alistair23-linux/drivers/mmc/card/sdio_uart.c
Nicolas Pitre 15b82b46de sdio: fix recursion issues between sdio-uart driver and tty layer
In a few places, sdio_uart_irq() is called directly instead of waiting
for the actual interrupt to be raised and the SDIO IRQ thread scheduled
in order to reduce latency.  However, some interaction with the tty core
may end up calling us back (serial echo, flow control, etc.) creating
two issues:

 - the host lock gets claimed twice from the same thread causing a
   deadlock;

 - the same direct calls to sdio_uart_irq() may be performed causing
   unexpected reentrancy into the IRQ handler.

This patch handles both of those issues.

Signed-off-by: Nicolas Pitre <npitre@mvista.com>
Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
2007-09-23 21:24:52 +02:00

1159 lines
28 KiB
C

/*
* linux/drivers/mmc/card/sdio_uart.c - SDIO UART/GPS driver
*
* Based on drivers/serial/8250.c and drivers/serial/serial_core.c
* by Russell King.
*
* Author: Nicolas Pitre
* Created: June 15, 2007
* Copyright: MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
/*
* Note: Although this driver assumes a 16550A-like UART implementation,
* it is not possible to leverage the common 8250/16550 driver, nor the
* core UART infrastructure, as they assumes direct access to the hardware
* registers, often under a spinlock. This is not possible in the SDIO
* context as SDIO access functions must be able to sleep.
*
* Because we need to lock the SDIO host to ensure an exclusive access to
* the card, we simply rely on that lock to also prevent and serialize
* concurrent access to the same port.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/serial_reg.h>
#include <linux/circ_buf.h>
#include <linux/gfp.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/sdio_ids.h>
#define UART_NR 8 /* Number of UARTs this driver can handle */
#define UART_XMIT_SIZE PAGE_SIZE
#define WAKEUP_CHARS 256
#define circ_empty(circ) ((circ)->head == (circ)->tail)
#define circ_clear(circ) ((circ)->head = (circ)->tail = 0)
#define circ_chars_pending(circ) \
(CIRC_CNT((circ)->head, (circ)->tail, UART_XMIT_SIZE))
#define circ_chars_free(circ) \
(CIRC_SPACE((circ)->head, (circ)->tail, UART_XMIT_SIZE))
struct uart_icount {
__u32 cts;
__u32 dsr;
__u32 rng;
__u32 dcd;
__u32 rx;
__u32 tx;
__u32 frame;
__u32 overrun;
__u32 parity;
__u32 brk;
};
struct sdio_uart_port {
struct kref kref;
struct tty_struct *tty;
unsigned int index;
unsigned int opened;
struct mutex open_lock;
struct sdio_func *func;
struct mutex func_lock;
struct task_struct *in_sdio_uart_irq;
unsigned int regs_offset;
struct circ_buf xmit;
spinlock_t write_lock;
struct uart_icount icount;
unsigned int uartclk;
unsigned int mctrl;
unsigned int read_status_mask;
unsigned int ignore_status_mask;
unsigned char x_char;
unsigned char ier;
unsigned char lcr;
};
static struct sdio_uart_port *sdio_uart_table[UART_NR];
static DEFINE_SPINLOCK(sdio_uart_table_lock);
static int sdio_uart_add_port(struct sdio_uart_port *port)
{
int index, ret = -EBUSY;
kref_init(&port->kref);
mutex_init(&port->open_lock);
mutex_init(&port->func_lock);
spin_lock_init(&port->write_lock);
spin_lock(&sdio_uart_table_lock);
for (index = 0; index < UART_NR; index++) {
if (!sdio_uart_table[index]) {
port->index = index;
sdio_uart_table[index] = port;
ret = 0;
break;
}
}
spin_unlock(&sdio_uart_table_lock);
return ret;
}
static struct sdio_uart_port *sdio_uart_port_get(unsigned index)
{
struct sdio_uart_port *port;
if (index >= UART_NR)
return NULL;
spin_lock(&sdio_uart_table_lock);
port = sdio_uart_table[index];
if (port)
kref_get(&port->kref);
spin_unlock(&sdio_uart_table_lock);
return port;
}
static void sdio_uart_port_destroy(struct kref *kref)
{
struct sdio_uart_port *port =
container_of(kref, struct sdio_uart_port, kref);
kfree(port);
}
static void sdio_uart_port_put(struct sdio_uart_port *port)
{
kref_put(&port->kref, sdio_uart_port_destroy);
}
static void sdio_uart_port_remove(struct sdio_uart_port *port)
{
struct sdio_func *func;
BUG_ON(sdio_uart_table[port->index] != port);
spin_lock(&sdio_uart_table_lock);
sdio_uart_table[port->index] = NULL;
spin_unlock(&sdio_uart_table_lock);
/*
* We're killing a port that potentially still is in use by
* the tty layer. Be careful to prevent any further access
* to the SDIO function and arrange for the tty layer to
* give up on that port ASAP.
