1
0
Fork 0
alistair23-linux/crypto/tls.c

609 lines
17 KiB
C

/*
* Copyright 2013 Freescale Semiconductor, Inc.
* Copyright 2017 NXP Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/authenc.h>
#include <crypto/null.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
struct tls_instance_ctx {
struct crypto_ahash_spawn auth;
struct crypto_skcipher_spawn enc;
};
struct crypto_tls_ctx {
unsigned int reqoff;
struct crypto_ahash *auth;
struct crypto_skcipher *enc;
struct crypto_sync_skcipher *null;
};
struct tls_request_ctx {
/*
* cryptlen holds the payload length in the case of encryption or
* payload_len + icv_len + padding_len in case of decryption
*/
unsigned int cryptlen;
/* working space for partial results */
struct scatterlist tmp[2];
struct scatterlist cipher[2];
struct scatterlist dst[2];
char tail[];
};
struct async_op {
struct completion completion;
int err;
};
static void tls_async_op_done(struct crypto_async_request *req, int err)
{
struct async_op *areq = req->data;
if (err == -EINPROGRESS)
return;
areq->err = err;
complete(&areq->completion);
}
static int crypto_tls_setkey(struct crypto_aead *tls, const u8 *key,
unsigned int keylen)
{
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tls);
struct crypto_ahash *auth = ctx->auth;
struct crypto_skcipher *enc = ctx->enc;
struct crypto_authenc_keys keys;
int err = -EINVAL;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
crypto_ahash_clear_flags(auth, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(auth, crypto_aead_get_flags(tls) &
CRYPTO_TFM_REQ_MASK);
err = crypto_ahash_setkey(auth, keys.authkey, keys.authkeylen);
crypto_aead_set_flags(tls, crypto_ahash_get_flags(auth) &
CRYPTO_TFM_RES_MASK);
if (err)
goto out;
crypto_skcipher_clear_flags(enc, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(enc, crypto_aead_get_flags(tls) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(enc, keys.enckey, keys.enckeylen);
crypto_aead_set_flags(tls, crypto_skcipher_get_flags(enc) &
CRYPTO_TFM_RES_MASK);
out:
return err;
badkey:
crypto_aead_set_flags(tls, CRYPTO_TFM_RES_BAD_KEY_LEN);
goto out;
}
/**
* crypto_tls_genicv - Calculate hmac digest for a TLS record
* @hash: (output) buffer to save the digest into
* @src: (input) scatterlist with the assoc and payload data
* @srclen: (input) size of the source buffer (assoclen + cryptlen)
* @req: (input) aead request
**/
static int crypto_tls_genicv(u8 *hash, struct scatterlist *src,
unsigned int srclen, struct aead_request *req)
{
struct crypto_aead *tls = crypto_aead_reqtfm(req);
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tls);
struct tls_request_ctx *treq_ctx = aead_request_ctx(req);
struct async_op ahash_op;
struct ahash_request *ahreq = (void *)(treq_ctx->tail + ctx->reqoff);
unsigned int flags = CRYPTO_TFM_REQ_MAY_SLEEP;
int err = -EBADMSG;
/* Bail out if the request assoc len is 0 */
if (!req->assoclen)
return err;
init_completion(&ahash_op.completion);
/* the hash transform to be executed comes from the original request */
ahash_request_set_tfm(ahreq, ctx->auth);
/* prepare the hash request with input data and result pointer */
ahash_request_set_crypt(ahreq, src, hash, srclen);
/* set the notifier for when the async hash function returns */
ahash_request_set_callback(ahreq, aead_request_flags(req) & flags,
tls_async_op_done, &ahash_op);
/* Calculate the digest on the given data. The result is put in hash */
err = crypto_ahash_digest(ahreq);
if (err == -EINPROGRESS) {
err = wait_for_completion_interruptible(&ahash_op.completion);
if (!err)
err = ahash_op.err;
}
return err;
}
/**
* crypto_tls_gen_padicv - Calculate and pad hmac digest for a TLS record
* @hash: (output) buffer to save the digest and padding into
* @phashlen: (output) the size of digest + padding
* @req: (input) aead request
**/
static int crypto_tls_gen_padicv(u8 *hash, unsigned int *phashlen,
struct aead_request *req)
{
struct crypto_aead *tls = crypto_aead_reqtfm(req);
unsigned int hash_size = crypto_aead_authsize(tls);
unsigned int block_size = crypto_aead_blocksize(tls);
unsigned int srclen = req->cryptlen + hash_size;
unsigned int icvlen = req->cryptlen + req->assoclen;
unsigned int padlen;
int err;
err = crypto_tls_genicv(hash, req->src, icvlen, req);
if (err)
goto out;
/* add padding after digest */
padlen = block_size - (srclen % block_size);
memset(hash + hash_size, padlen - 1, padlen);
*phashlen = hash_size + padlen;
out:
return err;
}
static int crypto_tls_copy_data(struct aead_request *req,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int len)
{
struct crypto_aead *tls = crypto_aead_reqtfm(req);
