alistair23-linux/arch/blackfin/mach-common/ints-priority.c
Paul Gortmaker 13dff62d80 blackfin: delete __cpuinit usage from all blackfin files
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications.  For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.

After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out.  Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.

Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit  -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings.  In any case, they are temporary and harmless.

This removes all the arch/blackfin uses of the __cpuinit macros from
all C files.  Currently blackfin does not have any __CPUINIT used in
assembly files.

[1] https://lkml.org/lkml/2013/5/20/589

Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Sonic Zhang <sonic.zhang@analog.com>
Cc: uclinux-dist-devel@blackfin.uclinux.org
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-07-14 19:36:53 -04:00

1740 lines
40 KiB
C

/*
* Set up the interrupt priorities
*
* Copyright 2004-2009 Analog Devices Inc.
* 2003 Bas Vermeulen <bas@buyways.nl>
* 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
* 2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
* 1999 D. Jeff Dionne <jeff@uclinux.org>
* 1996 Roman Zippel
*
* Licensed under the GPL-2
*/
#include <linux/module.h>
#include <linux/kernel_stat.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/sched.h>
#include <linux/syscore_ops.h>
#include <asm/delay.h>
#ifdef CONFIG_IPIPE
#include <linux/ipipe.h>
#endif
#include <asm/traps.h>
#include <asm/blackfin.h>
#include <asm/gpio.h>
#include <asm/irq_handler.h>
#include <asm/dpmc.h>
#include <asm/traps.h>
/*
* NOTES:
* - we have separated the physical Hardware interrupt from the
* levels that the LINUX kernel sees (see the description in irq.h)
* -
*/
#ifndef CONFIG_SMP
/* Initialize this to an actual value to force it into the .data
* section so that we know it is properly initialized at entry into
* the kernel but before bss is initialized to zero (which is where
* it would live otherwise). The 0x1f magic represents the IRQs we
* cannot actually mask out in hardware.
*/
unsigned long bfin_irq_flags = 0x1f;
EXPORT_SYMBOL(bfin_irq_flags);
#endif
#ifdef CONFIG_PM
unsigned long bfin_sic_iwr[3]; /* Up to 3 SIC_IWRx registers */
unsigned vr_wakeup;
#endif
#ifndef SEC_GCTL
static struct ivgx {
/* irq number for request_irq, available in mach-bf5xx/irq.h */
unsigned int irqno;
/* corresponding bit in the SIC_ISR register */
unsigned int isrflag;
} ivg_table[NR_PERI_INTS];
static struct ivg_slice {
/* position of first irq in ivg_table for given ivg */
struct ivgx *ifirst;
struct ivgx *istop;
} ivg7_13[IVG13 - IVG7 + 1];
/*
* Search SIC_IAR and fill tables with the irqvalues
* and their positions in the SIC_ISR register.
*/
static void __init search_IAR(void)
{
unsigned ivg, irq_pos = 0;
for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
int irqN;
ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
int irqn;
u32 iar =
bfin_read32((unsigned long *)SIC_IAR0 +
#if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
defined(CONFIG_BF538) || defined(CONFIG_BF539)
((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
#else
(irqN >> 3)
#endif
);
for (irqn = irqN; irqn < irqN + 4; ++irqn) {
int iar_shift = (irqn & 7) * 4;
if (ivg == (0xf & (iar >> iar_shift))) {
ivg_table[irq_pos].irqno = IVG7 + irqn;
ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
ivg7_13[ivg].istop++;
irq_pos++;
}
}
}
}
}
#endif
/*
* This is for core internal IRQs
*/
void bfin_ack_noop(struct irq_data *d)
{
/* Dummy function. */
}
static void bfin_core_mask_irq(struct irq_data *d)
{
bfin_irq_flags &= ~(1 << d->irq);
if (!hard_irqs_disabled())
hard_local_irq_enable();
}
static void bfin_core_unmask_irq(struct irq_data *d)
{
bfin_irq_flags |= 1 << d->irq;
/*
* If interrupts are enabled, IMASK must contain the same value
* as bfin_irq_flags. Make sure that invariant holds. If interrupts
* are currently disabled we need not do anything; one of the
* callers will take care of setting IMASK to the proper value
* when reenabling interrupts.
* local_irq_enable just does "STI bfin_irq_flags", so it's exactly
* what we need.
