alistair23-linux/arch/parisc/kernel/inventory.c
Matthew Wilcox ba5c4f1bae [PARISC] Return PDC_OK when alloc_pa_dev fails to enumerate all devices
Return PDC_OK when device registration fails so that we enumerate all
subsequent devices, even when we get two devices with the same hardware
path (which should never happen, but does with at least one revision of
rp8400 firmware).

Signed-off-by: Matthew Wilcox <willy@parisc-linux.org>
Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
2005-11-17 16:33:29 -05:00

613 lines
16 KiB
C

/*
* inventory.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Copyright (c) 1999 The Puffin Group (David Kennedy and Alex deVries)
* Copyright (c) 2001 Matthew Wilcox for Hewlett-Packard
*
* These are the routines to discover what hardware exists in this box.
* This task is complicated by there being 3 different ways of
* performing an inventory, depending largely on the age of the box.
* The recommended way to do this is to check to see whether the machine
* is a `Snake' first, then try System Map, then try PAT. We try System
* Map before checking for a Snake -- this probably doesn't cause any
* problems, but...
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/mmzone.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/parisc-device.h>
/*
** Debug options
** DEBUG_PAT Dump details which PDC PAT provides about ranges/devices.
*/
#undef DEBUG_PAT
int pdc_type = PDC_TYPE_ILLEGAL;
void __init setup_pdc(void)
{
long status;
unsigned int bus_id;
struct pdc_system_map_mod_info module_result;
struct pdc_module_path module_path;
struct pdc_model model;
#ifdef __LP64__
struct pdc_pat_cell_num cell_info;
#endif
/* Determine the pdc "type" used on this machine */
printk(KERN_INFO "Determining PDC firmware type: ");
status = pdc_system_map_find_mods(&module_result, &module_path, 0);
if (status == PDC_OK) {
pdc_type = PDC_TYPE_SYSTEM_MAP;
printk("System Map.\n");
return;
}
/*
* If the machine doesn't support PDC_SYSTEM_MAP then either it
* is a pdc pat box, or it is an older box. All 64 bit capable
* machines are either pdc pat boxes or they support PDC_SYSTEM_MAP.
*/
/*
* TODO: We should test for 64 bit capability and give a
* clearer message.
*/
#ifdef __LP64__
status = pdc_pat_cell_get_number(&cell_info);
if (status == PDC_OK) {
pdc_type = PDC_TYPE_PAT;
printk("64 bit PAT.\n");
return;
}
#endif
/* Check the CPU's bus ID. There's probably a better test. */
status = pdc_model_info(&model);
bus_id = (model.hversion >> (4 + 7)) & 0x1f;
switch (bus_id) {
case 0x4: /* 720, 730, 750, 735, 755 */
case 0x6: /* 705, 710 */
case 0x7: /* 715, 725 */
case 0x8: /* 745, 747, 742 */
case 0xA: /* 712 and similiar */
case 0xC: /* 715/64, at least */
pdc_type = PDC_TYPE_SNAKE;
printk("Snake.\n");
return;
default: /* Everything else */
printk("Unsupported.\n");
panic("If this is a 64-bit machine, please try a 64-bit kernel.\n");
}
}
#define PDC_PAGE_ADJ_SHIFT (PAGE_SHIFT - 12) /* pdc pages are always 4k */
static void __init
set_pmem_entry(physmem_range_t *pmem_ptr, unsigned long start,
unsigned long pages4k)
{
/* Rather than aligning and potentially throwing away
* memory, we'll assume that any ranges are already
* nicely aligned with any reasonable page size, and
* panic if they are not (it's more likely that the
* pdc info is bad in this case).
*/
if ( ((start & (PAGE_SIZE - 1)) != 0)
|| ((pages4k & ((1UL << PDC_PAGE_ADJ_SHIFT) - 1)) != 0) ) {
panic("Memory range doesn't align with page size!\n");
}
pmem_ptr->start_pfn = (start >> PAGE_SHIFT);
pmem_ptr->pages = (pages4k >> PDC_PAGE_ADJ_SHIFT);
}
static void __init pagezero_memconfig(void)
{
unsigned long npages;
/* Use the 32 bit information from page zero to create a single
* entry in the pmem_ranges[] table.
*
* We currently don't support machines with contiguous memory
* >= 4 Gb, who report that memory using 64 bit only fields
* on page zero. It's not worth doing until it can be tested,
* and it is not clear we can support those machines for other
* reasons.
*
* If that support is done in the future, this is where it
* should be done.
