/* * linux/arch/h8300/kernel/cpu/timer/timer8.c * * Yoshinori Sato * * 8bit Timer driver * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _8TCR 0 #define _8TCSR 2 #define TCORA 4 #define TCORB 6 #define _8TCNT 8 #define FLAG_REPROGRAM (1 << 0) #define FLAG_SKIPEVENT (1 << 1) #define FLAG_IRQCONTEXT (1 << 2) #define FLAG_STARTED (1 << 3) #define ONESHOT 0 #define PERIODIC 1 #define RELATIVE 0 #define ABSOLUTE 1 #define SCALE 64 struct timer8_priv { struct clock_event_device ced; unsigned long mapbase; raw_spinlock_t lock; unsigned long flags; unsigned int rate; unsigned int tcora; struct clk *pclk; }; static unsigned long timer8_get_counter(struct timer8_priv *p) { unsigned long v1, v2, v3; int o1, o2; o1 = ctrl_inb(p->mapbase + _8TCSR) & 0x20; /* Make sure the timer value is stable. Stolen from acpi_pm.c */ do { o2 = o1; v1 = ctrl_inw(p->mapbase + _8TCNT); v2 = ctrl_inw(p->mapbase + _8TCNT); v3 = ctrl_inw(p->mapbase + _8TCNT); o1 = ctrl_inb(p->mapbase + _8TCSR) & 0x20; } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); v2 |= o1 << 10; return v2; } static irqreturn_t timer8_interrupt(int irq, void *dev_id) { struct timer8_priv *p = dev_id; ctrl_outb(ctrl_inb(p->mapbase + _8TCSR) & ~0x40, p->mapbase + _8TCSR); p->flags |= FLAG_IRQCONTEXT; ctrl_outw(p->tcora, p->mapbase + TCORA); if (!(p->flags & FLAG_SKIPEVENT)) { if (clockevent_state_oneshot(&p->ced)) ctrl_outw(0x0000, p->mapbase + _8TCR); p->ced.event_handler(&p->ced); } p->flags &= ~(FLAG_SKIPEVENT | FLAG_IRQCONTEXT); return IRQ_HANDLED; } static void timer8_set_next(struct timer8_priv *p, unsigned long delta) { unsigned long flags; unsigned long now; raw_spin_lock_irqsave(&p->lock, flags); if (delta >= 0x10000) dev_warn(&p->pdev->dev, "delta out of range\n"); now = timer8_get_counter(p); p->tcora = delta; ctrl_outb(ctrl_inb(p->mapbase + _8TCR) | 0x40, p->mapbase + _8TCR); if (delta > now) ctrl_outw(delta, p->mapbase + TCORA); else ctrl_outw(now + 1, p->mapbase + TCORA); raw_spin_unlock_irqrestore(&p->lock, flags); } static int timer8_enable(struct timer8_priv *p) { p->rate = clk_get_rate(p->pclk) / SCALE; ctrl_outw(0xffff, p->mapbase + TCORA); ctrl_outw(0x0000, p->mapbase + _8TCNT); ctrl_outw(0x0c02, p->mapbase + _8TCR); return 0; } static int timer8_start(struct timer8_priv *p) { int ret = 0; unsigned long flags; raw_spin_lock_irqsave(&p->lock, flags); if (!(p->flags & FLAG_STARTED)) ret = timer8_enable(p); if (ret) goto out; p->flags |= FLAG_STARTED; out: raw_spin_unlock_irqrestore(&p->lock, flags); return ret; } static void timer8_stop(struct timer8_priv *p) { unsigned long flags; raw_spin_lock_irqsave(&p->lock, flags); ctrl_outw(0x0000, p->mapbase + _8TCR); raw_spin_unlock_irqrestore(&p->lock, flags); } static inline struct timer8_priv *ced_to_priv(struct clock_event_device *ced) { return container_of(ced, struct timer8_priv, ced); } static void timer8_clock_event_start(struct timer8_priv *p, int periodic) { struct clock_event_device *ced = &p->ced; timer8_start(p); ced->shift = 32; ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift); ced->max_delta_ns = clockevent_delta2ns(0xffff, ced); ced->min_delta_ns = clockevent_delta2ns(0x0001, ced); timer8_set_next(p, periodic?(p->rate + HZ/2) / HZ:0x10000); } static int timer8_clock_event_shutdown(struct clock_event_device *ced) { timer8_stop(ced_to_priv(ced)); return 0; } static int timer8_clock_event_periodic(struct clock_event_device *ced) { struct timer8_priv *p = ced_to_priv(ced); pr_info("%s: used for periodic clock events\n", ced->name); timer8_stop(p); timer8_clock_event_start(p, PERIODIC); return 0; } static int timer8_clock_event_oneshot(struct clock_event_device *ced) { struct timer8_priv *p = ced_to_priv(ced); pr_info("%s: used for oneshot clock events\n", ced->name); timer8_stop(p); timer8_clock_event_start(p, ONESHOT); return 0; } static int timer8_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct timer8_priv *p = ced_to_priv(ced); BUG_ON(!clockevent_state_oneshot(ced)); timer8_set_next(p, delta - 1); return 0; } static struct timer8_priv timer8_priv = { .ced = { .name = "h8300_8timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_next_event = timer8_clock_event_next, .set_state_shutdown = timer8_clock_event_shutdown, .set_state_periodic = timer8_clock_event_periodic, .set_state_oneshot = timer8_clock_event_oneshot, }, }; static void __init h8300_8timer_init(struct device_node *node) { void __iomem *base; int irq; int ret = 0; int rate; struct clk *clk; clk = of_clk_get(node, 0); if (IS_ERR(clk)) { pr_err("failed to get clock for clockevent\n"); return; } base = of_iomap(node, 0); if (!base) { pr_err("failed to map registers for clockevent\n"); goto free_clk; } irq = irq_of_parse_and_map(node, 0); if (irq < 0) { pr_err("failed to get irq for clockevent\n"); goto unmap_reg; } timer8_priv.mapbase = (unsigned long)base; timer8_priv.pclk = clk; ret = request_irq(irq, timer8_interrupt, IRQF_TIMER, timer8_priv.ced.name, &timer8_priv); if (ret < 0) { pr_err("failed to request irq %d for clockevent\n", irq); goto unmap_reg; } rate = clk_get_rate(clk) / SCALE; clockevents_config_and_register(&timer8_priv.ced, rate, 1, 0x0000ffff); return; unmap_reg: iounmap(base); free_clk: clk_put(clk); } CLOCKSOURCE_OF_DECLARE(h8300_8bit, "renesas,8bit-timer", h8300_8timer_init);