1
0
Fork 0
alistair23-linux/drivers/staging/fsl_ppfe/pfe_hal.c

1518 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*/
#include "pfe_mod.h"
#include "pfe/pfe.h"
/* A-010897: Jumbo frame is not supported */
extern bool pfe_errata_a010897;
#define PFE_RCR_MAX_FL_MASK 0xC000FFFF
void *cbus_base_addr;
void *ddr_base_addr;
unsigned long ddr_phys_base_addr;
unsigned int ddr_size;
static struct pe_info pe[MAX_PE];
/* Initializes the PFE library.
* Must be called before using any of the library functions.
*
* @param[in] cbus_base CBUS virtual base address (as mapped in
* the host CPU address space)
* @param[in] ddr_base PFE DDR range virtual base address (as
* mapped in the host CPU address space)
* @param[in] ddr_phys_base PFE DDR range physical base address (as
* mapped in platform)
* @param[in] size PFE DDR range size (as defined by the host
* software)
*/
void pfe_lib_init(void *cbus_base, void *ddr_base, unsigned long ddr_phys_base,
unsigned int size)
{
cbus_base_addr = cbus_base;
ddr_base_addr = ddr_base;
ddr_phys_base_addr = ddr_phys_base;
ddr_size = size;
pe[CLASS0_ID].dmem_base_addr = CLASS_DMEM_BASE_ADDR(0);
pe[CLASS0_ID].pmem_base_addr = CLASS_IMEM_BASE_ADDR(0);
pe[CLASS0_ID].pmem_size = CLASS_IMEM_SIZE;
pe[CLASS0_ID].mem_access_wdata = CLASS_MEM_ACCESS_WDATA;
pe[CLASS0_ID].mem_access_addr = CLASS_MEM_ACCESS_ADDR;
pe[CLASS0_ID].mem_access_rdata = CLASS_MEM_ACCESS_RDATA;
pe[CLASS1_ID].dmem_base_addr = CLASS_DMEM_BASE_ADDR(1);
pe[CLASS1_ID].pmem_base_addr = CLASS_IMEM_BASE_ADDR(1);
pe[CLASS1_ID].pmem_size = CLASS_IMEM_SIZE;
pe[CLASS1_ID].mem_access_wdata = CLASS_MEM_ACCESS_WDATA;
pe[CLASS1_ID].mem_access_addr = CLASS_MEM_ACCESS_ADDR;
pe[CLASS1_ID].mem_access_rdata = CLASS_MEM_ACCESS_RDATA;
pe[CLASS2_ID].dmem_base_addr = CLASS_DMEM_BASE_ADDR(2);
pe[CLASS2_ID].pmem_base_addr = CLASS_IMEM_BASE_ADDR(2);
pe[CLASS2_ID].pmem_size = CLASS_IMEM_SIZE;
pe[CLASS2_ID].mem_access_wdata = CLASS_MEM_ACCESS_WDATA;
pe[CLASS2_ID].mem_access_addr = CLASS_MEM_ACCESS_ADDR;
pe[CLASS2_ID].mem_access_rdata = CLASS_MEM_ACCESS_RDATA;
pe[CLASS3_ID].dmem_base_addr = CLASS_DMEM_BASE_ADDR(3);
pe[CLASS3_ID].pmem_base_addr = CLASS_IMEM_BASE_ADDR(3);
pe[CLASS3_ID].pmem_size = CLASS_IMEM_SIZE;
pe[CLASS3_ID].mem_access_wdata = CLASS_MEM_ACCESS_WDATA;
pe[CLASS3_ID].mem_access_addr = CLASS_MEM_ACCESS_ADDR;
pe[CLASS3_ID].mem_access_rdata = CLASS_MEM_ACCESS_RDATA;
pe[CLASS4_ID].dmem_base_addr = CLASS_DMEM_BASE_ADDR(4);
pe[CLASS4_ID].pmem_base_addr = CLASS_IMEM_BASE_ADDR(4);
pe[CLASS4_ID].pmem_size = CLASS_IMEM_SIZE;
pe[CLASS4_ID].mem_access_wdata = CLASS_MEM_ACCESS_WDATA;
pe[CLASS4_ID].mem_access_addr = CLASS_MEM_ACCESS_ADDR;
pe[CLASS4_ID].mem_access_rdata = CLASS_MEM_ACCESS_RDATA;
pe[CLASS5_ID].dmem_base_addr = CLASS_DMEM_BASE_ADDR(5);
pe[CLASS5_ID].pmem_base_addr = CLASS_IMEM_BASE_ADDR(5);
pe[CLASS5_ID].pmem_size = CLASS_IMEM_SIZE;
pe[CLASS5_ID].mem_access_wdata = CLASS_MEM_ACCESS_WDATA;
pe[CLASS5_ID].mem_access_addr = CLASS_MEM_ACCESS_ADDR;
pe[CLASS5_ID].mem_access_rdata = CLASS_MEM_ACCESS_RDATA;
pe[TMU0_ID].dmem_base_addr = TMU_DMEM_BASE_ADDR(0);
pe[TMU0_ID].pmem_base_addr = TMU_IMEM_BASE_ADDR(0);
pe[TMU0_ID].pmem_size = TMU_IMEM_SIZE;
pe[TMU0_ID].mem_access_wdata = TMU_MEM_ACCESS_WDATA;
pe[TMU0_ID].mem_access_addr = TMU_MEM_ACCESS_ADDR;
pe[TMU0_ID].mem_access_rdata = TMU_MEM_ACCESS_RDATA;
pe[TMU1_ID].dmem_base_addr = TMU_DMEM_BASE_ADDR(1);
pe[TMU1_ID].pmem_base_addr = TMU_IMEM_BASE_ADDR(1);
pe[TMU1_ID].pmem_size = TMU_IMEM_SIZE;
pe[TMU1_ID].mem_access_wdata = TMU_MEM_ACCESS_WDATA;
pe[TMU1_ID].mem_access_addr = TMU_MEM_ACCESS_ADDR;
pe[TMU1_ID].mem_access_rdata = TMU_MEM_ACCESS_RDATA;
pe[TMU3_ID].dmem_base_addr = TMU_DMEM_BASE_ADDR(3);
pe[TMU3_ID].pmem_base_addr = TMU_IMEM_BASE_ADDR(3);
pe[TMU3_ID].pmem_size = TMU_IMEM_SIZE;
pe[TMU3_ID].mem_access_wdata = TMU_MEM_ACCESS_WDATA;
pe[TMU3_ID].mem_access_addr = TMU_MEM_ACCESS_ADDR;
pe[TMU3_ID].mem_access_rdata = TMU_MEM_ACCESS_RDATA;
#if !defined(CONFIG_FSL_PPFE_UTIL_DISABLED)
pe[UTIL_ID].dmem_base_addr = UTIL_DMEM_BASE_ADDR;
pe[UTIL_ID].mem_access_wdata = UTIL_MEM_ACCESS_WDATA;
pe[UTIL_ID].mem_access_addr = UTIL_MEM_ACCESS_ADDR;
pe[UTIL_ID].mem_access_rdata = UTIL_MEM_ACCESS_RDATA;
#endif
}
/* Writes a buffer to PE internal memory from the host