*/
npages = (PAGE_ALIGN(PAGE0->imm_max_mem) >> PAGE_SHIFT);
set_pmem_entry(pmem_ranges,0UL,npages);
npmem_ranges = 1;
}
#ifdef __LP64__
/* All of the PDC PAT specific code is 64-bit only */
/*
** The module object is filled via PDC_PAT_CELL[Return Cell Module].
** If a module is found, register module will get the IODC bytes via
** pdc_iodc_read() using the PA view of conf_base_addr for the hpa parameter.
**
** The IO view can be used by PDC_PAT_CELL[Return Cell Module]
** only for SBAs and LBAs. This view will cause an invalid
** argument error for all other cell module types.
**
*/
static int __init
pat_query_module(ulong pcell_loc, ulong mod_index)
{
pdc_pat_cell_mod_maddr_block_t pa_pdc_cell;
unsigned long bytecnt;
unsigned long temp; /* 64-bit scratch value */
long status; /* PDC return value status */
struct parisc_device *dev;
/* return cell module (PA or Processor view) */
status = pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index,
PA_VIEW, &pa_pdc_cell);
if (status != PDC_OK) {
/* no more cell modules or error */
return status;
}
temp = pa_pdc_cell.cba;
dev = alloc_pa_dev(PAT_GET_CBA(temp), &pa_pdc_cell.mod_path);
if (!dev) {
return PDC_OK;
}
/* alloc_pa_dev sets dev->hpa */
/*
** save parameters in the parisc_device
** (The idea being the device driver will call pdc_pat_cell_module()
** and store the results in its own data structure.)
*/
dev->pcell_loc = pcell_loc;
dev->mod_index = mod_index;
/* save generic info returned from the call */
/* REVISIT: who is the consumer of this? not sure yet... */
dev->mod_info = pa_pdc_cell.mod_info; /* pass to PAT_GET_ENTITY() */
dev->pmod_loc = pa_pdc_cell.mod_location;
register_parisc_device(dev); /* advertise device */
#ifdef DEBUG_PAT
pdc_pat_cell_mod_maddr_block_t io_pdc_cell;
/* dump what we see so far... */
switch (PAT_GET_ENTITY(dev->mod_info)) {
unsigned long i;
case PAT_ENTITY_PROC:
printk(KERN_DEBUG "PAT_ENTITY_PROC: id_eid 0x%lx\n",
pa_pdc_cell.mod[0]);
break;
case PAT_ENTITY_MEM:
printk(KERN_DEBUG
"PAT_ENTITY_MEM: amount 0x%lx min_gni_base 0x%lx min_gni_len 0x%lx\n",
pa_pdc_cell.mod[0], pa_pdc_cell.mod[1],
pa_pdc_cell.mod[2]);
break;
case PAT_ENTITY_CA:
printk(KERN_DEBUG "PAT_ENTITY_CA: %ld\n", pcell_loc);
break;
case PAT_ENTITY_PBC:
printk(KERN_DEBUG "PAT_ENTITY_PBC: ");
goto print_ranges;
case PAT_ENTITY_SBA:
printk(KERN_DEBUG "PAT_ENTITY_SBA: ");
goto print_ranges;
case PAT_ENTITY_LBA:
printk(KERN_DEBUG "PAT_ENTITY_LBA: ");
print_ranges:
pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index,
IO_VIEW, &io_pdc_cell);
printk(KERN_DEBUG "ranges %ld\n", pa_pdc_cell.mod[1]);
for (i = 0; i < pa_pdc_cell.mod[1]; i++) {
printk(KERN_DEBUG
" PA_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n",
i, pa_pdc_cell.mod[2 + i * 3], /* type */
pa_pdc_cell.mod[3 + i * 3], /* start */
pa_pdc_cell.mod[4 + i * 3]); /* finish (ie end) */
printk(KERN_DEBUG
" IO_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n",
i, io_pdc_cell.mod[2 + i * 3], /* type */
io_pdc_cell.mod[3 + i * 3], /* start */
io_pdc_cell.mod[4 + i * 3]); /* finish (ie end) */
}
printk(KERN_DEBUG "\n");
break;
}
#endif /* DEBUG_PAT */
return PDC_OK;
}
/* pat pdc can return information about a variety of different
* types of memory (e.g. firmware,i/o, etc) but we only care about
* the usable physical ram right now. Since the firmware specific
* information is allocated on the stack, we'll be generous, in
* case there is a lot of other information we don't care about.
