alistair23-linux/fs/crypto/fscrypt_private.h
Eric Biggers b103fb7653 fscrypt: add support for IV_INO_LBLK_64 policies
Inline encryption hardware compliant with the UFS v2.1 standard or with
the upcoming version of the eMMC standard has the following properties:

(1) Per I/O request, the encryption key is specified by a previously
    loaded keyslot.  There might be only a small number of keyslots.

(2) Per I/O request, the starting IV is specified by a 64-bit "data unit
    number" (DUN).  IV bits 64-127 are assumed to be 0.  The hardware
    automatically increments the DUN for each "data unit" of
    configurable size in the request, e.g. for each filesystem block.

Property (1) makes it inefficient to use the traditional fscrypt
per-file keys.  Property (2) precludes the use of the existing
DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits.

Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the
encryption to modified as follows:

- The encryption keys are derived from the master key, encryption mode
  number, and filesystem UUID.

- The IVs are chosen as (inode_number << 32) | file_logical_block_num.
  For filenames encryption, file_logical_block_num is 0.

Since the file nonces aren't used in the key derivation, many files may
share the same encryption key.  This is much more efficient on the
target hardware.  Including the inode number in the IVs and mixing the
filesystem UUID into the keys ensures that data in different files is
nevertheless still encrypted differently.

Additionally, limiting the inode and block numbers to 32 bits and
placing the block number in the low bits maintains compatibility with
the 64-bit DUN convention (property (2) above).

Since this scheme assumes that inode numbers are stable (which may
preclude filesystem shrinking) and that inode and file logical block
numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on
filesystems that meet these constraints.  These are acceptable
limitations for the cases where this format would actually be used.

Note that IV_INO_LBLK_64 is an on-disk format, not an implementation.
This patch just adds support for it using the existing filesystem layer
encryption.  A later patch will add support for inline encryption.

Reviewed-by: Paul Crowley <paulcrowley@google.com>
Co-developed-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-11-06 12:34:36 -08:00