* through indirect access registers.
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] src Buffer source address
* @param[in] mem_access_addr DMEM destination address (must be 32bit
* aligned)
* @param[in] len Number of bytes to copy
*/
void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src, unsigned
int len)
{
u32 offset = 0, val, addr;
unsigned int len32 = len >> 2;
int i;
addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
for (i = 0; i < len32; i++, offset += 4, src += 4) {
val = *(u32 *)src;
writel(cpu_to_be32(val), pe[id].mem_access_wdata);
writel(addr + offset, pe[id].mem_access_addr);
}
len = (len & 0x3);
if (len) {
val = 0;
addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
for (i = 0; i < len; i++, src++)
val |= (*(u8 *)src) << (8 * i);
writel(cpu_to_be32(val), pe[id].mem_access_wdata);
writel(addr, pe[id].mem_access_addr);
}
}
/* Writes a buffer to PE internal data memory (DMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] src Buffer source address
* @param[in] dst DMEM destination address (must be 32bit
* aligned)
* @param[in] len Number of bytes to copy
*/
void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len)
{
pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst |
PE_MEM_ACCESS_DMEM, src, len);
}
/* Writes a buffer to PE internal program memory (PMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., TMU3_ID)
* @param[in] src Buffer source address
* @param[in] dst PMEM destination address (must be 32bit
* aligned)
* @param[in] len Number of bytes to copy
*/
void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len)
{
pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
- 1)) | PE_MEM_ACCESS_IMEM, src, len);
}
/* Reads PE internal program memory (IMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., TMU3_ID)
* @param[in] addr PMEM read address (must be aligned on size)
* @param[in] size Number of bytes to read (maximum 4, must not
* cross 32bit boundaries)
* @return the data read (in PE endianness, i.e BE).
*/
u32 pe_pmem_read(int id, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
u32 mask = 0xffffffff >> ((4 - size) << 3);
u32 val;
addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
| PE_MEM_ACCESS_IMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
writel(addr, pe[id].mem_access_addr);
val = be32_to_cpu(readl(pe[id].mem_access_rdata));
return (val >> (offset << 3)) & mask;
}
/* Writes PE internal data memory (DMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] addr DMEM write address (must be aligned on size)
* @param[in] val Value to write (in PE endianness, i.e BE)
* @param[in] size Number of bytes to write (maximum 4, must not
* cross 32bit boundaries)
*/
void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
/* Indirect access interface is byte swapping data being written */
writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
writel(addr, pe[id].mem_access_addr);
}
/* Reads PE internal data memory (DMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] addr DMEM read address (must be aligned on size)
* @param[in] size Number of bytes to read (maximum 4, must not
* cross 32bit boundaries)
* @return the data read (in PE endianness, i.e BE).
*/
u32 pe_dmem_read(int id, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
u32 mask = 0xffffffff >> ((4 - size) << 3);
u32 val;
addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_DMEM |
PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
writel(addr, pe[id].mem_access_addr);
/* Indirect access interface is byte swapping data being read */
val = be32_to_cpu(readl(pe[id].mem_access_rdata));
return (val >> (offset << 3)) & mask;
}
/* This function is used to write to CLASS internal bus peripherals (ccu,
* pe-lem) from the host
* through indirect access registers.
* @param[in] val value to write
* @param[in] addr Address to write to (must be aligned on size)
* @param[in] size Number of bytes to write (1, 2 or 4)
*
*/
void class_bus_write(u32 val, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
(size << 24);
writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
writel(addr, CLASS_BUS_ACCESS_ADDR);
}
/* Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
* through indirect access registers.
