an object's last child object is dropped and

     (b) when the last operation outstanding on an object is completed.

     This is used to proceed from the dying state.

 (*) FSCACHE_OBJECT_EV_ERROR

     This is signalled when an I/O error occurs during the processing of some
     object.

 (*) FSCACHE_OBJECT_EV_RELEASE
 (*) FSCACHE_OBJECT_EV_RETIRE

     These are signalled when the netfs relinquishes a cookie it was using.
     The event selected depends on whether the netfs asks for the backing
     object to be retired (deleted) or retained.

 (*) FSCACHE_OBJECT_EV_WITHDRAW

     This is signalled when the cache backend wants to withdraw an object.
     This means that the object will have to be detached from the netfs's
     cookie.

Because the withdrawing releasing/retiring events are all handled by the object
state machine, it doesn't matter if there's a collision with both ends trying
to sever the connection at the same time.  The state machine can just pick
which one it wants to honour, and that effects the other.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells 2868cbea72 FS-Cache: Bit waiting helpers
Add helpers for use with wait_on_bit().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells 726dd7ff10 FS-Cache: Add netfs registration
Add functions to register and unregister a network filesystem or other client
of the FS-Cache service.  This allocates and releases the cookie representing
the top-level index for a netfs, and makes it available to the netfs.

If the FS-Cache facility is disabled, then the calls are optimised away at
compile time.

Note that whilst this patch may appear to work with FS-Cache enabled and a
netfs attempting to use it, it will leak the cookie it allocates for the netfs
as fscache_relinquish_cookie() is implemented in a later patch.  This will
cause the slab code to emit a warning when the module is removed.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells 955d00917f FS-Cache: Provide a slab for cookie allocation
Provide a slab from which can be allocated the FS-Cache cookies that will be
presented to the netfs.

Also provide a slab constructor and a function to recursively discard a cookie
and its ancestor chain.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:38 +01:00
David Howells 4c515dd47a FS-Cache: Add cache management
Implement the entry points by which a cache backend may initialise, add,
declare an error upon and withdraw a cache.

Further, an object is created in sysfs under which each cache added will get
an object created:

	/sys/fs/fscache/<cachetag>/

All of this is described in Documentation/filesystems/caching/backend-api.txt
added by a previous patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00
David Howells 0e04d4cefc FS-Cache: Add cache tag handling
Implement two features of FS-Cache:

 (1) The ability to request and release cache tags - names by which a cache may
     be known to a netfs, and thus selected for use.

 (2) An internal function by which a cache is selected by consulting the netfs,
     if the netfs wishes to be consulted.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00
David Howells a6891645cf FS-Cache: Root index definition
Add a description of the root index of the cache for later patches to make use
of.

The root index is owned by FS-Cache itself.  When a netfs requests caching
facilities, FS-Cache will, if one doesn't already exist, create an entry in
the root index with the key being the name of the netfs ("AFS" for example),
and the auxiliary data holding the index structure version supplied by the
netfs:

				     FSDEF
				       |
				 +-----------+
				 |           |
				NFS         AFS
			       [v=1]       [v=1]

If an entry with the appropriate name does already exist, the version is
compared.  If the version is different, the entire subtree from that entry
will be discarded and a new entry created.

The new entry will be an index, and a cookie referring to it will be passed to
the netfs.  This is then the root handle by which the netfs accesses the
cache.  It can create whatever objects it likes in that index, including
further indices.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00
David Howells 7394daa8c6 FS-Cache: Add use of /proc and presentation of statistics
Make FS-Cache create its /proc interface and present various statistical
information through it.  Also provide the functions for updating this
information.

These features are enabled by:

	CONFIG_FSCACHE_PROC
	CONFIG_FSCACHE_STATS
	CONFIG_FSCACHE_HISTOGRAM

The /proc directory for FS-Cache is also exported so that caching modules can
add their own statistics there too.