* Beware: the lock ordering is critical.
*/
mutex_lock(&port->open_lock);
mutex_lock(&port->func_lock);
func = port->func;
sdio_claim_host(func);
port->func = NULL;
mutex_unlock(&port->func_lock);
if (port->opened)
tty_hangup(port->tty);
mutex_unlock(&port->open_lock);
sdio_release_irq(func);
sdio_disable_func(func);
sdio_release_host(func);
sdio_uart_port_put(port);
}
static int sdio_uart_claim_func(struct sdio_uart_port *port)
{
mutex_lock(&port->func_lock);
if (unlikely(!port->func)) {
mutex_unlock(&port->func_lock);
return -ENODEV;
}
if (likely(port->in_sdio_uart_irq != current))
sdio_claim_host(port->func);
mutex_unlock(&port->func_lock);
return 0;
}
static inline void sdio_uart_release_func(struct sdio_uart_port *port)
{
if (likely(port->in_sdio_uart_irq != current))
sdio_release_host(port->func);
}
static inline unsigned int sdio_in(struct sdio_uart_port *port, int offset)
{
unsigned char c;
c = sdio_readb(port->func, port->regs_offset + offset, NULL);
return c;
}
static inline void sdio_out(struct sdio_uart_port *port, int offset, int value)
{
sdio_writeb(port->func, value, port->regs_offset + offset, NULL);
}
static unsigned int sdio_uart_get_mctrl(struct sdio_uart_port *port)
{
unsigned char status;
unsigned int ret;
status = sdio_in(port, UART_MSR);
ret = 0;
if (status & UART_MSR_DCD)
ret |= TIOCM_CAR;
if (status & UART_MSR_RI)
ret |= TIOCM_RNG;
if (status & UART_MSR_DSR)
ret |= TIOCM_DSR;
if (status & UART_MSR_CTS)
ret |= TIOCM_CTS;
return ret;
}
static void sdio_uart_write_mctrl(struct sdio_uart_port *port, unsigned int mctrl)
{
unsigned char mcr = 0;
if (mctrl & TIOCM_RTS)
mcr |= UART_MCR_RTS;
if (mctrl & TIOCM_DTR)
mcr |= UART_MCR_DTR;
if (mctrl & TIOCM_OUT1)
mcr |= UART_MCR_OUT1;
if (mctrl & TIOCM_OUT2)
mcr |= UART_MCR_OUT2;
if (mctrl & TIOCM_LOOP)
mcr |= UART_MCR_LOOP;
sdio_out(port, UART_MCR, mcr);
}
static inline void sdio_uart_update_mctrl(struct sdio_uart_port *port,
unsigned int set, unsigned int clear)
{
unsigned int old;
old = port->mctrl;
port->mctrl = (old & ~clear) | set;
if (old != port->mctrl)
sdio_uart_write_mctrl(port, port->mctrl);
}
#define sdio_uart_set_mctrl(port, x) sdio_uart_update_mctrl(port, x, 0)
#define sdio_uart_clear_mctrl(port, x) sdio_uart_update_mctrl(port, 0, x)
static void sdio_uart_change_speed(struct sdio_uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
unsigned char cval, fcr = 0;
unsigned int baud, quot;
switch (termios->c_cflag & CSIZE) {
case CS5:
cval = UART_LCR_WLEN5;
break;
case CS6:
cval = UART_LCR_WLEN6;
break;
case CS7:
cval = UART_LCR_WLEN7;
break;
default:
case CS8:
cval = UART_LCR_WLEN8;
break;
}
if (termios->c_cflag & CSTOPB)
cval |= UART_LCR_STOP;
if (termios->c_cflag & PARENB)
cval |= UART_LCR_PARITY;
if (!(termios->c_cflag & PARODD))
cval |= UART_LCR_EPAR;
for (;;) {
baud = tty_termios_baud_rate(termios);
if (baud == 0)
baud = 9600; /* Special case: B0 rate. */
if (baud <= port->uartclk)
break;
/*
* Oops, the quotient was zero. Try again with the old
* baud rate if possible, otherwise default to 9600.
