/* SPDX-License-Identifier: GPL-2.0 * * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. * */ #ifndef HABANALABSP_H_ #define HABANALABSP_H_ #include "include/armcp_if.h" #define pr_fmt(fmt) "habanalabs: " fmt #include #include #define HL_NAME "habanalabs" #define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT) #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ #define HL_MAX_QUEUES 128 struct hl_device; struct hl_fpriv; /** * struct asic_fixed_properties - ASIC specific immutable properties. * @uboot_ver: F/W U-boot version. * @preboot_ver: F/W Preboot version. * @sram_base_address: SRAM physical start address. * @sram_end_address: SRAM physical end address. * @sram_user_base_address - SRAM physical start address for user access. * @dram_base_address: DRAM physical start address. * @dram_end_address: DRAM physical end address. * @dram_user_base_address: DRAM physical start address for user access. * @dram_size: DRAM total size. * @dram_pci_bar_size: size of PCI bar towards DRAM. * @host_phys_base_address: base physical address of host memory for * transactions that the device generates. * @va_space_host_start_address: base address of virtual memory range for * mapping host memory. * @va_space_host_end_address: end address of virtual memory range for * mapping host memory. * @va_space_dram_start_address: base address of virtual memory range for * mapping DRAM memory. * @va_space_dram_end_address: end address of virtual memory range for * mapping DRAM memory. * @cfg_size: configuration space size on SRAM. * @sram_size: total size of SRAM. * @max_asid: maximum number of open contexts (ASIDs). * @completion_queues_count: number of completion queues. * @high_pll: high PLL frequency used by the device. * @cb_pool_cb_cnt: number of CBs in the CB pool. * @cb_pool_cb_size: size of each CB in the CB pool. * @tpc_enabled_mask: which TPCs are enabled. */ struct asic_fixed_properties { char uboot_ver[VERSION_MAX_LEN]; char preboot_ver[VERSION_MAX_LEN]; u64 sram_base_address; u64 sram_end_address; u64 sram_user_base_address; u64 dram_base_address; u64 dram_end_address; u64 dram_user_base_address; u64 dram_size; u64 dram_pci_bar_size; u64 host_phys_base_address; u64 va_space_host_start_address; u64 va_space_host_end_address; u64 va_space_dram_start_address; u64 va_space_dram_end_address; u32 cfg_size; u32 sram_size; u32 max_asid; u32 high_pll; u32 cb_pool_cb_cnt; u32 cb_pool_cb_size; u8 completion_queues_count; u8 tpc_enabled_mask; }; /* * Command Buffers */ #define HL_MAX_CB_SIZE 0x200000 /* 2MB */ /** * struct hl_cb_mgr - describes a Command Buffer Manager. * @cb_lock: protects cb_handles. * @cb_handles: an idr to hold all command buffer handles. */ struct hl_cb_mgr { spinlock_t cb_lock; struct idr cb_handles; /* protected by cb_lock */ }; /** * struct hl_cb - describes a Command Buffer. * @refcount: reference counter for usage of the CB. * @hdev: pointer to device this CB belongs to. * @lock: spinlock to protect mmap/cs flows. * @pool_list: node in pool list of command buffers. * @kernel_address: Holds the CB's kernel virtual address. * @bus_address: Holds the CB's DMA address. * @mmap_size: Holds the CB's size that was mmaped. * @size: holds the CB's size. * @id: the CB's ID. * @ctx_id: holds the ID of the owner's context. * @mmap: true if the CB is currently mmaped to user. * @is_pool: true if CB was acquired from the pool, false otherwise. */ struct hl_cb { struct kref refcount; struct hl_device *hdev; spinlock_t lock; struct list_head pool_list; u64 kernel_address; dma_addr_t bus_address; u32 mmap_size; u32 size; u32 id; u32 ctx_id; u8 mmap; u8 is_pool; }; #define HL_QUEUE_LENGTH 256 /* * ASICs */ /** * enum hl_asic_type - supported ASIC types. * @ASIC_AUTO_DETECT: ASIC type will be automatically set. * @ASIC_GOYA: Goya device. * @ASIC_INVALID: Invalid ASIC type. */ enum hl_asic_type { ASIC_AUTO_DETECT, ASIC_GOYA, ASIC_INVALID }; /** * struct hl_asic_funcs - ASIC specific functions that are can be called from * common code. * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. * @early_fini: tears down what was done in early_init. * @sw_init: sets up driver state, does not configure H/W. * @sw_fini: tears down driver state, does not configure H/W. * @hw_init: sets up the H/W state. * @hw_fini: