/* Montage Technology TS2020 - Silicon Tuner driver Copyright (C) 2009-2012 Konstantin Dimitrov Copyright (C) 2009-2012 TurboSight.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "dvb_frontend.h" #include "ts2020.h" #define TS2020_XTAL_FREQ 27000 /* in kHz */ struct ts2020_state { u8 tuner_address; struct i2c_adapter *i2c; }; static int ts2020_readreg(struct dvb_frontend *fe, u8 reg) { struct ts2020_state *state = fe->tuner_priv; int ret; u8 b0[] = { reg }; u8 b1[] = { 0 }; struct i2c_msg msg[] = { { .addr = state->tuner_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->tuner_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(state->i2c, msg, 2); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (ret != 2) { printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret); return ret; } return b1[0]; } static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data) { struct ts2020_state *state = fe->tuner_priv; u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->tuner_address, .flags = 0, .buf = buf, .len = 2 }; int err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); err = i2c_transfer(state->i2c, &msg, 1); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (err != 1) { printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x," " value == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } return 0; } static int ts2020_init(struct dvb_frontend *fe) { ts2020_writereg(fe, 0x42, 0x73); ts2020_writereg(fe, 0x05, 0x01); ts2020_writereg(fe, 0x62, 0xf5); return 0; } static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency) { u16 ndiv, div4; div4 = (ts2020_readreg(fe, 0x10) & 0x10) >> 4; ndiv = ts2020_readreg(fe, 0x01); ndiv &= 0x0f; ndiv <<= 8; ndiv |= ts2020_readreg(fe, 0x02); /* actual tuned frequency, i.e. including the offset */ *frequency = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ / (6 + 8) / (div4 + 1) / 2; return 0; } static int ts2020_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; u8 mlpf, mlpf_new, mlpf_max, mlpf_min, nlpf; u16 value, ndiv; u32 srate = 0, f3db; ts2020_init(fe); /* unknown */ ts2020_writereg(fe, 0x07, 0x02); ts2020_writereg(fe, 0x10, 0x00); ts2020_writereg(fe, 0x60, 0x79); ts2020_writereg(fe, 0x08, 0x01); ts2020_writereg(fe, 0x00, 0x01); /* calculate and set freq divider */ if (c->frequency < 1146000) { ts2020_writereg(fe, 0x10, 0x11); ndiv = ((c->frequency * (6 + 8) * 4) + (TS2020_XTAL_FREQ / 2)) / TS2020_XTAL_FREQ - 1024; } else { ts2020_writereg(fe, 0x10, 0x01); ndiv = ((c->frequency * (6 + 8) * 2) + (TS2020_XTAL_FREQ / 2)) / TS2020_XTAL_FREQ - 1024; } ts2020_writereg(fe, 0x01, (ndiv & 0x0f00) >> 8); ts2020_writereg(fe, 0x02, ndiv & 0x00ff); /* set pll */ ts2020_writereg(fe, 0x03, 0x06); ts2020_writereg(fe, 0x51, 0x0f); ts2020_writereg(fe, 0x51, 0x1f); ts2020_writereg(fe, 0x50, 0x10); ts2020_writereg(fe, 0x50, 0x00); msleep(5); /* unknown */ ts2020_writereg(fe, 0x51, 0x17); ts2020_writereg(fe, 0x51, 0x1f); ts2020_writereg(fe, 0x50, 0x08); ts2020_writereg(fe, 0x50, 0x00); msleep(5); value = ts2020_readreg(fe, 0x3d); value &= 0x0f; if ((value > 4) && (value < 15)) { value -= 3; if (value < 4) value = 4; value = ((value << 3) | 0x01) & 0x79; } ts2020_writereg(fe, 