*/
termios->c_cflag &= ~CBAUD;
if (old) {
termios->c_cflag |= old->c_cflag & CBAUD;
old = NULL;
} else
termios->c_cflag |= B9600;
}
quot = (2 * port->uartclk + baud) / (2 * baud);
if (baud < 2400)
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1;
else
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10;
port->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
if (termios->c_iflag & INPCK)
port->read_status_mask |= UART_LSR_FE | UART_LSR_PE;
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= UART_LSR_BI;
/*
* Characters to ignore
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= UART_LSR_BI;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= UART_LSR_OE;
}
/*
* ignore all characters if CREAD is not set
*/
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= UART_LSR_DR;
/*
* CTS flow control flag and modem status interrupts
*/
port->ier &= ~UART_IER_MSI;
if ((termios->c_cflag & CRTSCTS) || !(termios->c_cflag & CLOCAL))
port->ier |= UART_IER_MSI;
port->lcr = cval;
sdio_out(port, UART_IER, port->ier);
sdio_out(port, UART_LCR, cval | UART_LCR_DLAB);
sdio_out(port, UART_DLL, quot & 0xff);
sdio_out(port, UART_DLM, quot >> 8);
sdio_out(port, UART_LCR, cval);
sdio_out(port, UART_FCR, fcr);
sdio_uart_write_mctrl(port, port->mctrl);
}
static void sdio_uart_start_tx(struct sdio_uart_port *port)
{
if (!(port->ier & UART_IER_THRI)) {
port->ier |= UART_IER_THRI;
sdio_out(port, UART_IER, port->ier);
}
}
static void sdio_uart_stop_tx(struct sdio_uart_port *port)
{
if (port->ier & UART_IER_THRI) {
port->ier &= ~UART_IER_THRI;
sdio_out(port, UART_IER, port->ier);
}
}
static void sdio_uart_stop_rx(struct sdio_uart_port *port)
{
port->ier &= ~UART_IER_RLSI;
port->read_status_mask &= ~UART_LSR_DR;
sdio_out(port, UART_IER, port->ier);
}
static void sdio_uart_receive_chars(struct sdio_uart_port *port, int *status)
{
struct tty_struct *tty = port->tty;
unsigned int ch, flag;
int max_count = 256;
do {
ch = sdio_in(port, UART_RX);
flag = TTY_NORMAL;
port->icount.rx++;
if (unlikely(*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE))) {
/*
* For statistics only
*/
if (*status & UART_LSR_BI) {
*status &= ~(UART_LSR_FE | UART_LSR_PE);
port->icount.brk++;
} else if (*status & UART_LSR_PE)
port->icount.parity++;
else if (*status & UART_LSR_FE)
port->icount.frame++;
if (*status & UART_LSR_OE)
port->icount.overrun++;
/*
* Mask off conditions which should be ignored.
*/
*status &= port->read_status_mask;
if (*status & UART_LSR_BI) {
flag = TTY_BREAK;
} else if (*status & UART_LSR_PE)
flag = TTY_PARITY;
else if (*status & UART_LSR_FE)
flag = TTY_FRAME;
}
if ((*status & port->ignore_status_mask & ~UART_LSR_OE) == 0)
tty_insert_flip_char(tty, ch, flag);
/*
* Overrun is special. Since it's reported immediately,
* it doesn't affect the current character.