*/
if (!hard_irqs_disabled())
hard_local_irq_enable();
return;
}
#ifndef SEC_GCTL
void bfin_internal_mask_irq(unsigned int irq)
{
unsigned long flags = hard_local_irq_save();
#ifdef SIC_IMASK0
unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
~(1 << mask_bit));
# if defined(CONFIG_SMP) || defined(CONFIG_ICC)
bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
~(1 << mask_bit));
# endif
#else
bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
~(1 << BFIN_SYSIRQ(irq)));
#endif /* end of SIC_IMASK0 */
hard_local_irq_restore(flags);
}
static void bfin_internal_mask_irq_chip(struct irq_data *d)
{
bfin_internal_mask_irq(d->irq);
}
#ifdef CONFIG_SMP
void bfin_internal_unmask_irq_affinity(unsigned int irq,
const struct cpumask *affinity)
#else
void bfin_internal_unmask_irq(unsigned int irq)
#endif
{
unsigned long flags = hard_local_irq_save();
#ifdef SIC_IMASK0
unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
# ifdef CONFIG_SMP
if (cpumask_test_cpu(0, affinity))
# endif
bfin_write_SIC_IMASK(mask_bank,
bfin_read_SIC_IMASK(mask_bank) |
(1 << mask_bit));
# ifdef CONFIG_SMP
if (cpumask_test_cpu(1, affinity))
bfin_write_SICB_IMASK(mask_bank,
bfin_read_SICB_IMASK(mask_bank) |
(1 << mask_bit));
# endif
#else
bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
(1 << BFIN_SYSIRQ(irq)));
#endif
hard_local_irq_restore(flags);
}
#ifdef CONFIG_SMP
static void bfin_internal_unmask_irq_chip(struct irq_data *d)
{
bfin_internal_unmask_irq_affinity(d->irq, d->affinity);
}
static int bfin_internal_set_affinity(struct irq_data *d,
const struct cpumask *mask, bool force)
{
bfin_internal_mask_irq(d->irq);
bfin_internal_unmask_irq_affinity(d->irq, mask);
return 0;
}
#else
static void bfin_internal_unmask_irq_chip(struct irq_data *d)
{
bfin_internal_unmask_irq(d->irq);
}
#endif
#if defined(CONFIG_PM)
int bfin_internal_set_wake(unsigned int irq, unsigned int state)
{
u32 bank, bit, wakeup = 0;
unsigned long flags;
bank = BFIN_SYSIRQ(irq) / 32;
bit = BFIN_SYSIRQ(irq) % 32;
switch (irq) {
#ifdef IRQ_RTC
case IRQ_RTC:
wakeup |= WAKE;
break;
#endif
#ifdef IRQ_CAN0_RX
case IRQ_CAN0_RX:
wakeup |= CANWE;
break;
#endif
#ifdef IRQ_CAN1_RX
case IRQ_CAN1_RX:
wakeup |= CANWE;
break;
#endif
#ifdef IRQ_USB_INT0
case IRQ_USB_INT0:
wakeup |= USBWE;
break;
#endif
#ifdef CONFIG_BF54x
case IRQ_CNT:
wakeup |= ROTWE;
break;
#endif
default:
break;
}
flags = hard_local_irq_save();
if (state) {
bfin_sic_iwr[bank] |= (1 << bit);
vr_wakeup |= wakeup;
} else {
bfin_sic_iwr[bank] &= ~(1 << bit);
vr_wakeup &= ~wakeup;
}
hard_local_irq_restore(flags);
return 0;
}
static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
{
return bfin_internal_set_wake(d->irq, state);
}
#else
inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
{
return 0;
}
# define bfin_internal_set_wake_chip NULL
#endif
#else /* SEC_GCTL */
static void bfin_sec_preflow_handler(struct irq_data *d)
{
unsigned long flags = hard_local_irq_save();
unsigned int sid = BFIN_SYSIRQ(d->irq);
bfin_write_SEC_SCI(0, SEC_CSID, sid);
hard_local_irq_restore(flags);
}
static void bfin_sec_mask_ack_irq(struct irq_data *d)
{
unsigned long flags = hard_local_irq_save();
unsigned int sid = BFIN_SYSIRQ(d->irq);
bfin_write_SEC_SCI(0, SEC_CSID, sid);
hard_local_irq_restore(flags);
}
static void bfin_sec_unmask_irq(struct irq_data *d)
{
unsigned long flags = hard_local_irq_save();
unsigned int sid = BFIN_SYSIRQ(d->irq);
bfin_write32(SEC_END, sid);
hard_local_irq_restore(flags);
}
static void bfin_sec_enable_ssi(unsigned int sid)
{
unsigned long flags = hard_local_irq_save();
uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
reg_sctl |= SEC_SCTL_SRC_EN;
bfin_write_SEC_SCTL(sid, reg_sctl);
hard_local_irq_restore(flags);
}
static void bfin_sec_disable_ssi(unsigned int sid)
{
unsigned long flags = hard_local_irq_save();
uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
bfin_write_SEC_SCTL(sid, reg_sctl);
hard_local_irq_restore(flags);
}
static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
{
unsigned long flags = hard_local_irq_save();
uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
hard_local_irq_restore(flags);
}
static void bfin_sec_enable_sci(unsigned int sid)
{
unsigned long flags = hard_local_irq_save();
uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
reg_sctl |= SEC_SCTL_FAULT_EN;
else
reg_sctl |= SEC_SCTL_INT_EN;
bfin_write_SEC_SCTL(sid, reg_sctl);
hard_local_irq_restore(flags);
}
static void bfin_sec_disable_sci(unsigned int sid)
{
unsigned long flags = hard_local_irq_save();
uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
bfin_write_SEC_SCTL(sid, reg_sctl);
hard_local_irq_restore(flags);
}
static void bfin_sec_enable(struct irq_data *d)
