/* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #define NVME_MINORS (1U << MINORBITS) static int nvme_major; module_param(nvme_major, int, 0); static int nvme_char_major; module_param(nvme_char_major, int, 0); static LIST_HEAD(nvme_ctrl_list); DEFINE_SPINLOCK(dev_list_lock); static struct class *nvme_class; static void nvme_free_ns(struct kref *kref) { struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); if (ns->type == NVME_NS_LIGHTNVM) nvme_nvm_unregister(ns->queue, ns->disk->disk_name); spin_lock(&dev_list_lock); ns->disk->private_data = NULL; spin_unlock(&dev_list_lock); nvme_put_ctrl(ns->ctrl); put_disk(ns->disk); kfree(ns); } static void nvme_put_ns(struct nvme_ns *ns) { kref_put(&ns->kref, nvme_free_ns); } static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) { struct nvme_ns *ns; spin_lock(&dev_list_lock); ns = disk->private_data; if (ns && !kref_get_unless_zero(&ns->kref)) ns = NULL; spin_unlock(&dev_list_lock); return ns; } struct request *nvme_alloc_request(struct request_queue *q, struct nvme_command *cmd, unsigned int flags) { bool write = cmd->common.opcode & 1; struct request *req; req = blk_mq_alloc_request(q, write, flags); if (IS_ERR(req)) return req; req->cmd_type = REQ_TYPE_DRV_PRIV; req->cmd_flags |= REQ_FAILFAST_DRIVER; req->__data_len = 0; req->__sector = (sector_t) -1; req->bio = req->biotail = NULL; req->cmd = (unsigned char *)cmd; req->cmd_len = sizeof(struct nvme_command); req->special = (void *)0; return req; } /* * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, void *buffer, unsigned bufflen, u32 *result, unsigned timeout) { struct request *req; int ret; req = nvme_alloc_request(q, cmd, 0); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (buffer && bufflen) { ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); if (ret) goto out; } blk_execute_rq(req->q, NULL, req, 0); if (result) *result = (u32)(uintptr_t)req->special; ret = req->errors; out: blk_mq_free_request(req); return ret; } int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, void *buffer, unsigned bufflen) { return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0); } int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, void __user *ubuffer, unsigned bufflen, void __user *meta_buffer, unsigned meta_len, u32 meta_seed, u32 *result, unsigned timeout) { bool write = cmd->common.opcode & 1; struct nvme_ns *ns = q->queuedata; struct gendisk *disk = ns ? ns->disk : NULL; struct request *req; struct bio *bio = NULL; void *meta = NULL; int ret; req = nvme_alloc_request(q, cmd, 0); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (ubuffer && bufflen) { ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, GFP_KERNEL); if (ret) goto out; bio = req->bio; if (!disk) goto submit; bio->bi_bdev = bdget_disk(disk, 0); if (!bio->bi_bdev) { ret = -ENODEV; goto out_unmap; } if (meta_buffer) { struct bio_integrity_payload *bip; meta = kmalloc(meta_len, GFP_KERNEL); if (!meta) { ret = -ENOMEM; goto out_unmap; } if (write) { if (copy_from_user(meta, meta_buffer, meta_len)) { ret = -EFAULT; goto out_free_meta; } } bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); if (IS_ERR(bip)) { ret = PTR_ERR(bip); goto out_free_meta; } bip->bip_iter.bi_size = meta_len; bip->bip_iter.bi_sector = meta_seed; ret = bio_integrity_add_page(bio, virt_to_page(meta), meta_len, offset_in_page(meta)); if (ret != meta_len) { ret = -ENOMEM; goto out_free_meta; } } } submit: blk_execute_rq(req->q, disk, req, 0); ret = req->errors; if (result) *result = (u32)(uintptr_t)req->special; if (meta && !ret && !write) { if (copy_to_user(meta_buffer, meta, meta_len)) ret = -EFAULT; } out_free_meta: kfree(meta); out_unmap: if (bio) { if (disk && bio->bi_bdev) bdput(bio->bi_bdev); blk_rq_unmap_user(bio); } out: blk_mq_free_request(req); return ret; } int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, void __user *ubuffer, unsigned bufflen, u32 *result, unsigned timeout) { return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, result, timeout); } int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.cns = cpu_to_le32(1); *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, sizeof(struct nvme_id_ctrl)); if (error) kfree(*id); return