*/
if (*status & ~port->ignore_status_mask & UART_LSR_OE)
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
*status = sdio_in(port, UART_LSR);
} while ((*status & UART_LSR_DR) && (max_count-- > 0));
tty_flip_buffer_push(tty);
}
static void sdio_uart_transmit_chars(struct sdio_uart_port *port)
{
struct circ_buf *xmit = &port->xmit;
int count;
if (port->x_char) {
sdio_out(port, UART_TX, port->x_char);
port->icount.tx++;
port->x_char = 0;
return;
}
if (circ_empty(xmit) || port->tty->stopped || port->tty->hw_stopped) {
sdio_uart_stop_tx(port);
return;
}
count = 16;
do {
sdio_out(port, UART_TX, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
if (circ_empty(xmit))
break;
} while (--count > 0);
if (circ_chars_pending(xmit) < WAKEUP_CHARS)
tty_wakeup(port->tty);
if (circ_empty(xmit))
sdio_uart_stop_tx(port);
}
static void sdio_uart_check_modem_status(struct sdio_uart_port *port)
{
int status;
status = sdio_in(port, UART_MSR);
if ((status & UART_MSR_ANY_DELTA) == 0)
return;
if (status & UART_MSR_TERI)
port->icount.rng++;
if (status & UART_MSR_DDSR)
port->icount.dsr++;
if (status & UART_MSR_DDCD)
port->icount.dcd++;
if (status & UART_MSR_DCTS) {
port->icount.cts++;
if (port->tty->termios->c_cflag & CRTSCTS) {
int cts = (status & UART_MSR_CTS);
if (port->tty->hw_stopped) {
if (cts) {
port->tty->hw_stopped = 0;
sdio_uart_start_tx(port);
tty_wakeup(port->tty);
}
} else {
if (!cts) {
port->tty->hw_stopped = 1;
sdio_uart_stop_tx(port);
}
}
}
}
}
/*
* This handles the interrupt from one port.
*/
static void sdio_uart_irq(struct sdio_func *func)
{
struct sdio_uart_port *port = sdio_get_drvdata(func);
unsigned int iir, lsr;
/*
* In a few places sdio_uart_irq() is called directly instead of
* waiting for the actual interrupt to be raised and the SDIO IRQ
* thread scheduled in order to reduce latency. However, some
* interaction with the tty core may end up calling us back
* (serial echo, flow control, etc.) through those same places
* causing undesirable effects. Let's stop the recursion here.
*/
if (unlikely(port->in_sdio_uart_irq == current))
return;
iir = sdio_in(port, UART_IIR);
if (iir & UART_IIR_NO_INT)
return;
port->in_sdio_uart_irq = current;
lsr = sdio_in(port, UART_LSR);
if (lsr & UART_LSR_DR)
sdio_uart_receive_chars(port, &lsr);
sdio_uart_check_modem_status(port);
if (lsr & UART_LSR_THRE)
sdio_uart_transmit_chars(port);
port->in_sdio_uart_irq = NULL;
}
static int sdio_uart_startup(struct sdio_uart_port *port)
{
unsigned long page;
int ret;
/*
* Set the TTY IO error marker - we will only clear this
* once we have successfully opened the port.
*/
set_bit(TTY_IO_ERROR, &port->tty->flags);
/* Initialise and allocate the transmit buffer. */
page = __get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
port->xmit.buf = (unsigned char *)page;
circ_clear(&port->xmit);
ret = sdio_uart_claim_func(port);
if (ret)
goto err1;
ret = sdio_enable_func(port->func);
if (ret)
goto err2;
ret = sdio_claim_irq(port->func, sdio_uart_irq);
if (ret)
goto err3;
/*
* Clear the FIFO buffers and disable them.
* (they will be reenabled in sdio_change_speed())
*/
sdio_out(port, UART_FCR, UART_FCR_ENABLE_FIFO);
sdio_out(port, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
sdio_out(port, UART_FCR, 0);
/*
* Clear the interrupt registers.