The FS-Cache module is loadable at this point, and the statistics files can be
examined by userspace:

	cat /proc/fs/fscache/stats
	cat /proc/fs/fscache/histogram

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:37 +01:00
David Howells 06b3db1b9b FS-Cache: Add main configuration option, module entry points and debugging
Add the main configuration option, allowing FS-Cache to be selected; the
module entry and exit functions and the debugging stuff used by these patches.

The two configuration options added are:

	CONFIG_FSCACHE
	CONFIG_FSCACHE_DEBUG

The first enables the facility, and the second makes the debugging statements
enableable through the "debug" module parameter.  The value of this parameter
is a bitmask as described in:

	Documentation/filesystems/caching/fscache.txt

The module can be loaded at this point, but all it will do at this point in
the patch series is to start up the slow work facility and shut it down again.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00
David Howells 266cf658ef FS-Cache: Recruit a page flags for cache management
Recruit a page flag to aid in cache management.  The following extra flag is
defined:

 (1) PG_fscache (PG_private_2)

     The marked page is backed by a local cache and is pinning resources in the
     cache driver.

If PG_fscache is set, then things that checked for PG_private will now also
check for that.  This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00
Pekka Enberg 23516dc709 kmemtrace, squashfs: fix slab.h dependency problem in squasfs
Impact: cleanup

fs/squashfs/export.c depends on slab.h without including it:

    CC      fs/squashfs/export.o
  fs/squashfs/export.c: In function ‘squashfs_read_inode_lookup_table’:
  fs/squashfs/export.c:133: error: implicit declaration of function ‘kmalloc’
  fs/squashfs/export.c:133: warning: assignment makes pointer from integer without a cast
  fs/squashfs/export.c:143: error: implicit declaration of function ‘kfree’
  make[1]: *** [fs/squashfs/export.o] Error 1
  make: *** [fs/squashfs/] Error 2

It gets included implicitly currently - but this will not be the
case with upcoming kmemtrace changes.

Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237884999.25315.41.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-03 12:21:34 +02:00
Pekka Enberg c325962b68 kmemtrace, befs: fix slab.h dependency problem
Impact: cleanup

fs/befs/debug.c depends on slab.h without including it. Upcoming
changes for kmemtrace would break the build:

    CC      fs/befs/debug.o
  fs/befs/debug.c: In function ‘befs_error’:
  fs/befs/debug.c:31: error: implicit declaration of function ‘kmalloc’
  fs/befs/debug.c:31: warning: initialization makes pointer from integer without a cast
  fs/befs/debug.c:42: error: implicit declaration of function ‘kfree’
  fs/befs/debug.c: In function ‘befs_warning’:
  fs/befs/debug.c:49: warning: initialization makes pointer from integer without a cast
  fs/befs/debug.c: In function ‘befs_debug’:
  fs/befs/debug.c:73: warning: assignment makes pointer from integer without a cast
  make[1]: *** [fs/befs/debug.o] Error 1
  make: *** [fs/befs/] Error 2

So add the dependency explicitly.

Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
LKML-Reference: <1237884230.25315.33.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-03 12:21:33 +02:00
Ingo Molnar 76791ab2d5 kmemtrace, fs: uninline simple_transaction_set()
Impact: cleanup

We want to remove percpu.h from rcupdate.h (for upcoming kmemtrace
changes), but this is not possible currently without breaking the
build because fs.h has an implicit include file depedency: it
uses PAGE_SIZE but does not include asm/page.h which defines it.

This problem gets masked in practice because most fs.h using sites
use rcupreempt.h (and other headers) which includes percpu.h which
brings in asm/page.h indirectly.

We cannot add asm/page.h to asm/fs.h because page.h is not an
exported header.

Move simple_transaction_set() to the other simple-transaction
file helpers in fs/libfs.c.

This removes the include file hell and also reduces
kernel size a bit.

Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: paulmck@linux.vnet.ibm.com
LKML-Reference: <1237898630.25315.83.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-03 12:09:09 +02:00
Theodore Ts'o e7c8f5079e ext3: Add replace-on-rename hueristics for data=writeback mode
In data=writeback mode, start an asynchronous flush when renaming a
file on top of an already-existing file.  This lowers the probability
of data loss in the case of applications that attempt to replace a
file via using rename().

