alistair23-linux/drivers/clk/sunxi/clk-sunxi.c
Linus Torvalds 18a8d49973 The clock framework changes for 3.20 contain the usual driver additions,
enhancements and fixes mostly for ARM32, ARM64, MIPS and Power-based
 devices. Additionaly the framework core underwent a bit of surgery with
 two major changes. The boundary between the clock core and clock
 providers (e.g clock drivers) is now more well defined with dedicated
 provider helper functions. struct clk no longer maps 1:1 with the
 hardware clock but is a true per-user cookie which helps us tracker
 users of hardware clocks and debug bad behavior. The second major change
 is the addition of rate constraints for clocks. Rate ranges are now
 supported which are analogous to the voltage ranges in the regulator
 framework. Unfortunately these changes to the core created some
 breakeage. We think we fixed it all up but for this reason there are
 lots of last minute commits trying to undo the damage.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJU54D5AAoJEDqPOy9afJhJs6AQAK5YuUwjDchdpNZx9p7OnT1q
 +poehuUwE/gYjmdACqYFyaPrI/9f43iNCfFAgKGLQqmB5ZK4sm4ktzfBEhjWINR2
 iiCx9QYMQVGiKwC8KU0ddeBciglE2b/DwxB45m9TsJEjowucUeBzwLEIj5DsGxf7
 teXRoOWgXdz1MkQJ4pnA09Q3qEPQgmu8prhMfka/v75/yn7nb9VWiJ6seR2GqTKY
 sIKL9WbKjN4AzctggdqHnMSIqZoq6vew850bv2C1fPn7GiYFQfWW+jvMlVY40dp8
 nNa2ixSQSIXVw4fCtZhTIZcIvZ8puc7WVLcl8fz3mUe3VJn1VaGs0E+Yd3GexpIV
 7bwkTOIdS8gSRlsUaIPiMnUob5TUMmMqjF4KIh/AhP4dYrmVbU7Ie8ccvSxe31Ku
 lK7ww6BFv3KweTnW/58856ZXDlXLC6x3KT+Fw58L23VhPToFgYOdTxn8AVtE/LKP
 YR3UnY9BqFx6WHXVoNvg3Piyej7RH8fYmE9om8tyWc/Ab8Eo501SHs9l3b2J8snf
 w/5STd2CYxyKf1/9JLGnBvGo754O9NvdzBttRlygB14gCCtS/SDk/ELG2Ae+/a9P
 YgRk2+257h8PMD3qlp94dLidEZN4kYxP/J6oj0t1/TIkERWfZjzkg5tKn3/hEcU9
 qM97ZBTplTm6FM+Dt/Vk
 =zCVK
 -----END PGP SIGNATURE-----

Merge tag 'clk-for-linus-3.20' of git://git.linaro.org/people/mike.turquette/linux

Pull clock framework updates from Mike Turquette:
 "The clock framework changes contain the usual driver additions,
  enhancements and fixes mostly for ARM32, ARM64, MIPS and Power-based
  devices.

  Additionally the framework core underwent a bit of surgery with two
  major changes:

   - The boundary between the clock core and clock providers (e.g clock
     drivers) is now more well defined with dedicated provider helper
     functions.  struct clk no longer maps 1:1 with the hardware clock
     but is a true per-user cookie which helps us tracker users of
     hardware clocks and debug bad behavior.

   - The addition of rate constraints for clocks.  Rate ranges are now
     supported which are analogous to the voltage ranges in the
     regulator framework.

  Unfortunately these changes to the core created some breakeage.  We
  think we fixed it all up but for this reason there are lots of last
  minute commits trying to undo the damage"

* tag 'clk-for-linus-3.20' of git://git.linaro.org/people/mike.turquette/linux: (113 commits)
  clk: Only recalculate the rate if needed
  Revert "clk: mxs: Fix invalid 32-bit access to frac registers"
  clk: qoriq: Add support for the platform PLL
  powerpc/corenet: Enable CLK_QORIQ
  clk: Replace explicit clk assignment with __clk_hw_set_clk
  clk: Add __clk_hw_set_clk helper function
  clk: Don't dereference parent clock if is NULL
  MIPS: Alchemy: Remove bogus args from alchemy_clk_fgcs_detr
  clkdev: Always allocate a struct clk and call __clk_get() w/ CCF
  clk: shmobile: div6: Avoid division by zero in .round_rate()
  clk: mxs: Fix invalid 32-bit access to frac registers
  clk: omap: compile legacy omap3 clocks conditionally
  clkdev: Export clk_register_clkdev
  clk: Add rate constraints to clocks
  clk: remove clk-private.h
  pci: xgene: do not use clk-private.h
  arm: omap2+ remove dead clock code
  clk: Make clk API return per-user struct clk instances
  clk: tegra: Define PLLD_DSI and remove dsia(b)_mux
  clk: tegra: Add support for the Tegra132 CAR IP block
  ...
2015-02-21 12:30:30 -08:00