*/
(void) sdio_in(port, UART_LSR);
(void) sdio_in(port, UART_RX);
(void) sdio_in(port, UART_IIR);
(void) sdio_in(port, UART_MSR);
/*
* Now, initialize the UART
*/
sdio_out(port, UART_LCR, UART_LCR_WLEN8);
port->ier = UART_IER_RLSI | UART_IER_RDI | UART_IER_RTOIE | UART_IER_UUE;
port->mctrl = TIOCM_OUT2;
sdio_uart_change_speed(port, port->tty->termios, NULL);
if (port->tty->termios->c_cflag & CBAUD)
sdio_uart_set_mctrl(port, TIOCM_RTS | TIOCM_DTR);
if (port->tty->termios->c_cflag & CRTSCTS)
if (!(sdio_uart_get_mctrl(port) & TIOCM_CTS))
port->tty->hw_stopped = 1;
clear_bit(TTY_IO_ERROR, &port->tty->flags);
/* Kick the IRQ handler once while we're still holding the host lock */
sdio_uart_irq(port->func);
sdio_uart_release_func(port);
return 0;
err3:
sdio_disable_func(port->func);
err2:
sdio_uart_release_func(port);
err1:
free_page((unsigned long)port->xmit.buf);
return ret;
}
static void sdio_uart_shutdown(struct sdio_uart_port *port)
{
int ret;
ret = sdio_uart_claim_func(port);
if (ret)
goto skip;
sdio_uart_stop_rx(port);
/* TODO: wait here for TX FIFO to drain */
/* Turn off DTR and RTS early. */
if (port->tty->termios->c_cflag & HUPCL)
sdio_uart_clear_mctrl(port, TIOCM_DTR | TIOCM_RTS);
/* Disable interrupts from this port */
sdio_release_irq(port->func);
port->ier = 0;
sdio_out(port, UART_IER, 0);
sdio_uart_clear_mctrl(port, TIOCM_OUT2);
/* Disable break condition and FIFOs. */
port->lcr &= ~UART_LCR_SBC;
sdio_out(port, UART_LCR, port->lcr);
sdio_out(port, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR |
UART_FCR_CLEAR_XMIT);
sdio_out(port, UART_FCR, 0);
sdio_disable_func(port->func);
sdio_uart_release_func(port);
skip:
/* Free the transmit buffer page. */
free_page((unsigned long)port->xmit.buf);
}
static int sdio_uart_open (struct tty_struct *tty, struct file * filp)
{
struct sdio_uart_port *port;
int ret;
port = sdio_uart_port_get(tty->index);
if (!port)
return -ENODEV;
mutex_lock(&port->open_lock);
/*
* Make sure not to mess up with a dead port
* which has not been closed yet.
*/
if (tty->driver_data && tty->driver_data != port) {
mutex_unlock(&port->open_lock);
sdio_uart_port_put(port);
return -EBUSY;
}
if (!port->opened) {
tty->driver_data = port;
port->tty = tty;
ret = sdio_uart_startup(port);
if (ret) {
tty->driver_data = NULL;
port->tty = NULL;
mutex_unlock(&port->open_lock);
sdio_uart_port_put(port);
return ret;
}
}
port->opened++;
mutex_unlock(&port->open_lock);
return 0;
}
static void sdio_uart_close(struct tty_struct *tty, struct file * filp)
{
struct sdio_uart_port *port = tty->driver_data;
if (!port)
return;
mutex_lock(&port->open_lock);
BUG_ON(!port->opened);
/*
* This is messy. The tty layer calls us even when open()
* returned an error. Ignore this close request if tty->count
* is larger than port->count.