tears down the H/W state. * @suspend: handles IP specific H/W or SW changes for suspend. * @resume: handles IP specific H/W or SW changes for resume. * @mmap: mmap function, does nothing. * @cb_mmap: maps a CB. * @dma_alloc_coherent: Allocate coherent DMA memory by calling * dma_alloc_coherent(). This is ASIC function because its * implementation is not trivial when the driver is loaded * in simulation mode (not upstreamed). * @dma_free_coherent: Free coherent DMA memory by calling dma_free_coherent(). * This is ASIC function because its implementation is not * trivial when the driver is loaded in simulation mode * (not upstreamed). */ struct hl_asic_funcs { int (*early_init)(struct hl_device *hdev); int (*early_fini)(struct hl_device *hdev); int (*sw_init)(struct hl_device *hdev); int (*sw_fini)(struct hl_device *hdev); int (*hw_init)(struct hl_device *hdev); void (*hw_fini)(struct hl_device *hdev, bool hard_reset); int (*suspend)(struct hl_device *hdev); int (*resume)(struct hl_device *hdev); int (*mmap)(struct hl_fpriv *hpriv, struct vm_area_struct *vma); int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, u64 kaddress, phys_addr_t paddress, u32 size); void* (*dma_alloc_coherent)(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag); void (*dma_free_coherent)(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle); }; /* * CONTEXTS */ #define HL_KERNEL_ASID_ID 0 /** * struct hl_ctx - user/kernel context. * @hpriv: pointer to the private (KMD) data of the process (fd). * @hdev: pointer to the device structure. * @refcount: reference counter for the context. Context is released only when * this hits 0l. It is incremented on CS and CS_WAIT. * @asid: context's unique address space ID in the device's MMU. */ struct hl_ctx { struct hl_fpriv *hpriv; struct hl_device *hdev; struct kref refcount; u32 asid; }; /** * struct hl_ctx_mgr - for handling multiple contexts. * @ctx_lock: protects ctx_handles. * @ctx_handles: idr to hold all ctx handles. */ struct hl_ctx_mgr { struct mutex ctx_lock; struct idr ctx_handles; }; /* * FILE PRIVATE STRUCTURE */ /** * struct hl_fpriv - process information stored in FD private data. * @hdev: habanalabs device structure. * @filp: pointer to the given file structure. * @taskpid: current process ID. * @ctx: current executing context. * @ctx_mgr: context manager to handle multiple context for this FD. * @cb_mgr: command buffer manager to handle multiple buffers for this FD. * @refcount: number of related contexts. */ struct hl_fpriv { struct hl_device *hdev; struct file *filp; struct pid *taskpid; struct hl_ctx *ctx; /* TODO: remove for multiple ctx */ struct hl_ctx_mgr ctx_mgr; struct hl_cb_mgr cb_mgr; struct kref refcount; }; /* * DEVICES */ /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe * x16 cards. In extereme cases, there are hosts that can accommodate 16 cards */ #define HL_MAX_MINORS 256 /* * Registers read & write functions. */ u32 hl_rreg(struct hl_device *hdev, u32 reg); void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ readl_poll_timeout(hdev->rmmio + addr, val, cond, sleep_us, timeout_us) #define RREG32(reg) hl_rreg(hdev, (reg)) #define WREG32(reg, v) hl_wreg(hdev, (reg), (v)) #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ hl_rreg(hdev, (reg))) #define WREG32_P(reg, val, mask) \ do { \ u32 tmp_ = RREG32(reg); \ tmp_ &= (mask); \ tmp_ |= ((val) & ~(mask)); \ WREG32(reg, tmp_); \ } while (0) #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK #define WREG32_FIELD(reg, field, val) \ WREG32(mm##reg, (RREG32(mm##reg) & ~REG_FIELD_MASK(reg, field)) | \ (val) << REG_FIELD_SHIFT(reg, field)) /** * struct hl_device - habanalabs device structure. * @pdev: pointer to PCI device, can be NULL in case of simulator device. * @pcie_bar: array of available PCIe bars. * @rmmio: configuration area address on SRAM. * @cdev: related char device. * @dev: realted kernel basic device structure. * @asic_name: ASIC specific nmae. * @asic_type: ASIC specific type. * @kernel_ctx: KMD context structure. * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs. * @dma_pool: DMA pool for small allocations. * @cpu_accessible_dma_mem: KMD <-> ArmCP shared memory CPU address. * @cpu_accessible_dma_address: KMD <-> ArmCP shared memory DMA