{
unsigned long flags = hard_local_irq_save();
unsigned int sid = BFIN_SYSIRQ(d->irq);
bfin_sec_enable_sci(sid);
bfin_sec_enable_ssi(sid);
hard_local_irq_restore(flags);
}
static void bfin_sec_disable(struct irq_data *d)
{
unsigned long flags = hard_local_irq_save();
unsigned int sid = BFIN_SYSIRQ(d->irq);
bfin_sec_disable_sci(sid);
bfin_sec_disable_ssi(sid);
hard_local_irq_restore(flags);
}
static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
{
unsigned long flags = hard_local_irq_save();
uint32_t reg_sctl;
int i;
bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
bfin_write_SEC_SCTL(i, reg_sctl);
}
hard_local_irq_restore(flags);
}
void bfin_sec_raise_irq(unsigned int irq)
{
unsigned long flags = hard_local_irq_save();
unsigned int sid = BFIN_SYSIRQ(irq);
bfin_write32(SEC_RAISE, sid);
hard_local_irq_restore(flags);
}
static void init_software_driven_irq(void)
{
bfin_sec_set_ssi_coreid(34, 0);
bfin_sec_set_ssi_coreid(35, 1);
bfin_sec_enable_sci(35);
bfin_sec_enable_ssi(35);
bfin_sec_set_ssi_coreid(36, 0);
bfin_sec_set_ssi_coreid(37, 1);
bfin_sec_enable_sci(37);
bfin_sec_enable_ssi(37);
}
void bfin_sec_resume(void)
{
bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
udelay(100);
bfin_write_SEC_GCTL(SEC_GCTL_EN);
bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
}
void handle_sec_sfi_fault(uint32_t gstat)
{
}
void handle_sec_sci_fault(uint32_t gstat)
{
uint32_t core_id;
uint32_t cstat;
core_id = gstat & SEC_GSTAT_SCI;
cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
if (cstat & SEC_CSTAT_ERR) {
switch (cstat & SEC_CSTAT_ERRC) {
case SEC_CSTAT_ACKERR:
printk(KERN_DEBUG "sec ack err\n");
break;
default:
printk(KERN_DEBUG "sec sci unknow err\n");
}
}
}
void handle_sec_ssi_fault(uint32_t gstat)
{
uint32_t sid;
uint32_t sstat;
sid = gstat & SEC_GSTAT_SID;
sstat = bfin_read_SEC_SSTAT(sid);
}
void handle_sec_fault(unsigned int irq, struct irq_desc *desc)
{
uint32_t sec_gstat;
raw_spin_lock(&desc->lock);
sec_gstat = bfin_read32(SEC_GSTAT);
if (sec_gstat & SEC_GSTAT_ERR) {
switch (sec_gstat & SEC_GSTAT_ERRC) {
case 0:
handle_sec_sfi_fault(sec_gstat);
break;
case SEC_GSTAT_SCIERR:
handle_sec_sci_fault(sec_gstat);
break;
case SEC_GSTAT_SSIERR:
handle_sec_ssi_fault(sec_gstat);
break;
}
}
raw_spin_unlock(&desc->lock);
handle_fasteoi_irq(irq, desc);
}
void handle_core_fault(unsigned int irq, struct irq_desc *desc)
{
struct pt_regs *fp = get_irq_regs();
raw_spin_lock(&desc->lock);
switch (irq) {
case IRQ_C0_DBL_FAULT:
double_fault_c(fp);
break;
case IRQ_C0_HW_ERR:
dump_bfin_process(fp);
dump_bfin_mem(fp);
show_regs(fp);
printk(KERN_NOTICE "Kernel Stack\n");
show_stack(current, NULL);
print_modules();
panic("Core 0 hardware error");
break;
case IRQ_C0_NMI_L1_PARITY_ERR:
panic("Core 0 NMI L1 parity error");
break;
default:
panic("Core 1 fault %d occurs unexpectedly", irq);
}
raw_spin_unlock(&desc->lock);
}
#endif /* SEC_GCTL */
static struct irq_chip bfin_core_irqchip = {
.name = "CORE",
.irq_mask = bfin_core_mask_irq,
.irq_unmask = bfin_core_unmask_irq,
};
#ifndef SEC_GCTL
static struct irq_chip bfin_internal_irqchip = {
.name = "INTN",
.irq_mask = bfin_internal_mask_irq_chip,
.irq_unmask = bfin_internal_unmask_irq_chip,
.irq_disable = bfin_internal_mask_irq_chip,
.irq_enable = bfin_internal_unmask_irq_chip,
#ifdef CONFIG_SMP
.irq_set_affinity = bfin_internal_set_affinity,
#endif
.irq_set_wake = bfin_internal_set_wake_chip,
};
#else
static struct irq_chip bfin_sec_irqchip = {
.name = "SEC",
.irq_mask_ack = bfin_sec_mask_ack_irq,
.irq_mask = bfin_sec_mask_ack_irq,
.irq_unmask = bfin_sec_unmask_irq,
.irq_eoi = bfin_sec_unmask_irq,
.irq_disable = bfin_sec_disable,
.irq_enable = bfin_sec_enable,
};
#endif
void bfin_handle_irq(unsigned irq)
{
#ifdef CONFIG_IPIPE
struct pt_regs regs; /* Contents not used. */
ipipe_trace_irq_entry(irq);
__ipipe_handle_irq(irq, &regs);
ipipe_trace_irq_exit(irq);
#else /* !CONFIG_IPIPE */
generic_handle_irq(irq);
#endif /* !CONFIG_IPIPE */
}
#if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
static int mac_stat_int_mask;
static void bfin_mac_status_ack_irq(unsigned int irq)
{
switch (irq) {
case IRQ_MAC_MMCINT:
bfin_write_EMAC_MMC_TIRQS(
bfin_read_EMAC_MMC_TIRQE() &
bfin_read_EMAC_MMC_TIRQS());
bfin_write_EMAC_MMC_RIRQS(
bfin_read_EMAC_MMC_RIRQE() &
bfin_read_EMAC_MMC_RIRQS());
break;
case IRQ_MAC_RXFSINT:
bfin_write_EMAC_RX_STKY(
bfin_read_EMAC_RX_IRQE() &
bfin_read_EMAC_RX_STKY());
break;
case IRQ_MAC_TXFSINT:
bfin_write_EMAC_TX_STKY(
bfin_read_EMAC_TX_IRQE() &
bfin_read_EMAC_TX_STKY());
break;
case IRQ_MAC_WAKEDET:
bfin_write_EMAC_WKUP_CTL(
bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
break;
default:
/* These bits are W1C */
bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
break;
}
}
static void bfin_mac_status_mask_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
#ifdef BF537_FAMILY
switch (irq) {
case IRQ_MAC_PHYINT:
bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
break;
default:
break;
}
#else
if (!mac_stat_int_mask)
bfin_internal_mask_irq(IRQ_MAC_ERROR);
#endif
bfin_mac_status_ack_irq(irq);
}
static void bfin_mac_status_unmask_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
#ifdef BF537_FAMILY
switch (irq) {
case IRQ_MAC_PHYINT:
bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
break;
default:
break;
}
#else
if (!mac_stat_int_mask)
bfin_internal_unmask_irq(IRQ_MAC_ERROR);
#endif
mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
}
#ifdef CONFIG_PM
int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
{
#ifdef BF537_FAMILY
return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
#else
return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
#endif
}
#else
# define bfin_mac_status_set_wake NULL
#endif
static struct irq_chip bfin_mac_status_irqchip = {
.name = "MACST",
.irq_mask = bfin_mac_status_mask_irq,
.irq_unmask = bfin_mac_status_unmask_irq,
.irq_set_wake = bfin_mac_status_set_wake,
};
void bfin_demux_mac_status_irq(unsigned int int_err_irq,
struct irq_desc *inta_desc)
{
int i, irq = 0;
u32 status = bfin_read_EMAC_SYSTAT();
for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
if (status & (1L << i)) {
irq = IRQ_MAC_PHYINT + i;
break;
}
if (irq) {
if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
bfin_handle_irq(irq);
} else {
bfin_mac_status_ack_irq(irq);
pr_debug("IRQ %d:"
" MASKED MAC ERROR INTERRUPT ASSERTED\n",
irq);
}
} else
printk(KERN_ERR
"%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
" INTERRUPT ASSERTED BUT NO SOURCE FOUND"
"(EMAC_SYSTAT=0x%X)\n",
__func__, __FILE__, __LINE__, status);
}
#endif
static inline void bfin_set_irq_handler(unsigned irq, irq_flow_handler_t handle)
{
#ifdef CONFIG_IPIPE
handle = handle_level_irq;
#endif
__irq_set_handler_locked(irq, handle);
}
static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
extern void bfin_gpio_irq_prepare(unsigned gpio);
#if !BFIN_GPIO_PINT
static void bfin_gpio_ack_irq(struct irq_data *d)
{
/* AFAIK ack_irq in case mask_ack is provided
* get's only called for edge sense irqs
*/
set_gpio_data(irq_to_gpio(d->irq), 0);
}
static void bfin_gpio_mask_ack_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
u32 gpionr = irq_to_gpio(irq);
if (!irqd_is_level_type(d))
set_gpio_data(gpionr, 0);
set_gpio_maska(gpionr, 0);
}
static void bfin_gpio_mask_irq(struct irq_data *d)
{
set_gpio_maska(irq_to_gpio(d->irq), 0);
}
static void bfin_gpio_unmask_irq(struct irq_data *d)
{
set_gpio_maska(irq_to_gpio(d->irq), 1);
}
static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
{
u32 gpionr = irq_to_gpio(d->irq);
if (__test_and_set_bit(gpionr, gpio_enabled))
bfin_gpio_irq_prepare(gpionr);
bfin_gpio_unmask_irq(d);
return 0;
}
static void bfin_gpio_irq_shutdown(struct irq_data *d)
{
u32 gpionr = irq_to_gpio(d->irq);
bfin_gpio_mask_irq(d);
__clear_bit(gpionr, gpio_enabled);
bfin_gpio_irq_free(gpionr);
}
static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
{
unsigned int irq = d->irq;
int ret;
char buf[16];
u32 gpionr = irq_to_gpio(irq);
if (type == IRQ_TYPE_PROBE) {
/* only probe unenabled GPIO interrupt lines */
if (test_bit(gpionr, gpio_enabled))
return 0;
type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
}
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
snprintf(buf, 16, "gpio-irq%d", irq);
ret = bfin_gpio_irq_request(gpionr, buf);
if (ret)
return ret;
if (__test_and_set_bit(gpionr, gpio_enabled))
bfin_gpio_irq_prepare(gpionr);
} else {
__clear_bit(gpionr, gpio_enabled);
return 0;
}
set_gpio_inen(gpionr, 0);
set_gpio_dir(gpionr, 0);
if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
== (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
set_gpio_both(gpionr, 1);
else
set_gpio_both(gpionr, 0);
if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */
else
set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
set_gpio_edge(gpionr, 1);
set_gpio_inen(gpionr, 1);
set_gpio_data(gpionr, 0);
} else {
set_gpio_edge(gpionr, 0);
set_gpio_inen(gpionr, 1);
}
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
bfin_set_irq_handler(irq, handle_edge_irq);
else
bfin_set_irq_handler(irq, handle_level_irq);
return 0;
}
#ifdef CONFIG_PM
static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
{
return gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
}
#else
# define bfin_gpio_set_wake NULL
#endif
static void bfin_demux_gpio_block(unsigned int irq)
{
unsigned int gpio, mask;