*/
if (tty->count > port->opened) {
mutex_unlock(&port->open_lock);
return;
}
if (--port->opened == 0) {
tty->closing = 1;
sdio_uart_shutdown(port);
tty_ldisc_flush(tty);
port->tty = NULL;
tty->driver_data = NULL;
tty->closing = 0;
}
mutex_unlock(&port->open_lock);
sdio_uart_port_put(port);
}
static int sdio_uart_write(struct tty_struct * tty, const unsigned char *buf,
int count)
{
struct sdio_uart_port *port = tty->driver_data;
struct circ_buf *circ = &port->xmit;
int c, ret = 0;
if (!port->func)
return -ENODEV;
spin_lock(&port->write_lock);
while (1) {
c = CIRC_SPACE_TO_END(circ->head, circ->tail, UART_XMIT_SIZE);
if (count < c)
c = count;
if (c <= 0)
break;
memcpy(circ->buf + circ->head, buf, c);
circ->head = (circ->head + c) & (UART_XMIT_SIZE - 1);
buf += c;
count -= c;
ret += c;
}
spin_unlock(&port->write_lock);
if ( !(port->ier & UART_IER_THRI)) {
int err = sdio_uart_claim_func(port);
if (!err) {
sdio_uart_start_tx(port);
sdio_uart_irq(port->func);
sdio_uart_release_func(port);
} else
ret = err;
}
return ret;
}
static int sdio_uart_write_room(struct tty_struct *tty)
{
struct sdio_uart_port *port = tty->driver_data;
return port ? circ_chars_free(&port->xmit) : 0;
}
static int sdio_uart_chars_in_buffer(struct tty_struct *tty)
{
struct sdio_uart_port *port = tty->driver_data;
return port ? circ_chars_pending(&port->xmit) : 0;
}
static void sdio_uart_send_xchar(struct tty_struct *tty, char ch)
{
struct sdio_uart_port *port = tty->driver_data;
port->x_char = ch;
if (ch && !(port->ier & UART_IER_THRI)) {
if (sdio_uart_claim_func(port) != 0)
return;
sdio_uart_start_tx(port);
sdio_uart_irq(port->func);
sdio_uart_release_func(port);
}
}
static void sdio_uart_throttle(struct tty_struct *tty)
{
struct sdio_uart_port *port = tty->driver_data;
if (!I_IXOFF(tty) && !(tty->termios->c_cflag & CRTSCTS))
return;
if (sdio_uart_claim_func(port) != 0)
return;
if (I_IXOFF(tty)) {
port->x_char = STOP_CHAR(tty);
sdio_uart_start_tx(port);
}
if (tty->termios->c_cflag & CRTSCTS)
sdio_uart_clear_mctrl(port, TIOCM_RTS);
sdio_uart_irq(port->func);
sdio_uart_release_func(port);
}
static void sdio_uart_unthrottle(struct tty_struct *tty)
{
struct sdio_uart_port *port = tty->driver_data;
if (!I_IXOFF(tty) && !(tty->termios->c_cflag & CRTSCTS))
return;
if (sdio_uart_claim_func(port) != 0)
return;
if (I_IXOFF(tty)) {
if (port->x_char) {
port->x_char = 0;
} else {
port->x_char = START_CHAR(tty);
sdio_uart_start_tx(port);
}
}
if (tty->termios->c_cflag & CRTSCTS)
sdio_uart_set_mctrl(port, TIOCM_RTS);
sdio_uart_irq(port->func);
sdio_uart_release_func(port);
}
static void sdio_uart_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
{
struct sdio_uart_port *port = tty->driver_data;
unsigned int cflag = tty->termios->c_cflag;
#define RELEVANT_IFLAG(iflag) ((iflag) & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
if ((cflag ^ old_termios->c_cflag) == 0 &&
RELEVANT_IFLAG(tty->termios->c_iflag ^ old_termios->c_iflag) == 0)
return;
if (sdio_uart_claim_func(port) != 0)
return;
sdio_uart_change_speed(port, tty->termios, old_termios);
/* Handle transition to B0 status */
if ((old_termios->c_cflag & CBAUD) && !(cflag & CBAUD))
sdio_uart_clear_mctrl(port, TIOCM_RTS | TIOCM_DTR);
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) && (cflag & CBAUD)) {
unsigned int mask = TIOCM_DTR;
if (!(cflag & CRTSCTS) || !test_bit(TTY_THROTTLED, &tty->flags))
mask |= TIOCM_RTS;
sdio_uart_set_mctrl(port, mask);
}
/* Handle turning off CRTSCTS */
if ((old_termios->c_cflag & CRTSCTS) && !(cflag & CRTSCTS)) {
tty->hw_stopped = 0;