*/
#define PAT_MAX_RANGES (4 * MAX_PHYSMEM_RANGES)
static void __init pat_memconfig(void)
{
unsigned long actual_len;
struct pdc_pat_pd_addr_map_entry mem_table[PAT_MAX_RANGES+1];
struct pdc_pat_pd_addr_map_entry *mtbl_ptr;
physmem_range_t *pmem_ptr;
long status;
int entries;
unsigned long length;
int i;
length = (PAT_MAX_RANGES + 1) * sizeof(struct pdc_pat_pd_addr_map_entry);
status = pdc_pat_pd_get_addr_map(&actual_len, mem_table, length, 0L);
if ((status != PDC_OK)
|| ((actual_len % sizeof(struct pdc_pat_pd_addr_map_entry)) != 0)) {
/* The above pdc call shouldn't fail, but, just in
* case, just use the PAGE0 info.
*/
printk("\n\n\n");
printk(KERN_WARNING "WARNING! Could not get full memory configuration. "
"All memory may not be used!\n\n\n");
pagezero_memconfig();
return;
}
entries = actual_len / sizeof(struct pdc_pat_pd_addr_map_entry);
if (entries > PAT_MAX_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory may not be used!\n");
}
/* Copy information into the firmware independent pmem_ranges
* array, skipping types we don't care about. Notice we said
* "may" above. We'll use all the entries that were returned.
*/
npmem_ranges = 0;
mtbl_ptr = mem_table;
pmem_ptr = pmem_ranges; /* Global firmware independent table */
for (i = 0; i < entries; i++,mtbl_ptr++) {
if ( (mtbl_ptr->entry_type != PAT_MEMORY_DESCRIPTOR)
|| (mtbl_ptr->memory_type != PAT_MEMTYPE_MEMORY)
|| (mtbl_ptr->pages == 0)
|| ( (mtbl_ptr->memory_usage != PAT_MEMUSE_GENERAL)
&& (mtbl_ptr->memory_usage != PAT_MEMUSE_GI)
&& (mtbl_ptr->memory_usage != PAT_MEMUSE_GNI) ) ) {
continue;
}
if (npmem_ranges == MAX_PHYSMEM_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory will not be used!\n");
break;
}
set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages);
npmem_ranges++;
}
}
static int __init pat_inventory(void)
{
int status;
ulong mod_index = 0;
struct pdc_pat_cell_num cell_info;
/*
** Note: Prelude (and it's successors: Lclass, A400/500) only
** implement PDC_PAT_CELL sub-options 0 and 2.
*/
status = pdc_pat_cell_get_number(&cell_info);
if (status != PDC_OK) {
return 0;
}
#ifdef DEBUG_PAT
printk(KERN_DEBUG "CELL_GET_NUMBER: 0x%lx 0x%lx\n", cell_info.cell_num,
cell_info.cell_loc);
#endif
while (PDC_OK == pat_query_module(cell_info.cell_loc, mod_index)) {
mod_index++;
}
return mod_index;
}
/* We only look for extended memory ranges on a 64 bit capable box */
static void __init sprockets_memconfig(void)
{
struct pdc_memory_table_raddr r_addr;
struct pdc_memory_table mem_table[MAX_PHYSMEM_RANGES];
struct pdc_memory_table *mtbl_ptr;
physmem_range_t *pmem_ptr;
long status;
int entries;
int i;
status = pdc_mem_mem_table(&r_addr,mem_table,
(unsigned long)MAX_PHYSMEM_RANGES);
if (status != PDC_OK) {
/* The above pdc call only works on boxes with sprockets
* firmware (newer B,C,J class). Other non PAT PDC machines
* do support more than 3.75 Gb of memory, but we don't
* support them yet.
*/
pagezero_memconfig();
return;
}
if (r_addr.entries_total > MAX_PHYSMEM_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory will not be used!\n");
}
entries = (int)r_addr.entries_returned;
npmem_ranges = 0;
mtbl_ptr = mem_table;
pmem_ptr = pmem_ranges; /* Global firmware independent table */
for (i = 0; i < entries; i++,mtbl_ptr++) {
set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages);
npmem_ranges++;
}
}
#else /* !__LP64__ */
#define pat_inventory() do { } while (0)
#define pat_memconfig() do { } while (0)
#define sprockets_memconfig() pagezero_memconfig()
#endif /* !__LP64__ */
#ifndef CONFIG_PA20
/* Code to support Snake machines (7[2350], 7[235]5, 715/Scorpio) */
static struct parisc_device * __init
legacy_create_device(struct pdc_memory_map *r_addr,
struct pdc_module_path *module_path)
{
struct parisc_device *dev;
int status = pdc_mem_map_hpa(r_addr, module_path);
if (status != PDC_OK)
return NULL;
dev = alloc_pa_dev(r_addr->hpa, &module_path->path);
if (dev == NULL)
return NULL;
register_parisc_device(dev);
return dev;
}
/**
* snake_inventory
*
* Before PDC_SYSTEM_MAP was invented, the PDC_MEM_MAP call was used.