gpio = irq_to_gpio(irq);
mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
while (mask) {
if (mask & 1)
bfin_handle_irq(irq);
irq++;
mask >>= 1;
}
}
void bfin_demux_gpio_irq(unsigned int inta_irq,
struct irq_desc *desc)
{
unsigned int irq;
switch (inta_irq) {
#if defined(BF537_FAMILY)
case IRQ_PF_INTA_PG_INTA:
bfin_demux_gpio_block(IRQ_PF0);
irq = IRQ_PG0;
break;
case IRQ_PH_INTA_MAC_RX:
irq = IRQ_PH0;
break;
#elif defined(BF533_FAMILY)
case IRQ_PROG_INTA:
irq = IRQ_PF0;
break;
#elif defined(BF538_FAMILY)
case IRQ_PORTF_INTA:
irq = IRQ_PF0;
break;
#elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
case IRQ_PORTF_INTA:
irq = IRQ_PF0;
break;
case IRQ_PORTG_INTA:
irq = IRQ_PG0;
break;
case IRQ_PORTH_INTA:
irq = IRQ_PH0;
break;
#elif defined(CONFIG_BF561)
case IRQ_PROG0_INTA:
irq = IRQ_PF0;
break;
case IRQ_PROG1_INTA:
irq = IRQ_PF16;
break;
case IRQ_PROG2_INTA:
irq = IRQ_PF32;
break;
#endif
default:
BUG();
return;
}
bfin_demux_gpio_block(irq);
}
#else
#define NR_PINT_BITS 32
#define IRQ_NOT_AVAIL 0xFF
#define PINT_2_BANK(x) ((x) >> 5)
#define PINT_2_BIT(x) ((x) & 0x1F)
#define PINT_BIT(x) (1 << (PINT_2_BIT(x)))
static unsigned char irq2pint_lut[NR_PINTS];
static unsigned char pint2irq_lut[NR_PINT_SYS_IRQS * NR_PINT_BITS];
static struct bfin_pint_regs * const pint[NR_PINT_SYS_IRQS] = {
(struct bfin_pint_regs *)PINT0_MASK_SET,
(struct bfin_pint_regs *)PINT1_MASK_SET,
(struct bfin_pint_regs *)PINT2_MASK_SET,
(struct bfin_pint_regs *)PINT3_MASK_SET,
#ifdef CONFIG_BF60x
(struct bfin_pint_regs *)PINT4_MASK_SET,
(struct bfin_pint_regs *)PINT5_MASK_SET,
#endif
};
inline unsigned int get_irq_base(u32 bank, u8 bmap)
{
unsigned int irq_base;
#ifndef CONFIG_BF60x
if (bank < 2) { /*PA-PB */
irq_base = IRQ_PA0 + bmap * 16;
} else { /*PC-PJ */
irq_base = IRQ_PC0 + bmap * 16;
}
#else
irq_base = IRQ_PA0 + bank * 16 + bmap * 16;
#endif
return irq_base;
}
/* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
void init_pint_lut(void)
{
u16 bank, bit, irq_base, bit_pos;
u32 pint_assign;
u8 bmap;
memset(irq2pint_lut, IRQ_NOT_AVAIL, sizeof(irq2pint_lut));
for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
pint_assign = pint[bank]->assign;
for (bit = 0; bit < NR_PINT_BITS; bit++) {
bmap = (pint_assign >> ((bit / 8) * 8)) & 0xFF;
irq_base = get_irq_base(bank, bmap);
irq_base += (bit % 8) + ((bit / 8) & 1 ? 8 : 0);
bit_pos = bit + bank * NR_PINT_BITS;
pint2irq_lut[bit_pos] = irq_base - SYS_IRQS;
irq2pint_lut[irq_base - SYS_IRQS] = bit_pos;
}
}
}
static void bfin_gpio_ack_irq(struct irq_data *d)
{
u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u32 bank = PINT_2_BANK(pint_val);
if (irqd_get_trigger_type(d) == IRQ_TYPE_EDGE_BOTH) {
if (pint[bank]->invert_set & pintbit)
pint[bank]->invert_clear = pintbit;
else
pint[bank]->invert_set = pintbit;
}
pint[bank]->request = pintbit;
}
static void bfin_gpio_mask_ack_irq(struct irq_data *d)
{
u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u32 bank = PINT_2_BANK(pint_val);
if (irqd_get_trigger_type(d) == IRQ_TYPE_EDGE_BOTH) {
if (pint[bank]->invert_set & pintbit)
pint[bank]->invert_clear = pintbit;
else
pint[bank]->invert_set = pintbit;
}
pint[bank]->request = pintbit;
pint[bank]->mask_clear = pintbit;
}
static void bfin_gpio_mask_irq(struct irq_data *d)
{
u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
pint[PINT_2_BANK(pint_val)]->mask_clear = PINT_BIT(pint_val);
}
static void bfin_gpio_unmask_irq(struct irq_data *d)
{
u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u32 bank = PINT_2_BANK(pint_val);
pint[bank]->mask_set = pintbit;
}
static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
{
unsigned int irq = d->irq;
u32 gpionr = irq_to_gpio(irq);
u32 pint_val = irq2pint_lut[irq - SYS_IRQS];
if (pint_val == IRQ_NOT_AVAIL) {
printk(KERN_ERR
"GPIO IRQ %d :Not in PINT Assign table "
"Reconfigure Interrupt to Port Assignemt\n", irq);
return -ENODEV;
}
if (__test_and_set_bit(gpionr, gpio_enabled))
bfin_gpio_irq_prepare(gpionr);
bfin_gpio_unmask_irq(d);
return 0;
}
static void bfin_gpio_irq_shutdown(struct irq_data *d)
{
u32 gpionr = irq_to_gpio(d->irq);
bfin_gpio_mask_irq(d);
__clear_bit(gpionr, gpio_enabled);
bfin_gpio_irq_free(gpionr);
}
static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
{
unsigned int irq = d->irq;
int ret;
char buf[16];
u32 gpionr = irq_to_gpio(irq);
u32 pint_val = irq2pint_lut[irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u32 bank = PINT_2_BANK(pint_val);
if (pint_val == IRQ_NOT_AVAIL)
return -ENODEV;
if (type == IRQ_TYPE_PROBE) {
/* only probe unenabled GPIO interrupt lines */
if (test_bit(gpionr, gpio_enabled))
return 0;
type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
}