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tls);
SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, ctx->null);
skcipher_request_set_sync_tfm(skreq, ctx->null);
skcipher_request_set_callback(skreq, aead_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(skreq, src, dst, len, NULL);
return crypto_skcipher_encrypt(skreq);
}
static int crypto_tls_encrypt(struct aead_request *req)
{
struct crypto_aead *tls = crypto_aead_reqtfm(req);
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tls);
struct tls_request_ctx *treq_ctx = aead_request_ctx(req);
struct skcipher_request *skreq;
struct scatterlist *cipher = treq_ctx->cipher;
struct scatterlist *tmp = treq_ctx->tmp;
struct scatterlist *sg, *src, *dst;
unsigned int cryptlen, phashlen;
u8 *hash = treq_ctx->tail;
int err;
/*
* The hash result is saved at the beginning of the tls request ctx
* and is aligned as required by the hash transform. Enough space was
* allocated in crypto_tls_init_tfm to accommodate the difference. The
* requests themselves start later at treq_ctx->tail + ctx->reqoff so
* the result is not overwritten by the second (cipher) request.
*/
hash = (u8 *)ALIGN((unsigned long)hash +
crypto_ahash_alignmask(ctx->auth),
crypto_ahash_alignmask(ctx->auth) + 1);
/*
* STEP 1: create ICV together with necessary padding
*/
err = crypto_tls_gen_padicv(hash, &phashlen, req);
if (err)
return err;
/*
* STEP 2: Hash and padding are combined with the payload
* depending on the form it arrives. Scatter tables must have at least
* one page of data before chaining with another table and can't have
* an empty data page. The following code addresses these requirements.
*
* If the payload is empty, only the hash is encrypted, otherwise the
* payload scatterlist is merged with the hash. A special merging case
* is when the payload has only one page of data. In that case the
* payload page is moved to another scatterlist and prepared there for
* encryption.
*/
if (req->cryptlen) {
src = scatterwalk_ffwd(tmp, req->src, req->assoclen);
sg_init_table(cipher, 2);
sg_set_buf(cipher + 1, hash, phashlen);
if (sg_is_last(src)) {
sg_set_page(cipher, sg_page(src), req->cryptlen,
src->offset);
src = cipher;
} else {
unsigned int rem_len = req->cryptlen;
for (sg = src; rem_len > sg->length; sg = sg_next(sg))
rem_len -= min(rem_len, sg->length);
sg_set_page(cipher, sg_page(sg), rem_len, sg->offset);
sg_chain(sg, 1, cipher);
}
} else {
sg_init_one(cipher, hash, phashlen);
src = cipher;
}
/**
* If src != dst copy the associated data from source to destination.
* In both cases fast-forward passed the associated data in the dest.
*/
if (req->src != req->dst) {
err = crypto_tls_copy_data(req, req->src, req->dst,
req->assoclen);
if (err)
return err;
}
dst = scatterwalk_ffwd(treq_ctx->dst, req->dst, req->assoclen);
/*
* STEP 3: encrypt the frame and return the result
*/
cryptlen = req->cryptlen + phashlen;
/*
* The hash and the cipher are applied at different times and their
* requests can use the same memory space without interference
*/
skreq = (void *)(treq_ctx->tail + ctx->reqoff);
skcipher_request_set_tfm(skreq, ctx->enc);
skcipher_request_set_crypt(skreq, src, dst, cryptlen, req->iv);
skcipher_request_set_callback(skreq, aead_request_flags(req),
req->base.complete, req->base.data);
/*
* Apply the cipher transform. The result will be in req->dst when the
* asynchronuous call terminates
*/
err = crypto_skcipher_encrypt(skreq);
return err;
}
static int crypto_tls_decrypt(struct aead_request *req)
{
struct crypto_aead *tls = crypto_aead_reqtfm(req);
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tls);
struct tls_request_ctx *treq_ctx = aead_request_ctx(req);
unsigned int cryptlen = req->cryptlen;
unsigned int hash_size = crypto_aead_authsize(tls);
unsigned int block_size = crypto_aead_blocksize(tls);
struct skcipher_request *skreq = (void *)(treq_ctx->tail + ctx->reqoff);
struct scatterlist *tmp = treq_ctx->tmp;
struct scatterlist *src, *dst;
u8 padding[255]; /* padding can be 0-255 bytes */
u8 pad_size;
u16 *len_field;
u8 *ihash, *hash = treq_ctx->tail;
int paderr = 0;
int err = -EINVAL;
int i;
struct async_op ciph_op;
/*
* Rule out bad packets. The input packet length must be at least one
* byte more than the hash_size
*/
if (cryptlen <= hash_size || cryptlen % block_size)
goto out;
/*
* Step 1 - Decrypt the source. Fast-forward past the associated data
* to the encrypted data. The result will be overwritten in place so
* that the decrypted data will be adjacent to the associated data. The
* last step (computing the hash) will have it's input data already
* prepared and ready to be accessed at req->src.