* To use it, we initialise the mod_path.bc to 0xff and try all values of
* mod to get the HPA for the top-level devices. Bus adapters may have
* sub-devices which are discovered by setting bc[5] to 0 and bc[4] to the
* module, then trying all possible functions.
*/
static void __init snake_inventory(void)
{
int mod;
for (mod = 0; mod < 16; mod++) {
struct parisc_device *dev;
struct pdc_module_path module_path;
struct pdc_memory_map r_addr;
unsigned int func;
memset(module_path.path.bc, 0xff, 6);
module_path.path.mod = mod;
dev = legacy_create_device(&r_addr, &module_path);
if ((!dev) || (dev->id.hw_type != HPHW_BA))
continue;
memset(module_path.path.bc, 0xff, 4);
module_path.path.bc[4] = mod;
for (func = 0; func < 16; func++) {
module_path.path.bc[5] = 0;
module_path.path.mod = func;
legacy_create_device(&r_addr, &module_path);
}
}
}
#else /* CONFIG_PA20 */
#define snake_inventory() do { } while (0)
#endif /* CONFIG_PA20 */
/* Common 32/64 bit based code goes here */
/**
* add_system_map_addresses - Add additional addresses to the parisc device.
* @dev: The parisc device.
* @num_addrs: Then number of addresses to add;
* @module_instance: The system_map module instance.
*
* This function adds any additional addresses reported by the system_map
* firmware to the parisc device.
*/
static void __init
add_system_map_addresses(struct parisc_device *dev, int num_addrs,
int module_instance)
{
int i;
long status;
struct pdc_system_map_addr_info addr_result;
dev->addr = kmalloc(num_addrs * sizeof(unsigned long), GFP_KERNEL);
if(!dev->addr) {
printk(KERN_ERR "%s %s(): memory allocation failure\n",
__FILE__, __FUNCTION__);
return;
}
for(i = 1; i <= num_addrs; ++i) {
status = pdc_system_map_find_addrs(&addr_result,
module_instance, i);
if(PDC_OK == status) {
dev->addr[dev->num_addrs] = (unsigned long)addr_result.mod_addr;
dev->num_addrs++;
} else {
printk(KERN_WARNING
"Bad PDC_FIND_ADDRESS status return (%ld) for index %d\n",
status, i);
}
}
}
/**
* system_map_inventory - Retrieve firmware devices via SYSTEM_MAP.
*
* This function attempts to retrieve and register all the devices firmware
* knows about via the SYSTEM_MAP PDC call.
*/
static void __init system_map_inventory(void)
{
int i;
long status = PDC_OK;
for (i = 0; i < 256; i++) {
struct parisc_device *dev;
struct pdc_system_map_mod_info module_result;
struct pdc_module_path module_path;
status = pdc_system_map_find_mods(&module_result,
&module_path, i);
if ((status == PDC_BAD_PROC) || (status == PDC_NE_MOD))
break;
if (status != PDC_OK)
continue;
dev = alloc_pa_dev(module_result.mod_addr, &module_path.path);
if (!dev)
continue;
register_parisc_device(dev);
/* if available, get the additional addresses for a module */
if (!module_result.add_addrs)
continue;
add_system_map_addresses(dev, module_result.add_addrs, i);
}
walk_central_bus();
return;
}
void __init do_memory_inventory(void)
{
switch (pdc_type) {
case PDC_TYPE_PAT:
pat_memconfig();
break;
case PDC_TYPE_SYSTEM_MAP:
sprockets_memconfig();
break;
case PDC_TYPE_SNAKE:
pagezero_memconfig();
return;
default:
panic("Unknown PDC type!\n");
}
if (npmem_ranges == 0 || pmem_ranges[0].start_pfn != 0) {
printk(KERN_WARNING "Bad memory configuration returned!\n");
printk(KERN_WARNING "Some memory may not be used!\n");
pagezero_memconfig();
}
}
void __init do_device_inventory(void)
{
printk(KERN_INFO "Searching for devices...\n");
init_parisc_bus();
switch (pdc_type) {
case PDC_TYPE_PAT:
pat_inventory();
break;
case PDC_TYPE_SYSTEM_MAP:
system_map_inventory();
break;
case PDC_TYPE_SNAKE:
snake_inventory();
break;
default:
panic("Unknown PDC type!\n");
}
printk(KERN_INFO "Found devices:\n");
print_parisc_devices();
}