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
snprintf(buf, 16, "gpio-irq%d", irq);
ret = bfin_gpio_irq_request(gpionr, buf);
if (ret)
return ret;
if (__test_and_set_bit(gpionr, gpio_enabled))
bfin_gpio_irq_prepare(gpionr);
} else {
__clear_bit(gpionr, gpio_enabled);
return 0;
}
if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
pint[bank]->invert_set = pintbit; /* low or falling edge denoted by one */
else
pint[bank]->invert_clear = pintbit; /* high or rising edge denoted by zero */
if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
== (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
if (gpio_get_value(gpionr))
pint[bank]->invert_set = pintbit;
else
pint[bank]->invert_clear = pintbit;
}
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
pint[bank]->edge_set = pintbit;
bfin_set_irq_handler(irq, handle_edge_irq);
} else {
pint[bank]->edge_clear = pintbit;
bfin_set_irq_handler(irq, handle_level_irq);
}
return 0;
}
#ifdef CONFIG_PM
static struct bfin_pm_pint_save save_pint_reg[NR_PINT_SYS_IRQS];
static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
{
u32 pint_irq;
u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
u32 bank = PINT_2_BANK(pint_val);
switch (bank) {
case 0:
pint_irq = IRQ_PINT0;
break;
case 2:
pint_irq = IRQ_PINT2;
break;
case 3:
pint_irq = IRQ_PINT3;
break;
case 1:
pint_irq = IRQ_PINT1;
break;
#ifdef CONFIG_BF60x
case 4:
pint_irq = IRQ_PINT4;
break;
case 5:
pint_irq = IRQ_PINT5;
break;
#endif
default:
return -EINVAL;
}
#ifndef SEC_GCTL
bfin_internal_set_wake(pint_irq, state);
#endif
return 0;
}
void bfin_pint_suspend(void)
{
u32 bank;
for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
save_pint_reg[bank].mask_set = pint[bank]->mask_set;
save_pint_reg[bank].assign = pint[bank]->assign;
save_pint_reg[bank].edge_set = pint[bank]->edge_set;
save_pint_reg[bank].invert_set = pint[bank]->invert_set;
}
}
void bfin_pint_resume(void)
{
u32 bank;
for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
pint[bank]->mask_set = save_pint_reg[bank].mask_set;
pint[bank]->assign = save_pint_reg[bank].assign;
pint[bank]->edge_set = save_pint_reg[bank].edge_set;
pint[bank]->invert_set = save_pint_reg[bank].invert_set;
}
}
#ifdef SEC_GCTL
static int sec_suspend(void)
{
u32 bank;
for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
return 0;
}
static void sec_resume(void)
{
u32 bank;
bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
udelay(100);
bfin_write_SEC_GCTL(SEC_GCTL_EN);
bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
}
static struct syscore_ops sec_pm_syscore_ops = {
.suspend = sec_suspend,
.resume = sec_resume,
};
#endif
#else
# define bfin_gpio_set_wake NULL
#endif
void bfin_demux_gpio_irq(unsigned int inta_irq,
struct irq_desc *desc)
{
u32 bank, pint_val;
u32 request, irq;
u32 level_mask;
int umask = 0;
struct irq_chip *chip = irq_desc_get_chip(desc);
if (chip->irq_mask_ack) {
chip->irq_mask_ack(&desc->irq_data);
} else {
chip->irq_mask(&desc->irq_data);
if (chip->irq_ack)
chip->irq_ack(&desc->irq_data);
}
switch (inta_irq) {
case IRQ_PINT0:
bank = 0;
break;
case IRQ_PINT2:
bank = 2;
break;
case IRQ_PINT3:
bank = 3;
break;
case IRQ_PINT1:
bank = 1;
break;
#ifdef CONFIG_BF60x
case IRQ_PINT4:
bank = 4;
break;
case IRQ_PINT5:
bank = 5;
break;
#endif
default:
return;
}
pint_val = bank * NR_PINT_BITS;
request = pint[bank]->request;
level_mask = pint[bank]->edge_set & request;
while (request) {
if (request & 1) {
irq = pint2irq_lut[pint_val] + SYS_IRQS;
if (level_mask & PINT_BIT(pint_val)) {
umask = 1;
chip->irq_unmask(&desc->irq_data);
}
bfin_handle_irq(irq);
}
pint_val++;
request >>= 1;
}
if (!umask)
chip->irq_unmask(&desc->irq_data);
}
#endif
static struct irq_chip bfin_gpio_irqchip = {
.name = "GPIO",
.irq_ack = bfin_gpio_ack_irq,
.irq_mask = bfin_gpio_mask_irq,
.irq_mask_ack = bfin_gpio_mask_ack_irq,
.irq_unmask = bfin_gpio_unmask_irq,
.irq_disable = bfin_gpio_mask_irq,
.irq_enable = bfin_gpio_unmask_irq,
.irq_set_type = bfin_gpio_irq_type,
.irq_startup = bfin_gpio_irq_startup,
.irq_shutdown = bfin_gpio_irq_shutdown,
.irq_set_wake = bfin_gpio_set_wake,
};
void init_exception_vectors(void)
{
/* cannot program in software:
* evt0 - emulation (jtag)
* evt1 - reset
*/
bfin_write_EVT2(evt_nmi);
bfin_write_EVT3(trap);
bfin_write_EVT5(evt_ivhw);
bfin_write_EVT6(evt_timer);
bfin_write_EVT7(evt_evt7);
bfin_write_EVT8(evt_evt8);
bfin_write_EVT9(evt_evt9);
bfin_write_EVT10(evt_evt10);
bfin_write_EVT11(evt_evt11);
bfin_write_EVT12(evt_evt12);
bfin_write_EVT13(evt_evt13);
bfin_write_EVT14(evt_evt14);
bfin_write_EVT15(evt_system_call);
CSYNC();
}
#ifndef SEC_GCTL
/*
* This function should be called during kernel startup to initialize
* the BFin IRQ handling routines.