0x60, value); ts2020_writereg(fe, 0x51, 0x17); ts2020_writereg(fe, 0x51, 0x1f); ts2020_writereg(fe, 0x50, 0x08); ts2020_writereg(fe, 0x50, 0x00); /* set low-pass filter period */ ts2020_writereg(fe, 0x04, 0x2e); ts2020_writereg(fe, 0x51, 0x1b); ts2020_writereg(fe, 0x51, 0x1f); ts2020_writereg(fe, 0x50, 0x04); ts2020_writereg(fe, 0x50, 0x00); msleep(5); srate = c->symbol_rate / 1000; f3db = (srate << 2) / 5 + 2000; if (srate < 5000) f3db += 3000; if (f3db < 7000) f3db = 7000; if (f3db > 40000) f3db = 40000; /* set low-pass filter baseband */ value = ts2020_readreg(fe, 0x26); mlpf = 0x2e * 207 / ((value << 1) + 151); mlpf_max = mlpf * 135 / 100; mlpf_min = mlpf * 78 / 100; if (mlpf_max > 63) mlpf_max = 63; /* rounded to the closest integer */ nlpf = ((mlpf * f3db * 1000) + (2766 * TS2020_XTAL_FREQ / 2)) / (2766 * TS2020_XTAL_FREQ); if (nlpf > 23) nlpf = 23; if (nlpf < 1) nlpf = 1; /* rounded to the closest integer */ mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) + (1000 * f3db / 2)) / (1000 * f3db); if (mlpf_new < mlpf_min) { nlpf++; mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) + (1000 * f3db / 2)) / (1000 * f3db); } if (mlpf_new > mlpf_max) mlpf_new = mlpf_max; ts2020_writereg(fe, 0x04, mlpf_new); ts2020_writereg(fe, 0x06, nlpf); ts2020_writereg(fe, 0x51, 0x1b); ts2020_writereg(fe, 0x51, 0x1f); ts2020_writereg(fe, 0x50, 0x04); ts2020_writereg(fe, 0x50, 0x00); msleep(5); /* unknown */ ts2020_writereg(fe, 0x51, 0x1e); ts2020_writereg(fe, 0x51, 0x1f); ts2020_writereg(fe, 0x50, 0x01); ts2020_writereg(fe, 0x50, 0x00); msleep(60); return 0; } static int ts2020_release(struct dvb_frontend *fe) { struct ts2020_state *state = fe->tuner_priv; fe->tuner_priv = NULL; kfree(state); return 0; } static int ts2020_get_signal_strength(struct dvb_frontend *fe, u16 *signal_strength) { u16 sig_reading, sig_strength; u8 rfgain, bbgain; rfgain = ts2020_readreg(fe, 0x3d) & 0x1f; bbgain = ts2020_readreg(fe, 0x21) & 0x1f; if (rfgain > 15) rfgain = 15; if (bbgain > 13) bbgain = 13; sig_reading = rfgain * 2 + bbgain * 3; sig_strength = 40 + (64 - sig_reading) * 50 / 64 ; /* cook the value to be suitable for szap-s2 human readable output */ *signal_strength = sig_strength * 1000; return 0; } static struct dvb_tuner_ops ts2020_ops = { .info = { .name = "Montage Technology TS2020 Silicon Tuner", .frequency_min = 950000, .frequency_max = 2150000, }, .init = ts2020_init, .release = ts2020_release, .set_params = ts2020_set_params, .get_frequency = ts2020_get_frequency, .get_rf_strength = ts2020_get_signal_strength }; struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe, const struct ts2020_config *config, struct i2c_adapter *i2c) { struct ts2020_state *state = NULL; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct ts2020_state), GFP_KERNEL); if (!state) return NULL; /* setup the state */ state->tuner_address = config->tuner_address; state->i2c = i2c; fe->tuner_priv = state; fe->ops.tuner_ops = ts2020_ops; fe->ops.read_signal_strength = fe->ops.tuner_ops.get_rf_strength; return fe; } EXPORT_SYMBOL(ts2020_attach); MODULE_AUTHOR("Konstantin Dimitrov "); MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module"); MODULE_LICENSE("GPL");