484 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* fscrypt_private.h
*
* Copyright (C) 2015, Google, Inc.
*
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
* Heavily modified since then.
*/
#ifndef _FSCRYPT_PRIVATE_H
#define _FSCRYPT_PRIVATE_H
#include <linux/fscrypt.h>
#include <crypto/hash.h>
#define CONST_STRLEN(str) (sizeof(str) - 1)
#define FS_KEY_DERIVATION_NONCE_SIZE 16
#define FSCRYPT_MIN_KEY_SIZE 16
#define FSCRYPT_CONTEXT_V1 1
#define FSCRYPT_CONTEXT_V2 2
struct fscrypt_context_v1 {
u8 version; /* FSCRYPT_CONTEXT_V1 */
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
struct fscrypt_context_v2 {
u8 version; /* FSCRYPT_CONTEXT_V2 */
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 __reserved[4];
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
/**
* fscrypt_context - the encryption context of an inode
*
* This is the on-disk equivalent of an fscrypt_policy, stored alongside each
* encrypted file usually in a hidden extended attribute. It contains the
* fields from the fscrypt_policy, in order to identify the encryption algorithm
* and key with which the file is encrypted. It also contains a nonce that was
* randomly generated by fscrypt itself; this is used as KDF input or as a tweak
* to cause different files to be encrypted differently.
*/
union fscrypt_context {
u8 version;
struct fscrypt_context_v1 v1;
struct fscrypt_context_v2 v2;
};
/*
* Return the size expected for the given fscrypt_context based on its version
* number, or 0 if the context version is unrecognized.
*/
static inline int fscrypt_context_size(const union fscrypt_context *ctx)
{
switch (ctx->version) {
case FSCRYPT_CONTEXT_V1:
BUILD_BUG_ON(sizeof(ctx->v1) != 28);
return sizeof(ctx->v1);
case FSCRYPT_CONTEXT_V2:
BUILD_BUG_ON(sizeof(ctx->v2) != 40);
return sizeof(ctx->v2);
}
return 0;
}
#undef fscrypt_policy
union fscrypt_policy {
u8 version;
struct fscrypt_policy_v1 v1;
struct fscrypt_policy_v2 v2;
};
/*
* Return the size expected for the given fscrypt_policy based on its version
* number, or 0 if the policy version is unrecognized.
*/
static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return sizeof(policy->v1);
case FSCRYPT_POLICY_V2:
return sizeof(policy->v2);
}
return 0;
}
/* Return the contents encryption mode of a valid encryption policy */
static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.contents_encryption_mode;
case FSCRYPT_POLICY_V2:
return policy->v2.contents_encryption_mode;
}
BUG();
}
/* Return the filenames encryption mode of a valid encryption policy */
static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.filenames_encryption_mode;
case FSCRYPT_POLICY_V2:
return policy->v2.filenames_encryption_mode;
}
BUG();
}
/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
static inline u8
fscrypt_policy_flags(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.flags;
case FSCRYPT_POLICY_V2:
return policy->v2.flags;
}
BUG();
}
static inline bool
fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
{
return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
}
/**
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
*/
struct fscrypt_symlink_data {
__le16 len;
char encrypted_path[1];
} __packed;
/*
* fscrypt_info - the "encryption key" for an inode
*
* When an encrypted file's key is made available, an instance of this struct is
* allocated and stored in ->i_crypt_info. Once created, it remains until the
* inode is evicted.
*/
struct fscrypt_info {
/* The actual crypto transform used for encryption and decryption */
struct crypto_skcipher *ci_ctfm;
/* True if the key should be freed when this fscrypt_info is freed */
bool ci_owns_key;
/*
* Encryption mode used for this inode. It corresponds to either the
* contents or filenames encryption mode, depending on the inode type.
*/
struct fscrypt_mode *ci_mode;
/* Back-pointer to the inode */
struct inode *ci_inode;
/*
* The master key with which this inode was unlocked (decrypted). This
* will be NULL if the master key was found in a process-subscribed
* keyring rather than in the filesystem-level keyring.
*/
struct key *ci_master_key;
/*
* Link in list of inodes that were unlocked with the master key.
* Only used when ->ci_master_key is set.
*/
struct list_head ci_master_key_link;
/*
* If non-NULL, then encryption is done using the master key directly
* and ci_ctfm will equal ci_direct_key->dk_ctfm.
*/
struct fscrypt_direct_key *ci_direct_key;
/* The encryption policy used by this inode */
union fscrypt_policy ci_policy;
/* This inode's nonce, copied from the fscrypt_context */
u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
typedef enum {
FS_DECRYPT = 0,
FS_ENCRYPT,
} fscrypt_direction_t;
static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
u32 filenames_mode)
{
if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
filenames_mode == FSCRYPT_MODE_AES_128_CTS)
return true;
if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
filenames_mode == FSCRYPT_MODE_AES_256_CTS)
return true;
if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
filenames_mode == FSCRYPT_MODE_ADIANTUM)
return true;
return false;
}
/* crypto.c */
extern struct kmem_cache *fscrypt_info_cachep;
extern int fscrypt_initialize(unsigned int cop_flags);
extern int fscrypt_crypt_block(const struct inode *inode,
fscrypt_direction_t rw, u64 lblk_num,
struct page *src_page, struct page *dest_page,
unsigned int len, unsigned int offs,
gfp_t gfp_flags);
extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
extern const struct dentry_operations fscrypt_d_ops;
extern void __printf(3, 4) __cold
fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
#define fscrypt_warn(inode, fmt, ...) \
fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
#define fscrypt_err(inode, fmt, ...) \
fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
#define FSCRYPT_MAX_IV_SIZE 32
union fscrypt_iv {
struct {
/* logical block number within the file */
__le64 lblk_num;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
u8 raw[FSCRYPT_MAX_IV_SIZE];
};
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
const struct fscrypt_info *ci);
/* fname.c */
extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
u8 *out, unsigned int olen);
extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
u32 orig_len, u32 max_len,
u32 *encrypted_len_ret);
/* hkdf.c */
struct fscrypt_hkdf {
struct crypto_shash *hmac_tfm;