* @param[in] addr Address to read from (must be aligned on size)
* @param[in] size Number of bytes to read (1, 2 or 4)
* @return the read data
*
*/
u32 class_bus_read(u32 addr, u8 size)
{
u32 offset = addr & 0x3;
u32 mask = 0xffffffff >> ((4 - size) << 3);
u32 val;
writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
writel(addr, CLASS_BUS_ACCESS_ADDR);
val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
return (val >> (offset << 3)) & mask;
}
/* Writes data to the cluster memory (PE_LMEM)
* @param[in] dst PE LMEM destination address (must be 32bit aligned)
* @param[in] src Buffer source address
* @param[in] len Number of bytes to copy
*/
void class_pe_lmem_memcpy_to32(u32 dst, const void *src, unsigned int len)
{
u32 len32 = len >> 2;
int i;
for (i = 0; i < len32; i++, src += 4, dst += 4)
class_bus_write(*(u32 *)src, dst, 4);
if (len & 0x2) {
class_bus_write(*(u16 *)src, dst, 2);
src += 2;
dst += 2;
}
if (len & 0x1) {
class_bus_write(*(u8 *)src, dst, 1);
src++;
dst++;
}
}
/* Writes value to the cluster memory (PE_LMEM)
* @param[in] dst PE LMEM destination address (must be 32bit aligned)
* @param[in] val Value to write
* @param[in] len Number of bytes to write
*/
void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
{
u32 len32 = len >> 2;
int i;
val = val | (val << 8) | (val << 16) | (val << 24);
for (i = 0; i < len32; i++, dst += 4)
class_bus_write(val, dst, 4);
if (len & 0x2) {
class_bus_write(val, dst, 2);
dst += 2;
}
if (len & 0x1) {
class_bus_write(val, dst, 1);
dst++;
}
}
#if !defined(CONFIG_FSL_PPFE_UTIL_DISABLED)
/* Writes UTIL program memory (DDR) from the host.
*
* @param[in] addr Address to write (virtual, must be aligned on size)
* @param[in] val Value to write (in PE endianness, i.e BE)
* @param[in] size Number of bytes to write (2 or 4)
*/
static void util_pmem_write(u32 val, void *addr, u8 size)
{
void *addr64 = (void *)((unsigned long)addr & ~0x7);
unsigned long off = 8 - ((unsigned long)addr & 0x7) - size;
/*
* IMEM should be loaded as a 64bit swapped value in a 64bit aligned
* location
*/
if (size == 4)
writel(be32_to_cpu(val), addr64 + off);
else
writew(be16_to_cpu((u16)val), addr64 + off);
}
/* Writes a buffer to UTIL program memory (DDR) from the host.
*
* @param[in] dst Address to write (virtual, must be at least 16bit
* aligned)
* @param[in] src Buffer to write (in PE endianness, i.e BE, must have
* same alignment as dst)
* @param[in] len Number of bytes to write (must be at least 16bit
* aligned)
*/
static void util_pmem_memcpy(void *dst, const void *src, unsigned int len)
{
unsigned int len32;
int i;
if ((unsigned long)src & 0x2) {
util_pmem_write(*(u16 *)src, dst, 2);
src += 2;
dst += 2;
len -= 2;
}
len32 = len >> 2;
for (i = 0; i < len32; i++, dst += 4, src += 4)
util_pmem_write(*(u32 *)src, dst, 4);
if (len & 0x2)
util_pmem_write(*(u16 *)src, dst, len & 0x2);
}
#endif
/* Loads an elf section into pmem
* Code needs to be at least 16bit aligned and only PROGBITS sections are
* supported
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, ...,
* TMU3_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*
*/
static int pe_load_pmem_section(int id, const void *data,
struct elf32_shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
#if !defined(CONFIG_FSL_PPFE_UTIL_DISABLED)
if (id == UTIL_ID) {
pr_err("%s: unsupported pmem section for UTIL\n",
__func__);
return -EINVAL;
}
#endif
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
pr_err(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n"
, __func__, addr, (unsigned long)data + offset);
return -EINVAL;
}
if (addr & 0x1) {
pr_err("%s: load address(%x) is not 16bit aligned\n",
__func__, addr);
return -EINVAL;
}
if (size & 0x1) {
pr_err("%s: load size(%x) is not 16bit aligned\n",
__func__, size);
return -EINVAL;
}
switch (type) {
case SHT_PROGBITS:
pe_pmem_memcpy_to32(id, addr, data + offset, size);
break;
default:
pr_err("%s: unsupported section type(%x)\n", __func__,
type);
return -EINVAL;
}
return 0;
}
/* Loads an elf section into dmem
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
* initialized to 0
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*
*/
static int pe_load_dmem_section(int id, const void *data,
struct elf32_shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
u32 size32 = size >> 2;
int i;
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
pr_err(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
__func__, addr, (unsigned long)data + offset);
return -EINVAL;
}
if (addr & 0x3) {
pr_err("%s: load address(%x) is not 32bit aligned\n",
__func__, addr);
return -EINVAL;
}
switch (type) {
case SHT_PROGBITS:
pe_dmem_memcpy_to32(id, addr, data + offset, size);
break;
case SHT_NOBITS:
for (i = 0; i < size32; i++, addr += 4)
pe_dmem_write(id, 0, addr, 4);
if (size & 0x3)
pe_dmem_write(id, 0, addr, size & 0x3);
break;
default:
pr_err("%s: unsupported section type(%x)\n", __func__,
type);
return -EINVAL;
}
return 0;
}
/* Loads an elf section into DDR
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
* initialized to 0
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*
*/