*/
src = scatterwalk_ffwd(tmp, req->src, req->assoclen);
dst = src;
init_completion(&ciph_op.completion);
skcipher_request_set_tfm(skreq, ctx->enc);
skcipher_request_set_callback(skreq, aead_request_flags(req),
tls_async_op_done, &ciph_op);
skcipher_request_set_crypt(skreq, src, dst, cryptlen, req->iv);
err = crypto_skcipher_decrypt(skreq);
if (err == -EINPROGRESS) {
err = wait_for_completion_interruptible(&ciph_op.completion);
if (!err)
err = ciph_op.err;
}
if (err)
goto out;
/*
* Step 2 - Verify padding
* Retrieve the last byte of the payload; this is the padding size.
*/
cryptlen -= 1;
scatterwalk_map_and_copy(&pad_size, dst, cryptlen, 1, 0);
/* RFC recommendation for invalid padding size. */
if (cryptlen < pad_size + hash_size) {
pad_size = 0;
paderr = -EBADMSG;
}
cryptlen -= pad_size;
scatterwalk_map_and_copy(padding, dst, cryptlen, pad_size, 0);
/* Padding content must be equal with pad_size. We verify it all */
for (i = 0; i < pad_size; i++)
if (padding[i] != pad_size)
paderr = -EBADMSG;
/*
* Step 3 - Verify hash
* Align the digest result as required by the hash transform. Enough
* space was allocated in crypto_tls_init_tfm
*/
hash = (u8 *)ALIGN((unsigned long)hash +
crypto_ahash_alignmask(ctx->auth),
crypto_ahash_alignmask(ctx->auth) + 1);
/*
* Two bytes at the end of the associated data make the length field.
* It must be updated with the length of the cleartext message before
* the hash is calculated.
*/
len_field = sg_virt(req->src) + req->assoclen - 2;
cryptlen -= hash_size;
*len_field = htons(cryptlen);
/* This is the hash from the decrypted packet. Save it for later */
ihash = hash + hash_size;
scatterwalk_map_and_copy(ihash, dst, cryptlen, hash_size, 0);
/* Now compute and compare our ICV with the one from the packet */
err = crypto_tls_genicv(hash, req->src, cryptlen + req->assoclen, req);
if (!err)
err = memcmp(hash, ihash, hash_size) ? -EBADMSG : 0;
if (req->src != req->dst) {
err = crypto_tls_copy_data(req, req->src, req->dst, cryptlen +
req->assoclen);
if (err)
goto out;
}
/* return the first found error */
if (paderr)
err = paderr;
out:
aead_request_complete(req, err);
return err;
}
static int crypto_tls_init_tfm(struct crypto_aead *tfm)
{
struct aead_instance *inst = aead_alg_instance(tfm);
struct tls_instance_ctx *ictx = aead_instance_ctx(inst);
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_ahash *auth;
struct crypto_skcipher *enc;
struct crypto_sync_skcipher *null;
int err;
auth = crypto_spawn_ahash(&ictx->auth);
if (IS_ERR(auth))
return PTR_ERR(auth);
enc = crypto_spawn_skcipher(&ictx->enc);
err = PTR_ERR(enc);
if (IS_ERR(enc))
goto err_free_ahash;
null = crypto_get_default_null_skcipher();
err = PTR_ERR(null);
if (IS_ERR(null))
goto err_free_skcipher;
ctx->auth = auth;
ctx->enc = enc;
ctx->null = null;
/*
* Allow enough space for two digests. The two digests will be compared
* during the decryption phase. One will come from the decrypted packet
* and the other will be calculated. For encryption, one digest is
* padded (up to a cipher blocksize) and chained with the payload
*/
ctx->reqoff = ALIGN(crypto_ahash_digestsize(auth) +
crypto_ahash_alignmask(auth),
crypto_ahash_alignmask(auth) + 1) +
max(crypto_ahash_digestsize(auth),
crypto_skcipher_blocksize(enc));
crypto_aead_set_reqsize(tfm,
sizeof(struct tls_request_ctx) +
ctx->reqoff +
max_t(unsigned int,
crypto_ahash_reqsize(auth) +
sizeof(struct ahash_request),
crypto_skcipher_reqsize(enc) +
sizeof(struct skcipher_request)));
return 0;