*/
int __init init_arch_irq(void)
{
int irq;
unsigned long ilat = 0;
/* Disable all the peripheral intrs - page 4-29 HW Ref manual */
#ifdef SIC_IMASK0
bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
# ifdef SIC_IMASK2
bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
# endif
# if defined(CONFIG_SMP) || defined(CONFIG_ICC)
bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
# endif
#else
bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
#endif
local_irq_disable();
#if BFIN_GPIO_PINT
# ifdef CONFIG_PINTx_REASSIGN
pint[0]->assign = CONFIG_PINT0_ASSIGN;
pint[1]->assign = CONFIG_PINT1_ASSIGN;
pint[2]->assign = CONFIG_PINT2_ASSIGN;
pint[3]->assign = CONFIG_PINT3_ASSIGN;
# endif
/* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
init_pint_lut();
#endif
for (irq = 0; irq <= SYS_IRQS; irq++) {
if (irq <= IRQ_CORETMR)
irq_set_chip(irq, &bfin_core_irqchip);
else
irq_set_chip(irq, &bfin_internal_irqchip);
switch (irq) {
#if BFIN_GPIO_PINT
case IRQ_PINT0:
case IRQ_PINT1:
case IRQ_PINT2:
case IRQ_PINT3:
#elif defined(BF537_FAMILY)
case IRQ_PH_INTA_MAC_RX:
case IRQ_PF_INTA_PG_INTA:
#elif defined(BF533_FAMILY)
case IRQ_PROG_INTA:
#elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
case IRQ_PORTF_INTA:
case IRQ_PORTG_INTA:
case IRQ_PORTH_INTA:
#elif defined(CONFIG_BF561)
case IRQ_PROG0_INTA:
case IRQ_PROG1_INTA:
case IRQ_PROG2_INTA:
#elif defined(BF538_FAMILY)
case IRQ_PORTF_INTA:
#endif
irq_set_chained_handler(irq, bfin_demux_gpio_irq);
break;
#if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
case IRQ_MAC_ERROR:
irq_set_chained_handler(irq,
bfin_demux_mac_status_irq);
break;
#endif
#if defined(CONFIG_SMP) || defined(CONFIG_ICC)
case IRQ_SUPPLE_0:
case IRQ_SUPPLE_1:
irq_set_handler(irq, handle_percpu_irq);
break;
#endif
#ifdef CONFIG_TICKSOURCE_CORETMR
case IRQ_CORETMR:
# ifdef CONFIG_SMP
irq_set_handler(irq, handle_percpu_irq);
# else
irq_set_handler(irq, handle_simple_irq);
# endif
break;
#endif
#ifdef CONFIG_TICKSOURCE_GPTMR0
case IRQ_TIMER0:
irq_set_handler(irq, handle_simple_irq);
break;
#endif
default:
#ifdef CONFIG_IPIPE
irq_set_handler(irq, handle_level_irq);
#else
irq_set_handler(irq, handle_simple_irq);
#endif
break;
}
}
init_mach_irq();
#if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
handle_level_irq);
#endif
/* if configured as edge, then will be changed to do_edge_IRQ */
for (irq = GPIO_IRQ_BASE;
irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
handle_level_irq);
bfin_write_IMASK(0);
CSYNC();
ilat = bfin_read_ILAT();
CSYNC();
bfin_write_ILAT(ilat);
CSYNC();
printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
/* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
* local_irq_enable()
*/
program_IAR();
/* Therefore it's better to setup IARs before interrupts enabled */
search_IAR();
/* Enable interrupts IVG7-15 */
bfin_irq_flags |= IMASK_IVG15 |
IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
/* This implicitly covers ANOMALY_05000171
* Boot-ROM code modifies SICA_IWRx wakeup registers
*/
#ifdef SIC_IWR0
bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
# ifdef SIC_IWR1
/* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
* will screw up the bootrom as it relies on MDMA0/1 waking it
* up from IDLE instructions. See this report for more info:
* http://blackfin.uclinux.org/gf/tracker/4323
*/
if (ANOMALY_05000435)
bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
else
bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
# endif
# ifdef SIC_IWR2
bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
# endif
#else
bfin_write_SIC_IWR(IWR_DISABLE_ALL);
#endif
return 0;
}
#ifdef CONFIG_DO_IRQ_L1
__attribute__((l1_text))
#endif
static int vec_to_irq(int vec)
{
struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
unsigned long sic_status[3];
if (likely(vec == EVT_IVTMR_P))
return IRQ_CORETMR;
#ifdef SIC_ISR
sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
#else
if (smp_processor_id()) {
# ifdef SICB_ISR0
/* This will be optimized out in UP mode. */
sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
# endif
} else {
sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
}
#endif
#ifdef SIC_ISR2
sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
#endif
for (;; ivg++) {
if (ivg >= ivg_stop)
return -1;
#ifdef SIC_ISR
if (sic_status[0] & ivg->isrflag)
#else
if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
#endif
return ivg->irqno;
}
}
#else /* SEC_GCTL */
/*
* This function should be called during kernel startup to initialize
* the BFin IRQ handling routines.