static int pe_load_ddr_section(int id, const void *data,
struct elf32_shdr *shdr,
struct device *dev) {
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
u32 flags = be32_to_cpu(shdr->sh_flags);
switch (type) {
case SHT_PROGBITS:
if (flags & SHF_EXECINSTR) {
if (id <= CLASS_MAX_ID) {
/* DO the loading only once in DDR */
if (id == CLASS0_ID) {
pr_err(
"%s: load address(%x) and elf file address(%lx) rcvd\n",
__func__, addr,
(unsigned long)data + offset);
if (((unsigned long)(data + offset)
& 0x3) != (addr & 0x3)) {
pr_err(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n"
, __func__, addr,
(unsigned long)data + offset);
return -EINVAL;
}
if (addr & 0x1) {
pr_err(
"%s: load address(%x) is not 16bit aligned\n"
, __func__, addr);
return -EINVAL;
}
if (size & 0x1) {
pr_err(
"%s: load length(%x) is not 16bit aligned\n"
, __func__, size);
return -EINVAL;
}
memcpy(DDR_PHYS_TO_VIRT(
DDR_PFE_TO_PHYS(addr)),
data + offset, size);
}
#if !defined(CONFIG_FSL_PPFE_UTIL_DISABLED)
} else if (id == UTIL_ID) {
if (((unsigned long)(data + offset) & 0x3)
!= (addr & 0x3)) {
pr_err(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n"
, __func__, addr,
(unsigned long)data + offset);
return -EINVAL;
}
if (addr & 0x1) {
pr_err(
"%s: load address(%x) is not 16bit aligned\n"
, __func__, addr);
return -EINVAL;
}
if (size & 0x1) {
pr_err(
"%s: load length(%x) is not 16bit aligned\n"
, __func__, size);
return -EINVAL;
}
util_pmem_memcpy(DDR_PHYS_TO_VIRT(
DDR_PFE_TO_PHYS(addr)),
data + offset, size);
}
#endif
} else {
pr_err(
"%s: unsupported ddr section type(%x) for PE(%d)\n"
, __func__, type, id);
return -EINVAL;
}
} else {
memcpy(DDR_PHYS_TO_VIRT(DDR_PFE_TO_PHYS(addr)), data
+ offset, size);
}
break;
case SHT_NOBITS:
memset(DDR_PHYS_TO_VIRT(DDR_PFE_TO_PHYS(addr)), 0, size);
break;
default:
pr_err("%s: unsupported section type(%x)\n", __func__,
type);
return -EINVAL;
}
return 0;
}
/* Loads an elf section into pe lmem
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
* initialized to 0
*
* @param[in] id PE identification (CLASS0_ID,..., CLASS5_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*
*/
static int pe_load_pe_lmem_section(int id, const void *data,
struct elf32_shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
if (id > CLASS_MAX_ID) {
pr_err(
"%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
__func__, type, id);
return -EINVAL;
}
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
pr_err(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
__func__, addr, (unsigned long)data + offset);
return -EINVAL;
}
if (addr & 0x3) {
pr_err("%s: load address(%x) is not 32bit aligned\n",
__func__, addr);
return -EINVAL;
}
switch (type) {
case SHT_PROGBITS:
class_pe_lmem_memcpy_to32(addr, data + offset, size);
break;
case SHT_NOBITS:
class_pe_lmem_memset(addr, 0, size);
break;
default:
pr_err("%s: unsupported section type(%x)\n", __func__,
type);
return -EINVAL;
}
return 0;
}
/* Loads an elf section into a PE
* For now only supports loading a section to dmem (all PE's), pmem (class and
* tmu PE's),
* DDDR (util PE code)
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*
*/
int pe_load_elf_section(int id, const void *data, struct elf32_shdr *shdr,
struct device *dev) {
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
if (IS_DMEM(addr, size))
return pe_load_dmem_section(id, data, shdr);
else if (IS_PMEM(addr, size))
return pe_load_pmem_section(id, data, shdr);
else if (IS_PFE_LMEM(addr, size))
return 0;
else if (IS_PHYS_DDR(addr, size))
return pe_load_ddr_section(id, data, shdr, dev);
else if (IS_PE_LMEM(addr, size))
return pe_load_pe_lmem_section(id, data, shdr);
pr_err("%s: unsupported memory range(%x)\n", __func__,
addr);
return 0;
}
/**************************** BMU ***************************/
/* Initializes a BMU block.
* @param[in] base BMU block base address
* @param[in] cfg BMU configuration
*/
void bmu_init(void *base, struct BMU_CFG *cfg)
{
bmu_disable(base);
bmu_set_config(base, cfg);
bmu_reset(base);
}
/* Resets a BMU block.
* @param[in] base BMU block base address
*/
void bmu_reset(void *base)
{
writel(CORE_SW_RESET, base + BMU_CTRL);
/* Wait for self clear */
while (readl(base + BMU_CTRL) & CORE_SW_RESET)
;
}
/* Enabled a BMU block.
* @param[in] base BMU block base address
*/
void bmu_enable(void *base)
{
writel(CORE_ENABLE, base + BMU_CTRL);
}
/* Disables a BMU block.
* @param[in] base BMU block base address
*/
void bmu_disable(void *base)
{
writel(CORE_DISABLE, base + BMU_CTRL);
}
/* Sets the configuration of a BMU block.
* @param[in] base BMU block base address
* @param[in] cfg BMU configuration
*/
void bmu_set_config(void *base, struct BMU_CFG *cfg)
{
writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
/* Interrupts are never used */
writel(cfg->low_watermark, base + BMU_LOW_WATERMARK);
writel(cfg->high_watermark, base + BMU_HIGH_WATERMARK);
writel(0x0, base + BMU_INT_ENABLE);
}
/**************************** MTIP GEMAC ***************************/
/* Enable Rx Checksum Engine. With this enabled, Frame with bad IP,
* TCP or UDP checksums are discarded
*
* @param[in] base GEMAC base address.