sdio_uart_start_tx(port);
}
/* Handle turning on CRTSCTS */
if (!(old_termios->c_cflag & CRTSCTS) && (cflag & CRTSCTS)) {
if (!(sdio_uart_get_mctrl(port) & TIOCM_CTS)) {
tty->hw_stopped = 1;
sdio_uart_stop_tx(port);
}
}
sdio_uart_release_func(port);
}
static void sdio_uart_break_ctl(struct tty_struct *tty, int break_state)
{
struct sdio_uart_port *port = tty->driver_data;
if (sdio_uart_claim_func(port) != 0)
return;
if (break_state == -1)
port->lcr |= UART_LCR_SBC;
else
port->lcr &= ~UART_LCR_SBC;
sdio_out(port, UART_LCR, port->lcr);
sdio_uart_release_func(port);
}
static int sdio_uart_tiocmget(struct tty_struct *tty, struct file *file)
{
struct sdio_uart_port *port = tty->driver_data;
int result;
result = sdio_uart_claim_func(port);
if (!result) {
result = port->mctrl | sdio_uart_get_mctrl(port);
sdio_uart_release_func(port);
}
return result;
}
static int sdio_uart_tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
struct sdio_uart_port *port = tty->driver_data;
int result;
result =sdio_uart_claim_func(port);
if(!result) {
sdio_uart_update_mctrl(port, set, clear);
sdio_uart_release_func(port);
}
return result;
}
static int sdio_uart_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int i, len = 0;
off_t begin = 0;
len += sprintf(page, "serinfo:1.0 driver%s%s revision:%s\n",
"", "", "");
for (i = 0; i < UART_NR && len < PAGE_SIZE - 96; i++) {
struct sdio_uart_port *port = sdio_uart_port_get(i);
if (port) {
len += sprintf(page+len, "%d: uart:SDIO", i);
if(capable(CAP_SYS_ADMIN)) {
len += sprintf(page + len, " tx:%d rx:%d",
port->icount.tx, port->icount.rx);
if (port->icount.frame)
len += sprintf(page + len, " fe:%d",
port->icount.frame);
if (port->icount.parity)
len += sprintf(page + len, " pe:%d",
port->icount.parity);
if (port->icount.brk)
len += sprintf(page + len, " brk:%d",
port->icount.brk);
if (port->icount.overrun)
len += sprintf(page + len, " oe:%d",
port->icount.overrun);
if (port->icount.cts)
len += sprintf(page + len, " cts:%d",
port->icount.cts);
if (port->icount.dsr)
len += sprintf(page + len, " dsr:%d",
port->icount.dsr);
if (port->icount.rng)
len += sprintf(page + len, " rng:%d",
port->icount.rng);
if (port->icount.dcd)
len += sprintf(page + len, " dcd:%d",
port->icount.dcd);
}
strcat(page, "\n");
len++;
sdio_uart_port_put(port);
}
if (len + begin > off + count)
goto done;
if (len + begin < off) {
begin += len;
len = 0;
}
}
*eof = 1;
done:
if (off >= len + begin)
return 0;
*start = page + (off - begin);
return (count < begin + len - off) ? count : (begin + len - off);
}
static const struct tty_operations sdio_uart_ops = {
.open = sdio_uart_open,
.close = sdio_uart_close,
.write = sdio_uart_write,
.write_room = sdio_uart_write_room,
.chars_in_buffer = sdio_uart_chars_in_buffer,
.send_xchar = sdio_uart_send_xchar,
.throttle = sdio_uart_throttle,
.unthrottle = sdio_uart_unthrottle,
.set_termios = sdio_uart_set_termios,
.break_ctl = sdio_uart_break_ctl,
.tiocmget = sdio_uart_tiocmget,
.tiocmset = sdio_uart_tiocmset,
.read_proc = sdio_uart_read_proc,
};
static struct tty_driver *sdio_uart_tty_driver;
static int sdio_uart_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
struct sdio_uart_port *port;
int ret;
port = kzalloc(sizeof(struct sdio_uart_port), GFP_KERNEL);
if (!port)
return -ENOMEM;
if (func->class == SDIO_CLASS_UART) {
printk(KERN_WARNING "%s: need info on UART class basic setup\n",
sdio_func_id(func));
kfree(port);
return -ENOSYS;
} else if (func->class == SDIO_CLASS_GPS) {
/*
* We need tuple 0x91. It contains SUBTPL_SIOREG
* and SUBTPL_RCVCAPS.