};
extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
unsigned int master_key_size);
/*
* The list of contexts in which fscrypt uses HKDF. These values are used as
* the first byte of the HKDF application-specific info string to guarantee that
* info strings are never repeated between contexts. This ensures that all HKDF
* outputs are unique and cryptographically isolated, i.e. knowledge of one
* output doesn't reveal another.
*/
#define HKDF_CONTEXT_KEY_IDENTIFIER 1
#define HKDF_CONTEXT_PER_FILE_KEY 2
#define HKDF_CONTEXT_DIRECT_KEY 3
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4
extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
const u8 *info, unsigned int infolen,
u8 *okm, unsigned int okmlen);
extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
/* keyring.c */
/*
* fscrypt_master_key_secret - secret key material of an in-use master key
*/
struct fscrypt_master_key_secret {
/*
* For v2 policy keys: HKDF context keyed by this master key.
* For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
*/
struct fscrypt_hkdf hkdf;
/* Size of the raw key in bytes. Set even if ->raw isn't set. */
u32 size;
/* For v1 policy keys: the raw key. Wiped for v2 policy keys. */
u8 raw[FSCRYPT_MAX_KEY_SIZE];
} __randomize_layout;
/*
* fscrypt_master_key - an in-use master key
*
* This represents a master encryption key which has been added to the
* filesystem and can be used to "unlock" the encrypted files which were
* encrypted with it.
*/
struct fscrypt_master_key {
/*
* The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
* executed, this is wiped and no new inodes can be unlocked with this
* key; however, there may still be inodes in ->mk_decrypted_inodes
* which could not be evicted. As long as some inodes still remain,
* FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
* FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
*
* Locking: protected by key->sem (outer) and mk_secret_sem (inner).
* The reason for two locks is that key->sem also protects modifying
* mk_users, which ranks it above the semaphore for the keyring key
* type, which is in turn above page faults (via keyring_read). But
* sometimes filesystems call fscrypt_get_encryption_info() from within
* a transaction, which ranks it below page faults. So we need a
* separate lock which protects mk_secret but not also mk_users.
*/
struct fscrypt_master_key_secret mk_secret;
struct rw_semaphore mk_secret_sem;
/*
* For v1 policy keys: an arbitrary key descriptor which was assigned by
* userspace (->descriptor).
*
* For v2 policy keys: a cryptographic hash of this key (->identifier).
*/
struct fscrypt_key_specifier mk_spec;
/*
* Keyring which contains a key of type 'key_type_fscrypt_user' for each
* user who has added this key. Normally each key will be added by just
* one user, but it's possible that multiple users share a key, and in
* that case we need to keep track of those users so that one user can't
* remove the key before the others want it removed too.
*
* This is NULL for v1 policy keys; those can only be added by root.
*
* Locking: in addition to this keyrings own semaphore, this is
* protected by the master key's key->sem, so we can do atomic
* search+insert. It can also be searched without taking any locks, but
* in that case the returned key may have already been removed.
*/
struct key *mk_users;
/*
* Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
* Once this goes to 0, the master key is removed from ->s_master_keys.
* The 'struct fscrypt_master_key' will continue to live as long as the
* 'struct key' whose payload it is, but we won't let this reference
* count rise again.
*/
refcount_t mk_refcount;
/*
* List of inodes that were unlocked using this key. This allows the
* inodes to be evicted efficiently if the key is removed.
*/
struct list_head mk_decrypted_inodes;
spinlock_t mk_decrypted_inodes_lock;
/* Crypto API transforms for DIRECT_KEY policies, allocated on-demand */
struct crypto_skcipher *mk_direct_tfms[__FSCRYPT_MODE_MAX + 1];
/*
* Crypto API transforms for filesystem-layer implementation of
* IV_INO_LBLK_64 policies, allocated on-demand.
*/
struct crypto_skcipher *mk_iv_ino_lblk_64_tfms[__FSCRYPT_MODE_MAX + 1];
} __randomize_layout;
static inline bool
is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
{
/*
* The READ_ONCE() is only necessary for fscrypt_drop_inode() and
* fscrypt_key_describe(). These run in atomic context, so they can't
* take ->mk_secret_sem and thus 'secret' can change concurrently which
* would be a data race. But they only need to know whether the secret
* *was* present at the time of check, so READ_ONCE() suffices.
*/
return READ_ONCE(secret->size) != 0;
}
static inline const char *master_key_spec_type(
const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return "descriptor";
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
return "identifier";
}
return "[unknown]";
}
static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return FSCRYPT_KEY_DESCRIPTOR_SIZE;
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
return FSCRYPT_KEY_IDENTIFIER_SIZE;
}
return 0;
}
extern struct key *
fscrypt_find_master_key(struct super_block *sb,
const struct fscrypt_key_specifier *mk_spec);
extern int fscrypt_verify_key_added(struct super_block *sb,
const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
extern int __init fscrypt_init_keyring(void);
/* keysetup.c */
struct fscrypt_mode {
const char *friendly_name;
const char *cipher_str;
int keysize;
int ivsize;
int logged_impl_name;
};
static inline bool
fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
{
return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
}
extern struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
const struct inode *inode);
extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
const u8 *derived_key);
/* keysetup_v1.c */
extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
const u8 *raw_master_key);
extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
struct fscrypt_info *ci);
/* policy.c */
extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
const union fscrypt_policy *policy2);
extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
const struct inode *inode);
extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
const union fscrypt_context *ctx_u,
int ctx_size);
#endif /* _FSCRYPT_PRIVATE_H */