*/
void gemac_enable_rx_checksum_offload(void *base)
{
/*Do not find configuration to do this */
}
/* Disable Rx Checksum Engine.
*
* @param[in] base GEMAC base address.
*/
void gemac_disable_rx_checksum_offload(void *base)
{
/*Do not find configuration to do this */
}
/* GEMAC set speed.
* @param[in] base GEMAC base address
* @param[in] speed GEMAC speed (10, 100 or 1000 Mbps)
*/
void gemac_set_speed(void *base, enum mac_speed gem_speed)
{
u32 ecr = readl(base + EMAC_ECNTRL_REG) & ~EMAC_ECNTRL_SPEED;
u32 rcr = readl(base + EMAC_RCNTRL_REG) & ~EMAC_RCNTRL_RMII_10T;
switch (gem_speed) {
case SPEED_10M:
rcr |= EMAC_RCNTRL_RMII_10T;
break;
case SPEED_1000M:
ecr |= EMAC_ECNTRL_SPEED;
break;
case SPEED_100M:
default:
/*It is in 100M mode */
break;
}
writel(ecr, (base + EMAC_ECNTRL_REG));
writel(rcr, (base + EMAC_RCNTRL_REG));
}
/* GEMAC set duplex.
* @param[in] base GEMAC base address
* @param[in] duplex GEMAC duplex mode (Full, Half)
*/
void gemac_set_duplex(void *base, int duplex)
{
if (duplex == DUPLEX_HALF) {
writel(readl(base + EMAC_TCNTRL_REG) & ~EMAC_TCNTRL_FDEN, base
+ EMAC_TCNTRL_REG);
writel(readl(base + EMAC_RCNTRL_REG) | EMAC_RCNTRL_DRT, (base
+ EMAC_RCNTRL_REG));
} else{
writel(readl(base + EMAC_TCNTRL_REG) | EMAC_TCNTRL_FDEN, base
+ EMAC_TCNTRL_REG);
writel(readl(base + EMAC_RCNTRL_REG) & ~EMAC_RCNTRL_DRT, (base
+ EMAC_RCNTRL_REG));
}
}
/* GEMAC set mode.
* @param[in] base GEMAC base address
* @param[in] mode GEMAC operation mode (MII, RMII, RGMII, SGMII)
*/
void gemac_set_mode(void *base, int mode)
{
u32 val = readl(base + EMAC_RCNTRL_REG);
/*Remove loopbank*/
val &= ~EMAC_RCNTRL_LOOP;
/* Enable flow control and MII mode.PFE firmware always expects
CRC should be forwarded by MAC to validate CRC in software.*/
val |= (EMAC_RCNTRL_FCE | EMAC_RCNTRL_MII_MODE);
writel(val, base + EMAC_RCNTRL_REG);
}
/* GEMAC enable function.
* @param[in] base GEMAC base address
*/
void gemac_enable(void *base)
{
writel(readl(base + EMAC_ECNTRL_REG) | EMAC_ECNTRL_ETHER_EN, base +
EMAC_ECNTRL_REG);
}
/* GEMAC disable function.
* @param[in] base GEMAC base address
*/
void gemac_disable(void *base)
{
writel(readl(base + EMAC_ECNTRL_REG) & ~EMAC_ECNTRL_ETHER_EN, base +
EMAC_ECNTRL_REG);
}
/* GEMAC TX disable function.
* @param[in] base GEMAC base address
*/
void gemac_tx_disable(void *base)
{
writel(readl(base + EMAC_TCNTRL_REG) | EMAC_TCNTRL_GTS, base +
EMAC_TCNTRL_REG);
}
void gemac_tx_enable(void *base)
{
writel(readl(base + EMAC_TCNTRL_REG) & ~EMAC_TCNTRL_GTS, base +
EMAC_TCNTRL_REG);
}
/* Sets the hash register of the MAC.
* This register is used for matching unicast and multicast frames.
*
* @param[in] base GEMAC base address.
* @param[in] hash 64-bit hash to be configured.
*/
void gemac_set_hash(void *base, struct pfe_mac_addr *hash)
{
writel(hash->bottom, base + EMAC_GALR);
writel(hash->top, base + EMAC_GAUR);
}
void gemac_set_laddrN(void *base, struct pfe_mac_addr *address,
unsigned int entry_index)
{
if ((entry_index < 1) || (entry_index > EMAC_SPEC_ADDR_MAX))
return;
entry_index = entry_index - 1;
if (entry_index < 1) {
writel(htonl(address->bottom), base + EMAC_PHY_ADDR_LOW);
writel((htonl(address->top) | 0x8808), base +
EMAC_PHY_ADDR_HIGH);
} else {
writel(htonl(address->bottom), base + ((entry_index - 1) * 8)
+ EMAC_SMAC_0_0);
writel((htonl(address->top) | 0x8808), base + ((entry_index -
1) * 8) + EMAC_SMAC_0_1);
}
}
void gemac_clear_laddrN(void *base, unsigned int entry_index)
{
if ((entry_index < 1) || (entry_index > EMAC_SPEC_ADDR_MAX))
return;
entry_index = entry_index - 1;
if (entry_index < 1) {
writel(0, base + EMAC_PHY_ADDR_LOW);
writel(0, base + EMAC_PHY_ADDR_HIGH);
} else {
writel(0, base + ((entry_index - 1) * 8) + EMAC_SMAC_0_0);
writel(0, base + ((entry_index - 1) * 8) + EMAC_SMAC_0_1);
}
}
/* Set the loopback mode of the MAC. This can be either no loopback for
* normal operation, local loopback through MAC internal loopback module or PHY
* loopback for external loopback through a PHY. This asserts the external
* loop pin.