*/
struct sdio_func_tuple *tpl;
for (tpl = func->tuples; tpl; tpl = tpl->next) {
if (tpl->code != 0x91)
continue;
if (tpl->size < 10)
continue;
if (tpl->data[1] == 0) /* SUBTPL_SIOREG */
break;
}
if (!tpl) {
printk(KERN_WARNING
"%s: can't find tuple 0x91 subtuple 0 (SUBTPL_SIOREG) for GPS class\n",
sdio_func_id(func));
kfree(port);
return -EINVAL;
}
printk(KERN_DEBUG "%s: Register ID = 0x%02x, Exp ID = 0x%02x\n",
sdio_func_id(func), tpl->data[2], tpl->data[3]);
port->regs_offset = (tpl->data[4] << 0) |
(tpl->data[5] << 8) |
(tpl->data[6] << 16);
printk(KERN_DEBUG "%s: regs offset = 0x%x\n",
sdio_func_id(func), port->regs_offset);
port->uartclk = tpl->data[7] * 115200;
if (port->uartclk == 0)
port->uartclk = 115200;
printk(KERN_DEBUG "%s: clk %d baudcode %u 4800-div %u\n",
sdio_func_id(func), port->uartclk,
tpl->data[7], tpl->data[8] | (tpl->data[9] << 8));
} else {
kfree(port);
return -EINVAL;
}
port->func = func;
sdio_set_drvdata(func, port);
ret = sdio_uart_add_port(port);
if (ret) {
kfree(port);
} else {
struct device *dev;
dev = tty_register_device(sdio_uart_tty_driver, port->index, &func->dev);
if (IS_ERR(dev)) {
sdio_uart_port_remove(port);
ret = PTR_ERR(dev);
}
}
return ret;
}
static void sdio_uart_remove(struct sdio_func *func)
{
struct sdio_uart_port *port = sdio_get_drvdata(func);
tty_unregister_device(sdio_uart_tty_driver, port->index);
sdio_uart_port_remove(port);
}
static const struct sdio_device_id sdio_uart_ids[] = {
{ SDIO_DEVICE_CLASS(SDIO_CLASS_UART) },
{ SDIO_DEVICE_CLASS(SDIO_CLASS_GPS) },
{ /* end: all zeroes */ },
};
MODULE_DEVICE_TABLE(sdio, sdio_uart_ids);
static struct sdio_driver sdio_uart_driver = {
.probe = sdio_uart_probe,
.remove = sdio_uart_remove,
.name = "sdio_uart",
.id_table = sdio_uart_ids,
};
static int __init sdio_uart_init(void)
{
int ret;
struct tty_driver *tty_drv;
sdio_uart_tty_driver = tty_drv = alloc_tty_driver(UART_NR);
if (!tty_drv)
return -ENOMEM;
tty_drv->owner = THIS_MODULE;
tty_drv->driver_name = "sdio_uart";
tty_drv->name = "ttySDIO";
tty_drv->major = 0; /* dynamically allocated */
tty_drv->minor_start = 0;
tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
tty_drv->subtype = SERIAL_TYPE_NORMAL;
tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
tty_drv->init_termios = tty_std_termios;
tty_drv->init_termios.c_cflag = B4800 | CS8 | CREAD | HUPCL | CLOCAL;
tty_drv->init_termios.c_ispeed = 4800;
tty_drv->init_termios.c_ospeed = 4800;
tty_set_operations(tty_drv, &sdio_uart_ops);
ret = tty_register_driver(tty_drv);
if (ret)
goto err1;
ret = sdio_register_driver(&sdio_uart_driver);
if (ret)
goto err2;
return 0;
err2:
tty_unregister_driver(tty_drv);
err1:
put_tty_driver(tty_drv);
return ret;
}
static void __exit sdio_uart_exit(void)
{
sdio_unregister_driver(&sdio_uart_driver);
tty_unregister_driver(sdio_uart_tty_driver);
put_tty_driver(sdio_uart_tty_driver);
}
module_init(sdio_uart_init);
module_exit(sdio_uart_exit);
MODULE_AUTHOR("Nicolas Pitre");
MODULE_LICENSE("GPL");