error; } int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, struct nvme_id_ns **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify, c.identify.nsid = cpu_to_le32(nsid), *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, sizeof(struct nvme_id_ns)); if (error) kfree(*id); return error; } int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, dma_addr_t dma_addr, u32 *result) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_get_features; c.features.nsid = cpu_to_le32(nsid); c.features.prp1 = cpu_to_le64(dma_addr); c.features.fid = cpu_to_le32(fid); return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0); } int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, dma_addr_t dma_addr, u32 *result) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_set_features; c.features.prp1 = cpu_to_le64(dma_addr); c.features.fid = cpu_to_le32(fid); c.features.dword11 = cpu_to_le32(dword11); return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0); } int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) { struct nvme_command c = { }; int error; c.common.opcode = nvme_admin_get_log_page, c.common.nsid = cpu_to_le32(0xFFFFFFFF), c.common.cdw10[0] = cpu_to_le32( (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | NVME_LOG_SMART), *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); if (!*log) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, sizeof(struct nvme_smart_log)); if (error) kfree(*log); return error; } int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) { u32 q_count = (*count - 1) | ((*count - 1) << 16); u32 result; int status, nr_io_queues; status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0, &result); if (status) return status; nr_io_queues = min(result & 0xffff, result >> 16) + 1; *count = min(*count, nr_io_queues); return 0; } static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_user_io io; struct nvme_command c; unsigned length, meta_len; void __user *metadata; if (copy_from_user(&io, uio, sizeof(io))) return -EFAULT; switch (io.opcode) { case nvme_cmd_write: case nvme_cmd_read: case nvme_cmd_compare: break; default: return -EINVAL; } length = (io.nblocks + 1) << ns->lba_shift; meta_len = (io.nblocks + 1) * ns->ms; metadata = (void __user *)(uintptr_t)io.metadata; if (ns->ext) { length += meta_len; meta_len = 0; } else if (meta_len) { if ((io.metadata & 3) || !io.metadata) return -EINVAL; } memset(&c, 0, sizeof(c)); c.rw.opcode = io.opcode; c.rw.flags = io.flags; c.rw.nsid = cpu_to_le32(ns->ns_id); c.rw.slba = cpu_to_le64(io.slba); c.rw.length = cpu_to_le16(io.nblocks); c.rw.control = cpu_to_le16(io.control); c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); c.rw.reftag = cpu_to_le32(io.reftag); c.rw.apptag = cpu_to_le16(io.apptag); c.rw.appmask = cpu_to_le16(io.appmask); return __nvme_submit_user_cmd(ns->queue, &c, (void __user *)(uintptr_t)io.addr, length, metadata, meta_len, io.slba, NULL, 0); } static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, struct nvme_passthru_cmd __user *ucmd) { struct nvme_passthru_cmd cmd; struct nvme_command c; unsigned timeout = 0; int status; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) return -EFAULT; memset(&c, 0, sizeof(c)); c.common.opcode = cmd.opcode; c.common.flags = cmd.flags; c.common.nsid = cpu_to_le32(cmd.nsid); c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); if (cmd.timeout_ms) timeout = msecs_to_jiffies(cmd.timeout_ms); status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, (void __user *)cmd.addr, cmd.data_len, &cmd.result, timeout); if (status >= 0) { if (put_user(cmd.result, &ucmd->result)) return -EFAULT; } return status; } static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct nvme_ns *ns = bdev->bd_disk->private_data; switch (cmd) { case NVME_IOCTL_ID: force_successful_syscall_return(); return ns->ns_id; case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); case NVME_IOCTL_IO_CMD: return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); case NVME_IOCTL_SUBMIT_IO: return nvme_submit_io(ns, (void __user *)arg); case SG_GET_VERSION_NUM: return nvme_sg_get_version_num((void __user *)arg); case SG_IO: return nvme_sg_io(ns, (void __user *)arg); default: return -ENOTTY; } } #ifdef CONFIG_COMPAT static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { switch (cmd) { case SG_IO: return -ENOIOCTLCMD; } return nvme_ioctl(bdev, mode, cmd, arg); } #else #define nvme_compat_ioctl NULL #endif static int nvme_open(struct block_device *bdev, fmode_t mode) { return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; } static void nvme_release(struct gendisk *disk, fmode_t mode) { nvme_put_ns(disk->private_data); } static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) { /* some standard values */ geo->heads = 1 << 6; geo->sectors = 1 << 5; geo->cylinders = get_capacity(bdev->bd_disk) >> 11; return 0; } #ifdef CONFIG_BLK_DEV_INTEGRITY static void nvme_init_integrity(struct nvme_ns *ns) { struct blk_integrity integrity; switch (ns->pi_type) { case NVME_NS_DPS_PI_TYPE3: integrity.profile = &t10_pi_type3_crc; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: integrity.profile = &t10_pi_type1_crc; break; default: integrity.profile = NULL; break; } integrity.tuple_size = ns->ms; blk_integrity_register(ns->disk, &integrity); blk_queue_max_integrity_segments(ns->queue, 1); } #else static void nvme_init_integrity(struct nvme_ns *ns) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static void nvme_config_discard(struct nvme_ns *ns) { u32 logical_block_size = queue_logical_block_size(ns->queue); ns->queue->limits.discard_zeroes_data = 0; ns->queue->limits.discard_alignment = logical_block_size; ns->queue->limits.discard_granularity = logical_block_size; blk_queue_max_discard_sectors(ns->queue, 0xffffffff); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); } static int nvme_revalidate_disk(struct gendisk *disk) { struct nvme_ns *ns = disk->private_data; struct nvme_id_ns *id; u8 lbaf, pi_type; u16 old_ms; unsigned short bs; if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) { dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n", __func__, ns->ctrl->instance, ns->ns_id); return -ENODEV; } if (id->ncap == 0) { kfree(id); return -ENODEV; } if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) { if (nvme_nvm_register(ns->queue, disk->disk_name)) { dev_warn(ns->ctrl->dev, "%s: LightNVM init failure\n", __func__); kfree(id); return -ENODEV; } ns->type = NVME_NS_LIGHTNVM; } old_ms = ns->ms; lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; ns->lba_shift = id->lbaf[lbaf].ds; ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); /* * If identify namespace failed, use default 512 byte block size so * block layer can use before failing read/write for 0 capacity. */ if (ns->lba_shift == 0) ns->lba_shift = 9; bs = 1 << ns->lba_shift; /* XXX: PI implementation requires metadata equal t10 pi tuple size */ pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? id->dps & NVME_NS_DPS_PI_MASK : 0; blk_mq_freeze_queue(disk->queue); if (blk_get_integrity(disk) && (ns->pi_type != pi_type || ns->ms != old_ms || bs != queue_logical_block_size(disk->queue) || (ns->ms && ns->ext))) blk_integrity_unregister(disk); ns->pi_type = pi_type; blk_queue_logical_block_size(ns->queue, bs); if (ns->ms && !ns->ext) nvme_init_integrity(ns); if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) set_capacity(disk, 0); else set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) nvme_config_discard(ns); blk_mq_unfreeze_queue(disk->queue); kfree(id); return 0; } static char nvme_pr_type(enum pr_type type) { switch (type) { case PR_WRITE_EXCLUSIVE: return 1; case PR_EXCLUSIVE_ACCESS: return 2; case PR_WRITE_EXCLUSIVE_REG_ONLY: return 3; case PR_EXCLUSIVE_ACCESS_REG_ONLY: return 4; case PR_WRITE_EXCLUSIVE_ALL_REGS: return 5; case PR_EXCLUSIVE_ACCESS_ALL_REGS: return 6; default: return 0; } }; static int nvme_pr_command(struct block_device *bdev, u32 cdw10, u64 key, u64 sa_key, u8 op) { struct nvme_ns *ns = bdev->bd_disk->private_data; struct nvme_command c; u8 data[16] = { 0, }; put_unaligned_le64(key, &data[0]); put_unaligned_le64(sa_key, &data[8]); memset(&c, 0, sizeof(c)); c.common.opcode = op; c.common.nsid = cpu_to_le32(ns->ns_id); c.common.cdw10[0] = cpu_to_le32(cdw10); return nvme_submit_sync_cmd(ns->queue, &c, data, 16); } static int nvme_pr_register(struct block_device *bdev, u64 old, u64 new, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = old ? 