*
* @param[in] base GEMAC base address.
* @param[in] gem_loop Loopback mode to be enabled. LB_LOCAL - MAC
* Loopback,
* LB_EXT - PHY Loopback.
*/
void gemac_set_loop(void *base, enum mac_loop gem_loop)
{
pr_info("%s()\n", __func__);
writel(readl(base + EMAC_RCNTRL_REG) | EMAC_RCNTRL_LOOP, (base +
EMAC_RCNTRL_REG));
}
/* GEMAC allow frames
* @param[in] base GEMAC base address
*/
void gemac_enable_copy_all(void *base)
{
writel(readl(base + EMAC_RCNTRL_REG) | EMAC_RCNTRL_PROM, (base +
EMAC_RCNTRL_REG));
}
/* GEMAC do not allow frames
* @param[in] base GEMAC base address
*/
void gemac_disable_copy_all(void *base)
{
writel(readl(base + EMAC_RCNTRL_REG) & ~EMAC_RCNTRL_PROM, (base +
EMAC_RCNTRL_REG));
}
/* GEMAC allow broadcast function.
* @param[in] base GEMAC base address
*/
void gemac_allow_broadcast(void *base)
{
writel(readl(base + EMAC_RCNTRL_REG) & ~EMAC_RCNTRL_BC_REJ, base +
EMAC_RCNTRL_REG);
}
/* GEMAC no broadcast function.
* @param[in] base GEMAC base address
*/
void gemac_no_broadcast(void *base)
{
writel(readl(base + EMAC_RCNTRL_REG) | EMAC_RCNTRL_BC_REJ, base +
EMAC_RCNTRL_REG);
}
/* GEMAC enable 1536 rx function.
* @param[in] base GEMAC base address
*/
void gemac_enable_1536_rx(void *base)
{
/* Set 1536 as Maximum frame length */
writel((readl(base + EMAC_RCNTRL_REG) & PFE_RCR_MAX_FL_MASK)
| (1536 << 16), base + EMAC_RCNTRL_REG);
}
/* GEMAC set rx Max frame length.
* @param[in] base GEMAC base address
* @param[in] mtu new mtu
*/
void gemac_set_rx_max_fl(void *base, int mtu)
{
/* Set mtu as Maximum frame length */
writel((readl(base + EMAC_RCNTRL_REG) & PFE_RCR_MAX_FL_MASK)
| (mtu << 16), base + EMAC_RCNTRL_REG);
}
/* GEMAC enable stacked vlan function.
* @param[in] base GEMAC base address
*/
void gemac_enable_stacked_vlan(void *base)
{
/* MTIP doesn't support stacked vlan */
}
/* GEMAC enable pause rx function.
* @param[in] base GEMAC base address
*/
void gemac_enable_pause_rx(void *base)
{
writel(readl(base + EMAC_RCNTRL_REG) | EMAC_RCNTRL_FCE,
base + EMAC_RCNTRL_REG);
}
/* GEMAC disable pause rx function.
* @param[in] base GEMAC base address
*/
void gemac_disable_pause_rx(void *base)
{
writel(readl(base + EMAC_RCNTRL_REG) & ~EMAC_RCNTRL_FCE,
base + EMAC_RCNTRL_REG);
}
/* GEMAC enable pause tx function.
* @param[in] base GEMAC base address
*/
void gemac_enable_pause_tx(void *base)
{
writel(EMAC_RX_SECTION_EMPTY_V, base + EMAC_RX_SECTION_EMPTY);
}
/* GEMAC disable pause tx function.
* @param[in] base GEMAC base address
*/
void gemac_disable_pause_tx(void *base)
{
writel(0x0, base + EMAC_RX_SECTION_EMPTY);
}
/* GEMAC wol configuration
* @param[in] base GEMAC base address
* @param[in] wol_conf WoL register configuration
*/
void gemac_set_wol(void *base, u32 wol_conf)
{
u32 val = readl(base + EMAC_ECNTRL_REG);
if (wol_conf)
val |= (EMAC_ECNTRL_MAGIC_ENA | EMAC_ECNTRL_SLEEP);
else
val &= ~(EMAC_ECNTRL_MAGIC_ENA | EMAC_ECNTRL_SLEEP);
writel(val, base + EMAC_ECNTRL_REG);
}
/* Sets Gemac bus width to 64bit
* @param[in] base GEMAC base address
* @param[in] width gemac bus width to be set possible values are 32/64/128
*/
void gemac_set_bus_width(void *base, int width)
{
}
/* Sets Gemac configuration.
* @param[in] base GEMAC base address
* @param[in] cfg GEMAC configuration
*/
void gemac_set_config(void *base, struct gemac_cfg *cfg)
{
/*GEMAC config taken from VLSI */
writel(0x00000004, base + EMAC_TFWR_STR_FWD);
writel(0x00000005, base + EMAC_RX_SECTION_FULL);
if (pfe_errata_a010897)
writel(0x0000076c, base + EMAC_TRUNC_FL);
else
writel(0x00003fff, base + EMAC_TRUNC_FL);
writel(0x00000030, base + EMAC_TX_SECTION_EMPTY);
writel(0x00000000, base + EMAC_MIB_CTRL_STS_REG);
gemac_set_mode(base, cfg->mode);
gemac_set_speed(base, cfg->speed);
gemac_set_duplex(base, cfg->duplex);
}
/**************************** GPI ***************************/
/* Initializes a GPI block.
