/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /* Devmaps primary use is as a backend map for XDP BPF helper call * bpf_redirect_map(). Because XDP is mostly concerned with performance we * spent some effort to ensure the datapath with redirect maps does not use * any locking. This is a quick note on the details. * * We have three possible paths to get into the devmap control plane bpf * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall * will invoke an update, delete, or lookup operation. To ensure updates and * deletes appear atomic from the datapath side xchg() is used to modify the * netdev_map array. Then because the datapath does a lookup into the netdev_map * array (read-only) from an RCU critical section we use call_rcu() to wait for * an rcu grace period before free'ing the old data structures. This ensures the * datapath always has a valid copy. However, the datapath does a "flush" * operation that pushes any pending packets in the driver outside the RCU * critical section. Each bpf_dtab_netdev tracks these pending operations using * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed * until all bits are cleared indicating outstanding flush operations have * completed. * * BPF syscalls may race with BPF program calls on any of the update, delete * or lookup operations. As noted above the xchg() operation also keep the * netdev_map consistent in this case. From the devmap side BPF programs * calling into these operations are the same as multiple user space threads * making system calls. */ #include #include #include #include #include "percpu_freelist.h" #include "bpf_lru_list.h" #include "map_in_map.h" struct bpf_dtab_netdev { struct net_device *dev; int key; struct rcu_head rcu; struct bpf_dtab *dtab; }; struct bpf_dtab { struct bpf_map map; struct bpf_dtab_netdev **netdev_map; }; static struct bpf_map *dev_map_alloc(union bpf_attr *attr) { struct bpf_dtab *dtab; u64 cost; int err; /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size != 4 || attr->map_flags) return ERR_PTR(-EINVAL); /* if value_size is bigger, the user space won't be able to * access the elements. */ if (attr->value_size > KMALLOC_MAX_SIZE) return ERR_PTR(-E2BIG); dtab = kzalloc(sizeof(*dtab), GFP_USER); if (!dtab) return ERR_PTR(-ENOMEM); /* mandatory map attributes */ dtab->map.map_type = attr->map_type; dtab->map.key_size = attr->key_size; dtab->map.value_size = attr->value_size; dtab->map.max_entries = attr->max_entries; dtab->map.map_flags = attr->map_flags; err = -ENOMEM; /* make sure page count doesn't overflow */ cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); if (cost >= U32_MAX - PAGE_SIZE) goto free_dtab; dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; /* if map size is larger than memlock limit, reject it early */ err = bpf_map_precharge_memlock(dtab->map.pages); if (err) goto free_dtab; dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *)); if (!dtab->netdev_map) goto free_dtab; return &dtab->map; free_dtab: kfree(dtab); return ERR_PTR(err); } static void dev_map_free(struct bpf_map *map) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); int i; /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, * so the programs (can be more than one that used this map) were * disconnected from events. Wait for outstanding critical sections in * these programs to complete. The rcu critical section only guarantees * no further reads against netdev_map. It does __not__ ensure pending * flush operations (if any) are complete. */ synchronize_rcu(); for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev; dev = dtab->netdev_map[i]; if (!dev) continue; dev_put(dev->dev); kfree(dev); } /* At this point bpf program is detached and all pending operations * _must_ be complete */ bpf_map_area_free(dtab->netdev_map); kfree(dtab); } static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = (u32 *)next_key; if (index >= dtab->map.max_entries) { *next = 0; return 0; } if (index == dtab->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dev; if (key >= map->max_entries) return NULL; dev = READ_ONCE(dtab->netdev_map[key]); return dev ? dev->dev : NULL; } /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or * update happens in parallel here a dev_put wont happen until after reading the * ifindex. */ static void *dev_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dev; u32 i = *(u32 *)key; if (i >= map->max_entries) return NULL; dev = READ_ONCE(dtab->netdev_map[i]); return dev ? &dev->dev->ifindex : NULL; } static void __dev_map_entry_free(struct rcu_head *rcu) { struct bpf_dtab_netdev *old_dev; old_dev = container_of(rcu, struct bpf_dtab_netdev, rcu); dev_put(old_dev->dev); kfree(old_dev); } static int dev_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *old_dev; int k = *(u32 *)key; if (k >= map->max_entries) return -EINVAL; /* Use synchronize_rcu() here to ensure any rcu critical sections * have completed, but this does not guarantee a flush has happened * yet. Because driver side rcu_read_lock/unlock only protects the * running XDP program. However, for pending flush operations the * dev and ctx are stored in another per cpu map. And additionally, * the driver tear down ensures all soft irqs are complete before * removing the net device in the case of dev_put equals zero. */ old_dev = xchg(&dtab->netdev_map[k], NULL); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; } static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct net *net = current->nsproxy->net_ns; struct bpf_dtab_netdev *dev, *old_dev; u32 i = *(u32 *)key; u32 ifindex = *(u32 *)value; if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; if (unlikely(i >= dtab->map.max_entries)) return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) return -EEXIST; if (!ifindex) { dev = NULL; } else { dev = kmalloc(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN); if (!dev) return -ENOMEM; dev->dev = dev_get_by_index(net, ifindex); if (!dev->dev) { kfree(dev); return -EINVAL; } dev->key = i; dev->dtab = dtab; } /* Use call_rcu() here to ensure rcu critical sections have completed * Remembering the driver side flush operation will happen before the * net device is removed. */ old_dev = xchg(&dtab->netdev_map[i], dev); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; } const struct bpf_map_ops dev_map_ops = { .map_alloc = dev_map_alloc, .map_free = dev_map_free, .map_get_next_key = dev_map_get_next_key, .map_lookup_elem = dev_map_lookup_elem, .map_update_elem = dev_map_update_elem, .map_delete_elem = dev_map_delete_elem, };