address. * @cpu_accessible_dma_pool: KMD <-> ArmCP shared memory pool. * @asid_bitmap: holds used/available ASIDs. * @asid_mutex: protects asid_bitmap. * @fd_open_cnt_lock: lock for updating fd_open_cnt in hl_device_open. Although * fd_open_cnt is atomic, we need this lock to serialize * the open function because the driver currently supports * only a single process at a time. In addition, we need a * lock here so we can flush user processes which are opening * the device while we are trying to hard reset it * @asic_prop: ASIC specific immutable properties. * @asic_funcs: ASIC specific functions. * @asic_specific: ASIC specific information to use only from ASIC files. * @cb_pool: list of preallocated CBs. * @cb_pool_lock: protects the CB pool. * @user_ctx: current user context executing. * @fd_open_cnt: number of open user processes. * @major: habanalabs KMD major. * @id: device minor. * @disabled: is device disabled. */ struct hl_device { struct pci_dev *pdev; void __iomem *pcie_bar[6]; void __iomem *rmmio; struct cdev cdev; struct device *dev; char asic_name[16]; enum hl_asic_type asic_type; struct hl_ctx *kernel_ctx; struct hl_cb_mgr kernel_cb_mgr; struct dma_pool *dma_pool; void *cpu_accessible_dma_mem; dma_addr_t cpu_accessible_dma_address; struct gen_pool *cpu_accessible_dma_pool; unsigned long *asid_bitmap; struct mutex asid_mutex; /* TODO: remove fd_open_cnt_lock for multiple process support */ struct mutex fd_open_cnt_lock; struct asic_fixed_properties asic_prop; const struct hl_asic_funcs *asic_funcs; void *asic_specific; struct list_head cb_pool; spinlock_t cb_pool_lock; /* TODO: remove user_ctx for multiple process support */ struct hl_ctx *user_ctx; atomic_t fd_open_cnt; u32 major; u16 id; u8 disabled; /* Parameters for bring-up */ u8 cpu_enable; u8 reset_pcilink; u8 fw_loading; u8 pldm; }; /* * IOCTLs */ /** * typedef hl_ioctl_t - typedef for ioctl function in the driver * @hpriv: pointer to the FD's private data, which contains state of * user process * @data: pointer to the input/output arguments structure of the IOCTL * * Return: 0 for success, negative value for error */ typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); /** * struct hl_ioctl_desc - describes an IOCTL entry of the driver. * @cmd: the IOCTL code as created by the kernel macros. * @func: pointer to the driver's function that should be called for this IOCTL. */ struct hl_ioctl_desc { unsigned int cmd; hl_ioctl_t *func; }; /* * Kernel module functions that can be accessed by entire module */ int hl_device_open(struct inode *inode, struct file *filp); int create_hdev(struct hl_device **dev, struct pci_dev *pdev, enum hl_asic_type asic_type, int minor); void destroy_hdev(struct hl_device *hdev); int hl_poll_timeout_memory(struct hl_device *hdev, u64 addr, u32 timeout_us, u32 *val); int hl_poll_timeout_device_memory(struct hl_device *hdev, void __iomem *addr, u32 timeout_us, u32 *val); int hl_asid_init(struct hl_device *hdev); void hl_asid_fini(struct hl_device *hdev); unsigned long hl_asid_alloc(struct hl_device *hdev); void hl_asid_free(struct hl_device *hdev, unsigned long asid); int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); int hl_ctx_put(struct hl_ctx *ctx); void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); int hl_device_init(struct hl_device *hdev, struct class *hclass); void hl_device_fini(struct hl_device *hdev); int hl_device_suspend(struct hl_device *hdev); int hl_device_resume(struct hl_device *hdev); void hl_hpriv_get(struct hl_fpriv *hpriv); void hl_hpriv_put(struct hl_fpriv *hpriv); int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size, u64 *handle, int ctx_id); int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle); int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 handle); void hl_cb_put(struct hl_cb *cb); void hl_cb_mgr_init(struct hl_cb_mgr *mgr); void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr); struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size); int hl_cb_pool_init(struct hl_device *hdev); int hl_cb_pool_fini(struct hl_device *hdev); void goya_set_asic_funcs(struct hl_device *hdev); /* IOCTLs */ long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg); int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data); #endif /* HABANALABSP_H_ */