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2009-04-03 01:34:49 -04:00
Theodore Ts'o f7ab34ea72 ext3: Add replace-on-truncate hueristics for data=writeback mode
In data=writeback mode, start an asynchronous flush when closing a
file which had been previously truncated down to zero.  This lowers
the probability of data loss in the case of applications that attempt
to replace a file using truncate.

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2009-04-03 01:34:35 -04:00
Linus Torvalds 8fe74cf053 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
  Remove two unneeded exports and make two symbols static in fs/mpage.c
  Cleanup after commit 585d3bc06f
  Trim includes of fdtable.h
  Don't crap into descriptor table in binfmt_som
  Trim includes in binfmt_elf
  Don't mess with descriptor table in load_elf_binary()
  Get rid of indirect include of fs_struct.h
  New helper - current_umask()
  check_unsafe_exec() doesn't care about signal handlers sharing
  New locking/refcounting for fs_struct
  Take fs_struct handling to new file (fs/fs_struct.c)
  Get rid of bumping fs_struct refcount in pivot_root(2)
  Kill unsharing fs_struct in __set_personality()
2009-04-02 21:09:10 -07:00
Coly Li 41d577aa35 fs/ufs: return f_fsid for statfs(2)
Make ufs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:10 -07:00
Coly Li 1c5b45411f fs/sysv: return f_fsid for statfs(2)
Make sysv file system return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:10 -07:00
Coly Li 2fc7f562b4 fs/squashfs: return f_fsid for statfs(2)
Make squashfs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Phillip Lougher <phillip@lougher.demon.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:10 -07:00
Coly Li 651d062304 fs/reiserfs: return f_fsid for statfs(2)
Make reiserfs3 return f_fsid info for statfs(2).  By Andreas' suggestion,
this patch populates a persistent f_fsid between boots/mounts with help of
on-disk uuid record.

Randy Dunlap reported a compiling error from v2 patch like:
    fs/built-in.o: In function `reiserfs_statfs':
    super.c:(.text+0x7332b): undefined reference to `crc32_le'
    super.c:(.text+0x7333f): undefined reference to `crc32_le'
Also he provided helpful solution to fix this error. The modification of v3
patch is based on Randy's suggestion, add 'select CRC32' in fs/reiserfs/Kconfig.

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:10 -07:00
Coly Li 5b76dc066a fs/qnx4: return f_fsid for statfs(2)
Make qnx4 file system return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: Anders Larsen <al@alarsen.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:10 -07:00
Coly Li 197e671ee1 fs/omfs: return f_fsid for statfs(2)
Make omfs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: Bob Copeland <me@bobcopeland.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:10 -07:00
Coly Li 054475d2af fs/minix: return f_fsid for statfs(2)
Make minix file system return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li 2430c4daf9 fs/isofs: return f_fsid for statfs(2)
Make isofs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li 604d295c26 fs/hpfs: return f_fsid for statfs(2)
Make hpfs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li 25564dd869 fs/hfsplus: return f_fsid for statfs(2)
Make hfsplus return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li 7dd2c000ff fs/hfs: return f_fsid for statfs(2)
Make hfs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li aac49b7543 fs/fat: return f_fsid for statfs(2)
Make fat return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Acked-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li 514c91a9cc fs/efs: return f_fsid for statfs(2)
Make efs return f_fsid info for statfs(2), and do a little variable
renaming in efs_statfs().

Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:09 -07:00
Coly Li 94ea77ac69 fs/cramfs: return f_fsid for statfs(2)
Make cramfs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:08 -07:00
Coly Li 8587246a00 fs/befs: return f_fsid for statfs(2)
Make befs return f_fsid info for statfs(2).

Signed-off-by: Coly Li <coly.li@suse.de>
Cc: Sergey S. Kostyliov <rathamahata@php4.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 19:05:08 -07:00