*/
int __init init_arch_irq(void)
{
int irq;
unsigned long ilat = 0;
bfin_write_SEC_GCTL(SEC_GCTL_RESET);
local_irq_disable();
#if BFIN_GPIO_PINT
# ifdef CONFIG_PINTx_REASSIGN
pint[0]->assign = CONFIG_PINT0_ASSIGN;
pint[1]->assign = CONFIG_PINT1_ASSIGN;
pint[2]->assign = CONFIG_PINT2_ASSIGN;
pint[3]->assign = CONFIG_PINT3_ASSIGN;
pint[4]->assign = CONFIG_PINT4_ASSIGN;
pint[5]->assign = CONFIG_PINT5_ASSIGN;
# endif
/* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
init_pint_lut();
#endif
for (irq = 0; irq <= SYS_IRQS; irq++) {
if (irq <= IRQ_CORETMR) {
irq_set_chip_and_handler(irq, &bfin_core_irqchip,
handle_simple_irq);
#if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
if (irq == IRQ_CORETMR)
irq_set_handler(irq, handle_percpu_irq);
#endif
} else if (irq >= BFIN_IRQ(21) && irq <= BFIN_IRQ(26)) {
irq_set_chip(irq, &bfin_sec_irqchip);
irq_set_chained_handler(irq, bfin_demux_gpio_irq);
} else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
handle_percpu_irq);
} else {
irq_set_chip(irq, &bfin_sec_irqchip);
if (irq == IRQ_SEC_ERR)
irq_set_handler(irq, handle_sec_fault);
else if (irq >= IRQ_C0_DBL_FAULT && irq < CORE_IRQS)
irq_set_handler(irq, handle_core_fault);
else
irq_set_handler(irq, handle_fasteoi_irq);
__irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
}
}
for (irq = GPIO_IRQ_BASE;
irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
handle_level_irq);
bfin_write_IMASK(0);
CSYNC();
ilat = bfin_read_ILAT();
CSYNC();
bfin_write_ILAT(ilat);
CSYNC();
printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
/* Enable interrupts IVG7-15 */
bfin_irq_flags |= IMASK_IVG15 |
IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
udelay(100);
bfin_write_SEC_GCTL(SEC_GCTL_EN);
bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
init_software_driven_irq();
#ifdef CONFIG_PM
register_syscore_ops(&sec_pm_syscore_ops);
#endif
return 0;
}
#ifdef CONFIG_DO_IRQ_L1
__attribute__((l1_text))
#endif
static int vec_to_irq(int vec)
{
if (likely(vec == EVT_IVTMR_P))
return IRQ_CORETMR;
return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
}
#endif /* SEC_GCTL */
#ifdef CONFIG_DO_IRQ_L1
__attribute__((l1_text))
#endif
void do_irq(int vec, struct pt_regs *fp)
{
int irq = vec_to_irq(vec);
if (irq == -1)
return;
asm_do_IRQ(irq, fp);
}
#ifdef CONFIG_IPIPE
int __ipipe_get_irq_priority(unsigned irq)
{
int ient, prio;
if (irq <= IRQ_CORETMR)
return irq;
#ifdef SEC_GCTL
if (irq >= BFIN_IRQ(0))
return IVG11;
#else
for (ient = 0; ient < NR_PERI_INTS; ient++) {
struct ivgx *ivg = ivg_table + ient;
if (ivg->irqno == irq) {
for (prio = 0; prio <= IVG13-IVG7; prio++) {
if (ivg7_13[prio].ifirst <= ivg &&
ivg7_13[prio].istop > ivg)
return IVG7 + prio;
}
}
}
#endif
return IVG15;
}
/* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
#ifdef CONFIG_DO_IRQ_L1
__attribute__((l1_text))
#endif
asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
{
struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
struct ipipe_domain *this_domain = __ipipe_current_domain;
int irq, s = 0;
irq = vec_to_irq(vec);
if (irq == -1)
return 0;
if (irq == IRQ_SYSTMR) {
#if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
#endif
/* This is basically what we need from the register frame. */
__raw_get_cpu_var(__ipipe_tick_regs).ipend = regs->ipend;
__raw_get_cpu_var(__ipipe_tick_regs).pc = regs->pc;
if (this_domain != ipipe_root_domain)
__raw_get_cpu_var(__ipipe_tick_regs).ipend &= ~0x10;
else
__raw_get_cpu_var(__ipipe_tick_regs).ipend |= 0x10;
}
/*
* We don't want Linux interrupt handlers to run at the
* current core priority level (i.e. < EVT15), since this
* might delay other interrupts handled by a high priority
* domain. Here is what we do instead:
*
* - we raise the SYNCDEFER bit to prevent
* __ipipe_handle_irq() to sync the pipeline for the root
* stage for the incoming interrupt. Upon return, that IRQ is
* pending in the interrupt log.
*
* - we raise the TIF_IRQ_SYNC bit for the current thread, so
* that _schedule_and_signal_from_int will eventually sync the
* pipeline from EVT15.
*/
if (this_domain == ipipe_root_domain) {
s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
barrier();
}
ipipe_trace_irq_entry(irq);
__ipipe_handle_irq(irq, regs);
ipipe_trace_irq_exit(irq);
if (user_mode(regs) &&
!ipipe_test_foreign_stack() &&
(current->ipipe_flags & PF_EVTRET) != 0) {
/*
* Testing for user_regs() does NOT fully eliminate
* foreign stack contexts, because of the forged
* interrupt returns we do through
* __ipipe_call_irqtail. In that case, we might have
* preempted a foreign stack context in a high
* priority domain, with a single interrupt level now
* pending after the irqtail unwinding is done. In
* which case user_mode() is now true, and the event
* gets dispatched spuriously.
*/
current->ipipe_flags &= ~PF_EVTRET;
__ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
}
if (this_domain == ipipe_root_domain) {
set_thread_flag(TIF_IRQ_SYNC);
if (!s) {
__clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
return !test_bit(IPIPE_STALL_FLAG, &p->status);
}
}
return 0;
}
#endif /* CONFIG_IPIPE */