* @param[in] base GPI base address
* @param[in] cfg GPI configuration
*/
void gpi_init(void *base, struct gpi_cfg *cfg)
{
gpi_reset(base);
gpi_disable(base);
gpi_set_config(base, cfg);
}
/* Resets a GPI block.
* @param[in] base GPI base address
*/
void gpi_reset(void *base)
{
writel(CORE_SW_RESET, base + GPI_CTRL);
}
/* Enables a GPI block.
* @param[in] base GPI base address
*/
void gpi_enable(void *base)
{
writel(CORE_ENABLE, base + GPI_CTRL);
}
/* Disables a GPI block.
* @param[in] base GPI base address
*/
void gpi_disable(void *base)
{
writel(CORE_DISABLE, base + GPI_CTRL);
}
/* Sets the configuration of a GPI block.
* @param[in] base GPI base address
* @param[in] cfg GPI configuration
*/
void gpi_set_config(void *base, struct gpi_cfg *cfg)
{
writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
+ GPI_LMEM_ALLOC_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
+ GPI_LMEM_FREE_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
+ GPI_DDR_ALLOC_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
+ GPI_DDR_FREE_ADDR);
writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
writel(1, base + GPI_TOE_CHKSUM_EN);
if (cfg->mtip_pause_reg) {
writel(cfg->mtip_pause_reg, base + GPI_CSR_MTIP_PAUSE_REG);
writel(EGPI_PAUSE_TIME, base + GPI_TX_PAUSE_TIME);
}
}
/**************************** CLASSIFIER ***************************/
/* Initializes CLASSIFIER block.
* @param[in] cfg CLASSIFIER configuration
*/
void class_init(struct class_cfg *cfg)
{
class_reset();
class_disable();
class_set_config(cfg);
}
/* Resets CLASSIFIER block.
*
*/
void class_reset(void)
{
writel(CORE_SW_RESET, CLASS_TX_CTRL);
}
/* Enables all CLASS-PE's cores.
*
*/
void class_enable(void)
{
writel(CORE_ENABLE, CLASS_TX_CTRL);
}
/* Disables all CLASS-PE's cores.
*
*/
void class_disable(void)
{
writel(CORE_DISABLE, CLASS_TX_CTRL);
}
/*
* Sets the configuration of the CLASSIFIER block.
* @param[in] cfg CLASSIFIER configuration
*/
void class_set_config(struct class_cfg *cfg)
{
u32 val;
/* Initialize route table */
if (!cfg->resume)
memset(DDR_PHYS_TO_VIRT(cfg->route_table_baseaddr), 0, (1 <<
cfg->route_table_hash_bits) * CLASS_ROUTE_SIZE);
#if !defined(LS1012A_PFE_RESET_WA)
writel(cfg->pe_sys_clk_ratio, CLASS_PE_SYS_CLK_RATIO);
#endif
writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
CLASS_ROUTE_HASH_ENTRY_SIZE);
writel(HIF_PKT_CLASS_EN | HIF_PKT_OFFSET(sizeof(struct hif_hdr)),
CLASS_HIF_PARSE);
val = HASH_CRC_PORT_IP | QB2BUS_LE;
#if defined(CONFIG_IP_ALIGNED)
val |= IP_ALIGNED;
#endif
/*
* Class PE packet steering will only work if TOE mode, bridge fetch or
* route fetch are enabled (see class/qb_fet.v). Route fetch would
* trigger additional memory copies (likely from DDR because of hash
* table size, which cannot be reduced because PE software still
* relies on hash value computed in HW), so when not in TOE mode we
* simply enable HW bridge fetch even though we don't use it.
*/
if (cfg->toe_mode)
val |= CLASS_TOE;
else
val |= HW_BRIDGE_FETCH;
writel(val, CLASS_ROUTE_MULTI);
writel(DDR_PHYS_TO_PFE(cfg->route_table_baseaddr),
CLASS_ROUTE_TABLE_BASE);
writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
writel(23, CLASS_AFULL_THRES);
writel(23, CLASS_TSQ_FIFO_THRES);
writel(24, CLASS_MAX_BUF_CNT);
writel(24, CLASS_TSQ_MAX_CNT);
}
/**************************** TMU ***************************/
void tmu_reset(void)
{
writel(SW_RESET, TMU_CTRL);
}
/* Initializes TMU block.