err_free_skcipher:
crypto_free_skcipher(enc);
err_free_ahash:
crypto_free_ahash(auth);
return err;
}
static void crypto_tls_exit_tfm(struct crypto_aead *tfm)
{
struct crypto_tls_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_ahash(ctx->auth);
crypto_free_skcipher(ctx->enc);
crypto_put_default_null_skcipher();
}
static void crypto_tls_free(struct aead_instance *inst)
{
struct tls_instance_ctx *ctx = aead_instance_ctx(inst);
crypto_drop_skcipher(&ctx->enc);
crypto_drop_ahash(&ctx->auth);
kfree(inst);
}
static int crypto_tls_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct crypto_attr_type *algt;
struct aead_instance *inst;
struct hash_alg_common *auth;
struct crypto_alg *auth_base;
struct skcipher_alg *enc;
struct tls_instance_ctx *ctx;
const char *enc_name;
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask)
return -EINVAL;
auth = ahash_attr_alg(tb[1], CRYPTO_ALG_TYPE_HASH,
CRYPTO_ALG_TYPE_AHASH_MASK |
crypto_requires_sync(algt->type, algt->mask));
if (IS_ERR(auth))
return PTR_ERR(auth);
auth_base = &auth->base;
enc_name = crypto_attr_alg_name(tb[2]);
err = PTR_ERR(enc_name);
if (IS_ERR(enc_name))
goto out_put_auth;
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
err = -ENOMEM;
if (!inst)
goto out_put_auth;
ctx = aead_instance_ctx(inst);
err = crypto_init_ahash_spawn(&ctx->auth, auth,
aead_crypto_instance(inst));
if (err)
goto err_free_inst;
crypto_set_skcipher_spawn(&ctx->enc, aead_crypto_instance(inst));
err = crypto_grab_skcipher(&ctx->enc, enc_name, 0,
crypto_requires_sync(algt->type,
algt->mask));
if (err)
goto err_drop_auth;
enc = crypto_spawn_skcipher_alg(&ctx->enc);
err = -ENAMETOOLONG;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"tls10(%s,%s)", auth_base->cra_name,
enc->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
goto err_drop_enc;
if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"tls10(%s,%s)", auth_base->cra_driver_name,
enc->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto err_drop_enc;
inst->alg.base.cra_flags = (auth_base->cra_flags |
enc->base.cra_flags) & CRYPTO_ALG_ASYNC;
inst->alg.base.cra_priority = enc->base.cra_priority * 10 +
auth_base->cra_priority;
inst->alg.base.cra_blocksize = enc->base.cra_blocksize;
inst->alg.base.cra_alignmask = auth_base->cra_alignmask |
enc->base.cra_alignmask;
inst->alg.base.cra_ctxsize = sizeof(struct crypto_tls_ctx);
inst->alg.ivsize = crypto_skcipher_alg_ivsize(enc);
inst->alg.chunksize = crypto_skcipher_alg_chunksize(enc);
inst->alg.maxauthsize = auth->digestsize;
inst->alg.init = crypto_tls_init_tfm;
inst->alg.exit = crypto_tls_exit_tfm;
inst->alg.setkey = crypto_tls_setkey;
inst->alg.encrypt = crypto_tls_encrypt;
inst->alg.decrypt = crypto_tls_decrypt;
inst->free = crypto_tls_free;
err = aead_register_instance(tmpl, inst);
if (err)
goto err_drop_enc;
out:
crypto_mod_put(auth_base);
return err;
err_drop_enc:
crypto_drop_skcipher(&ctx->enc);
err_drop_auth:
crypto_drop_ahash(&ctx->auth);
err_free_inst:
kfree(inst);
out_put_auth:
goto out;
}
static struct crypto_template crypto_tls_tmpl = {
.name = "tls10",
.create = crypto_tls_create,
.module = THIS_MODULE,
};
static int __init crypto_tls_module_init(void)
{
return crypto_register_template(&crypto_tls_tmpl);
}
static void __exit crypto_tls_module_exit(void)
{
crypto_unregister_template(&crypto_tls_tmpl);
}
module_init(crypto_tls_module_init);
module_exit(crypto_tls_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TLS 1.0 record encryption");
MODULE_ALIAS_CRYPTO("tls10");