2 : 0; cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); } static int nvme_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = nvme_pr_type(type) << 8; cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); } static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, enum pr_type type, bool abort) { u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); } static int nvme_pr_clear(struct block_device *bdev, u64 key) { u32 cdw10 = 1 | key ? 1 << 3 : 0; return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); } static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) { u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); } static const struct pr_ops nvme_pr_ops = { .pr_register = nvme_pr_register, .pr_reserve = nvme_pr_reserve, .pr_release = nvme_pr_release, .pr_preempt = nvme_pr_preempt, .pr_clear = nvme_pr_clear, }; static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = nvme_compat_ioctl, .open = nvme_open, .release = nvme_release, .getgeo = nvme_getgeo, .revalidate_disk= nvme_revalidate_disk, .pr_ops = &nvme_pr_ops, }; static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) { unsigned long timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; int ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if ((csts & NVME_CSTS_RDY) == bit) break; msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(ctrl->dev, "Device not ready; aborting %s\n", enabled ? "initialisation" : "reset"); return -ENODEV; } } return ret; } /* * If the device has been passed off to us in an enabled state, just clear * the enabled bit. The spec says we should set the 'shutdown notification * bits', but doing so may cause the device to complete commands to the * admin queue ... and we don't know what memory that might be pointing at! */ int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) { int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; ctrl->ctrl_config &= ~NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; return nvme_wait_ready(ctrl, cap, false); } int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) { /* * Default to a 4K page size, with the intention to update this * path in the future to accomodate architectures with differing * kernel and IO page sizes. */ unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; int ret; if (page_shift < dev_page_min) { dev_err(ctrl->dev, "Minimum device page size %u too large for host (%u)\n", 1 << dev_page_min, 1 << page_shift); return -ENODEV; } ctrl->page_size = 1 << page_shift; ctrl->ctrl_config = NVME_CC_CSS_NVM; ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; ctrl->ctrl_config |= NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; return nvme_wait_ready(ctrl, cap, true); } int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) { unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; u32 csts; int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) break; msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(ctrl->dev, "Device shutdown incomplete; abort shutdown\n"); return -ENODEV; } } return ret; } /* * Initialize the cached copies of the Identify data and various controller * register in our nvme_ctrl structure. This should be called as soon as * the admin queue is fully up and running. */ int nvme_init_identify(struct nvme_ctrl *ctrl) { struct nvme_id_ctrl *id; u64 cap; int ret, page_shift; ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); if (ret) { dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret); return ret; } ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); if (ret) { dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret); return ret; } page_shift = NVME_CAP_MPSMIN(cap) + 12; if (ctrl->vs >= NVME_VS(1, 1)) ctrl->subsystem = NVME_CAP_NSSRC(cap); ret = nvme_identify_ctrl(ctrl, &id); if (ret) { dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret); return -EIO; } ctrl->oncs = le16_to_cpup(&id->oncs); ctrl->abort_limit = id->acl + 1; ctrl->vwc = id->vwc; memcpy(ctrl->serial, id->sn, sizeof(id->sn)); memcpy(ctrl->model, id->mn, sizeof(id->mn)); memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); if (id->mdts) ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9); else