* @param[in] cfg TMU configuration
*/
void tmu_init(struct tmu_cfg *cfg)
{
int q, phyno;
tmu_disable(0xF);
mdelay(10);
#if !defined(LS1012A_PFE_RESET_WA)
/* keep in soft reset */
writel(SW_RESET, TMU_CTRL);
#endif
writel(0x3, TMU_SYS_GENERIC_CONTROL);
writel(750, TMU_INQ_WATERMARK);
writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR +
GPI_INQ_PKTPTR), TMU_PHY0_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR +
GPI_INQ_PKTPTR), TMU_PHY1_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR +
GPI_INQ_PKTPTR), TMU_PHY3_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
TMU_BMU_INQ_ADDR);
writel(0x3FF, TMU_TDQ0_SCH_CTRL); /*
* enabling all 10
* schedulers [9:0] of each TDQ
*/
writel(0x3FF, TMU_TDQ1_SCH_CTRL);
writel(0x3FF, TMU_TDQ3_SCH_CTRL);
#if !defined(LS1012A_PFE_RESET_WA)
writel(cfg->pe_sys_clk_ratio, TMU_PE_SYS_CLK_RATIO);
#endif
#if !defined(LS1012A_PFE_RESET_WA)
writel(DDR_PHYS_TO_PFE(cfg->llm_base_addr), TMU_LLM_BASE_ADDR);
/* Extra packet pointers will be stored from this address onwards */
writel(cfg->llm_queue_len, TMU_LLM_QUE_LEN);
writel(5, TMU_TDQ_IIFG_CFG);
writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
writel(0x0, TMU_CTRL);
/* MEM init */
pr_info("%s: mem init\n", __func__);
writel(MEM_INIT, TMU_CTRL);
while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
;
/* LLM init */
pr_info("%s: lmem init\n", __func__);
writel(LLM_INIT, TMU_CTRL);
while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
;
#endif
/* set up each queue for tail drop */
for (phyno = 0; phyno < 4; phyno++) {
if (phyno == 2)
continue;
for (q = 0; q < 16; q++) {
u32 qdepth;
writel((phyno << 8) | q, TMU_TEQ_CTRL);
writel(1 << 22, TMU_TEQ_QCFG); /*Enable tail drop */
if (phyno == 3)
qdepth = DEFAULT_TMU3_QDEPTH;
else
qdepth = (q == 0) ? DEFAULT_Q0_QDEPTH :
DEFAULT_MAX_QDEPTH;
/* LOG: 68855 */
/*
* The following is a workaround for the reordered
* packet and BMU2 buffer leakage issue.
*/
if (CHIP_REVISION() == 0)
qdepth = 31;
writel(qdepth << 18, TMU_TEQ_HW_PROB_CFG2);
writel(qdepth >> 14, TMU_TEQ_HW_PROB_CFG3);
}
}
#ifdef CFG_LRO
/* Set TMU-3 queue 5 (LRO) in no-drop mode */
writel((3 << 8) | TMU_QUEUE_LRO, TMU_TEQ_CTRL);
writel(0, TMU_TEQ_QCFG);
#endif
writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
writel(0x0, TMU_CTRL);
}
/* Enables TMU-PE cores.
* @param[in] pe_mask TMU PE mask
*/
void tmu_enable(u32 pe_mask)
{
writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
}
/* Disables TMU cores.
* @param[in] pe_mask TMU PE mask
*/
void tmu_disable(u32 pe_mask)
{
writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
}
/* This will return the tmu queue status
* @param[in] if_id gem interface id or TMU index
* @return returns the bit mask of busy queues, zero means all
* queues are empty
*/
u32 tmu_qstatus(u32 if_id)
{
return cpu_to_be32(pe_dmem_read(TMU0_ID + if_id, TMU_DM_PESTATUS +
offsetof(struct pe_status, tmu_qstatus), 4));
}
u32 tmu_pkts_processed(u32 if_id)
{
return cpu_to_be32(pe_dmem_read(TMU0_ID + if_id, TMU_DM_PESTATUS +
offsetof(struct pe_status, rx), 4));
}
/**************************** UTIL ***************************/
/* Resets UTIL block.
*/
void util_reset(void)
{
writel(CORE_SW_RESET, UTIL_TX_CTRL);
}
/* Initializes UTIL block.
* @param[in] cfg UTIL configuration
*/
void util_init(struct util_cfg *cfg)
{
writel(cfg->pe_sys_clk_ratio, UTIL_PE_SYS_CLK_RATIO);
}
/* Enables UTIL-PE core.
*
*/
void util_enable(void)
{
writel(CORE_ENABLE, UTIL_TX_CTRL);
}
/* Disables UTIL-PE core.
*
*/
void util_disable(void)
{
writel(CORE_DISABLE, UTIL_TX_CTRL);
}
/**************************** HIF ***************************/
/* Initializes HIF copy block.
*
*/
void hif_init(void)
{
/*Initialize HIF registers*/
writel((HIF_RX_POLL_CTRL_CYCLE << 16) | HIF_TX_POLL_CTRL_CYCLE,
HIF_POLL_CTRL);
}
/* Enable hif tx DMA and interrupt
*
*/
void hif_tx_enable(void)
{
writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
writel((readl(HIF_INT_ENABLE) | HIF_INT_EN | HIF_TXPKT_INT_EN),
HIF_INT_ENABLE);
}
/* Disable hif tx DMA and interrupt
*
*/
void hif_tx_disable(void)
{
u32 hif_int;
writel(0, HIF_TX_CTRL);
hif_int = readl(HIF_INT_ENABLE);
hif_int &= HIF_TXPKT_INT_EN;
writel(hif_int, HIF_INT_ENABLE);
}
/* Enable hif rx DMA and interrupt
*
*/
void hif_rx_enable(void)
{
hif_rx_dma_start();
writel((readl(HIF_INT_ENABLE) | HIF_INT_EN | HIF_RXPKT_INT_EN),
HIF_INT_ENABLE);
}
/* Disable hif rx DMA and interrupt
*
*/
void hif_rx_disable(void)
{
u32 hif_int;
writel(0, HIF_RX_CTRL);
hif_int = readl(HIF_INT_ENABLE);
hif_int &= HIF_RXPKT_INT_EN;
writel(hif_int, HIF_INT_ENABLE);
}