ctrl->max_hw_sectors = UINT_MAX; if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) { unsigned int max_hw_sectors; ctrl->stripe_size = 1 << (id->vs[3] + page_shift); max_hw_sectors = ctrl->stripe_size >> (page_shift - 9); if (ctrl->max_hw_sectors) { ctrl->max_hw_sectors = min(max_hw_sectors, ctrl->max_hw_sectors); } else { ctrl->max_hw_sectors = max_hw_sectors; } } kfree(id); return 0; } static int nvme_dev_open(struct inode *inode, struct file *file) { struct nvme_ctrl *ctrl; int instance = iminor(inode); int ret = -ENODEV; spin_lock(&dev_list_lock); list_for_each_entry(ctrl, &nvme_ctrl_list, node) { if (ctrl->instance != instance) continue; if (!ctrl->admin_q) { ret = -EWOULDBLOCK; break; } if (!kref_get_unless_zero(&ctrl->kref)) break; file->private_data = ctrl; ret = 0; break; } spin_unlock(&dev_list_lock); return ret; } static int nvme_dev_release(struct inode *inode, struct file *file) { nvme_put_ctrl(file->private_data); return 0; } static long nvme_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct nvme_ctrl *ctrl = file->private_data; void __user *argp = (void __user *)arg; struct nvme_ns *ns; switch (cmd) { case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(ctrl, NULL, argp); case NVME_IOCTL_IO_CMD: if (list_empty(&ctrl->namespaces)) return -ENOTTY; ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); return nvme_user_cmd(ctrl, ns, argp); case NVME_IOCTL_RESET: dev_warn(ctrl->dev, "resetting controller\n"); return ctrl->ops->reset_ctrl(ctrl); case NVME_IOCTL_SUBSYS_RESET: return nvme_reset_subsystem(ctrl); default: return -ENOTTY; } } static const struct file_operations nvme_dev_fops = { .owner = THIS_MODULE, .open = nvme_dev_open, .release = nvme_dev_release, .unlocked_ioctl = nvme_dev_ioctl, .compat_ioctl = nvme_dev_ioctl, }; static ssize_t nvme_sysfs_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); int ret; ret = ctrl->ops->reset_ctrl(ctrl); if (ret < 0) return ret; return count; } static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) { struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); return nsa->ns_id - nsb->ns_id; } static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns; list_for_each_entry(ns, &ctrl->namespaces, list) { if (ns->ns_id == nsid) return ns; if (ns->ns_id > nsid) break; } return NULL; } static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns; struct gendisk *disk; int node = dev_to_node(ctrl->dev); ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); if (!ns) return; ns->queue = blk_mq_init_queue(ctrl->tagset); if (IS_ERR(ns->queue)) goto out_free_ns; queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); ns->queue->queuedata = ns; ns->ctrl = ctrl; disk = alloc_disk_node(0, node); if (!disk) goto out_free_queue; kref_init(&ns->kref); ns->ns_id = nsid; ns->disk = disk; ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ list_add_tail(&ns->list, &ctrl->namespaces); blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); if (ctrl->max_hw_sectors) { blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors); blk_queue_max_segments(ns->queue, (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1); } if (ctrl->stripe_size) blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9); if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA); blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1); disk->major = nvme_major; disk->first_minor = 0; disk->fops = &nvme_fops; disk->private_data = ns; disk->queue = ns->queue; disk->driverfs_dev = ctrl->device; disk->flags = GENHD_FL_EXT_DEVT; sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid); /* * Initialize capacity to 0 until we establish the namespace format and * setup integrity extentions if necessary. The revalidate_disk after * add_disk allows the driver to register with integrity if the format * requires it. */ set_capacity(disk, 0); if (nvme_revalidate_disk(ns->disk)) goto out_free_disk; kref_get(&ctrl->kref); if (ns->type != NVME_NS_LIGHTNVM) { add_disk(ns->disk); if (ns->ms) { struct block_device *bd = bdget_disk(ns->disk, 0); if (!bd) return; if (blkdev_get(bd, FMODE_READ, NULL)) { bdput(bd); return; } blkdev_reread_part(bd); blkdev_put(bd, FMODE_READ); } } return; out_free_disk: kfree(disk); list_del(&ns->list); out_free_queue: blk_cleanup_queue(ns->queue); out_free_ns: kfree(ns); } static void nvme_ns_remove(struct nvme_ns *ns) { bool kill = nvme_io_incapable(ns->ctrl) && !blk_queue_dying(ns->queue); if (kill) blk_set_queue_dying(ns->queue); if (ns->disk->flags & GENHD_FL_UP) { if (blk_get_integrity(ns->disk)) blk_integrity_unregister(ns->disk); del_gendisk(ns->disk); } if (kill || !blk_queue_dying(ns->queue)) { blk_mq_abort_requeue_list(ns->queue); blk_cleanup_queue(ns->queue); } list_del_init(&ns->list); nvme_put_ns(ns); } static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn) { struct nvme_ns *ns, *next; unsigned i; for (i = 1; i <= nn; i++) { ns = nvme_find_ns(ctrl, i); if (ns) { if (revalidate_disk(ns->disk)) nvme_ns_remove(ns); } else nvme_alloc_ns(ctrl, i); } list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { if (ns->ns_id > nn) nvme_ns_remove(ns); } list_sort(NULL, &ctrl->namespaces, ns_cmp); } void nvme_scan_namespaces(struct nvme_ctrl *ctrl) { struct nvme_id_ctrl *id; if (nvme_identify_ctrl(ctrl, &id)) return; __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn)); kfree(id); } void nvme_remove_namespaces(struct nvme_ctrl *ctrl) { struct nvme_ns *ns, *next; list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) nvme_ns_remove(ns); } static DEFINE_IDA(nvme_instance_ida); static int nvme_set_instance(struct nvme_ctrl *ctrl) { int instance, error; do { if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) return -ENODEV; spin_lock(&dev_list_lock); error = ida_get_new(&nvme_instance_ida, &instance); spin_unlock(&dev_list_lock); } while (error == -EAGAIN); if (error) return -ENODEV; ctrl->instance = instance; return 0; } static void nvme_release_instance(struct nvme_ctrl *ctrl) { spin_lock(&dev_list_lock); ida_remove(&nvme_instance_ida, ctrl->instance); spin_unlock(&dev_list_lock); } static void nvme_free_ctrl(struct kref *kref) { struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); spin_lock(&dev_list_lock); list_del(&ctrl->node); spin_unlock(&dev_list_lock); put_device(ctrl->device); nvme_release_instance(ctrl); device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); ctrl->ops->free_ctrl(ctrl); } void nvme_put_ctrl(struct nvme_ctrl *ctrl) { kref_put(&ctrl->kref, nvme_free_ctrl); } /* * Initialize a NVMe controller structures. This needs to be called during * earliest initialization so that we have the initialized structured around * during probing. */ int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, const struct nvme_ctrl_ops *ops, unsigned long quirks) { int ret; INIT_LIST_HEAD(&ctrl->namespaces); kref_init(&ctrl->kref); ctrl->dev = dev; ctrl->ops = ops; ctrl->quirks = quirks; ret = nvme_set_instance(ctrl); if (ret) goto out; ctrl->device = device_create(nvme_class, ctrl->dev, MKDEV(nvme_char_major, ctrl->instance), dev, "nvme%d", ctrl->instance); if (IS_ERR(ctrl->device)) { ret = PTR_ERR(ctrl->device); goto out_release_instance; } get_device(ctrl->device); dev_set_drvdata(ctrl->device, ctrl); ret = device_create_file(ctrl->device, &dev_attr_reset_controller); if (ret) goto out_put_device; spin_lock(&dev_list_lock); list_add_tail(&ctrl->node, &nvme_ctrl_list); spin_unlock(&dev_list_lock); return 0; out_put_device: put_device(ctrl->device); device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); out_release_instance: nvme_release_instance(ctrl); out: return ret; } int __init nvme_core_init(void) { int result; result = register_blkdev(nvme_major, "nvme"); if (result < 0) return result; else if (result > 0) nvme_major = result; result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", &nvme_dev_fops); if (result < 0) goto unregister_blkdev; else if (result > 0) nvme_char_major = result; nvme_class = class_create(THIS_MODULE, "nvme"); if (IS_ERR(nvme_class)) { result = PTR_ERR(nvme_class); goto unregister_chrdev; } return 0; unregister_chrdev: __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); unregister_blkdev: unregister_blkdev(nvme_major, "nvme"); return result; } void nvme_core_exit(void) { unregister_blkdev(nvme_major, "nvme"); class_destroy(nvme_class); __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); }