1419 lines
36 KiB
C

/*
* Copyright 2013 Emilio López
*
* Emilio López <emilio@elopez.com.ar>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/reset-controller.h>
#include <linux/spinlock.h>
#include <linux/log2.h>
#include "clk-factors.h"
static DEFINE_SPINLOCK(clk_lock);
/**
* sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
*/
#define SUN6I_AHB1_MAX_PARENTS 4
#define SUN6I_AHB1_MUX_PARENT_PLL6 3
#define SUN6I_AHB1_MUX_SHIFT 12
/* un-shifted mask is what mux_clk expects */
#define SUN6I_AHB1_MUX_MASK 0x3
#define SUN6I_AHB1_MUX_GET_PARENT(reg) ((reg >> SUN6I_AHB1_MUX_SHIFT) & \
SUN6I_AHB1_MUX_MASK)
#define SUN6I_AHB1_DIV_SHIFT 4
#define SUN6I_AHB1_DIV_MASK (0x3 << SUN6I_AHB1_DIV_SHIFT)
#define SUN6I_AHB1_DIV_GET(reg) ((reg & SUN6I_AHB1_DIV_MASK) >> \
SUN6I_AHB1_DIV_SHIFT)
#define SUN6I_AHB1_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_DIV_MASK) | \
(div << SUN6I_AHB1_DIV_SHIFT))
#define SUN6I_AHB1_PLL6_DIV_SHIFT 6
#define SUN6I_AHB1_PLL6_DIV_MASK (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
#define SUN6I_AHB1_PLL6_DIV_GET(reg) ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
SUN6I_AHB1_PLL6_DIV_SHIFT)
#define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
(div << SUN6I_AHB1_PLL6_DIV_SHIFT))
struct sun6i_ahb1_clk {
struct clk_hw hw;
void __iomem *reg;
};
#define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
unsigned long rate;
u32 reg;
/* Fetch the register value */
reg = readl(ahb1->reg);
/* apply pre-divider first if parent is pll6 */
if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
/* clk divider */
rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
return rate;
}
static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
u8 parent, unsigned long parent_rate)
{
u8 div, calcp, calcm = 1;
/*
* clock can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency
*/
if (parent_rate && rate > parent_rate)
rate = parent_rate;
div = DIV_ROUND_UP(parent_rate, rate);
/* calculate pre-divider if parent is pll6 */
if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
if (div < 4)
calcp = 0;
else if (div / 2 < 4)
calcp = 1;
else if (div / 4 < 4)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
} else {
calcp = __roundup_pow_of_two(div);
calcp = calcp > 3 ? 3 : calcp;
}
/* we were asked to pass back divider values */
if (divp) {
*divp = calcp;
*pre_divp = calcm - 1;
}
return (parent_rate / calcm) >> calcp;
}
static long sun6i_ahb1_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
unsigned long min_rate,
unsigned long max_rate,
unsigned long *best_parent_rate,
struct clk_hw **best_parent_clk)
{
struct clk *clk = hw->clk, *parent, *best_parent = NULL;
int i, num_parents;
unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
/* find the parent that can help provide the fastest rate <= rate */
num_parents = __clk_get_num_parents(clk);
for (i = 0; i < num_parents; i++) {
parent = clk_get_parent_by_index(clk, i);
if (!parent)
continue;
if (__clk_get_flags(clk) & CLK_SET_RATE_PARENT)
parent_rate = __clk_round_rate(parent, rate);
else
parent_rate = __clk_get_rate(parent);
child_rate = sun6i_ahb1_clk_round(rate, NULL, NULL, i,
parent_rate);
if (child_rate <= rate && child_rate > best_child_rate) {
best_parent = parent;
best = parent_rate;
best_child_rate = child_rate;
}
}
if (best_parent)
*best_parent_clk = __clk_get_hw(best_parent);
*best_parent_rate = best;
return best_child_rate;
}
static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
unsigned long flags;
u8 div, pre_div, parent;
u32 reg;
spin_lock_irqsave(&clk_lock, flags);
reg = readl(ahb1->reg);
/* need to know which parent is used to apply pre-divider */
parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
reg = SUN6I_AHB1_DIV_SET(reg, div);
reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
writel(reg, ahb1->reg);
spin_unlock_irqrestore(&clk_lock, flags);
return 0;
}
static const struct clk_ops sun6i_ahb1_clk_ops = {
.determine_rate = sun6i_ahb1_clk_determine_rate,
.recalc_rate = sun6i_ahb1_clk_recalc_rate,
.set_rate = sun6i_ahb1_clk_set_rate,
};
static void __init sun6i_ahb1_clk_setup(struct device_node *node)
{
struct clk *clk;
struct sun6i_ahb1_clk *ahb1;
struct clk_mux *mux;
const char *clk_name = node->name;
const char *parents[SUN6I_AHB1_MAX_PARENTS];
void __iomem *reg;
int i = 0;
reg = of_io_request_and_map(node, 0, of_node_full_name(node));
/* we have a mux, we will have >1 parents */
while (i < SUN6I_AHB1_MAX_PARENTS &&
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
i++;
of_property_read_string(node, "clock-output-names", &clk_name);
ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
if (!ahb1)
return;
mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
if (!mux) {
kfree(ahb1);
return;
}
/* set up clock properties */
mux->reg = reg;
mux->shift = SUN6I_AHB1_MUX_SHIFT;
mux->mask = SUN6I_AHB1_MUX_MASK;
mux->lock = &clk_lock;
ahb1->reg = reg;
clk = clk_register_composite(NULL, clk_name, parents, i,
&mux->hw, &clk_mux_ops,
&ahb1->hw, &sun6i_ahb1_clk_ops,
NULL, NULL, 0);
if (!IS_ERR(clk)) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS 5
/**
* sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a 6M multiple */
div = *freq / 6000000;
*freq = 6000000 * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
/* m is always zero for pll1 */
*m = 0;
/* k is 1 only on these cases */
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
*k = 1;
else
*k = 0;
/* p will be 3 for divs under 10 */
if (div < 10)
*p = 3;
/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
else if (div < 20 || (div < 32 && (div & 1)))
*p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
*p = 1;
/* any other entries have p = 0 */
else
*p = 0;
/* calculate a suitable n based on k and p */
div <<= *p;
div /= (*k + 1);
*n = div / 4;
}
/**
* sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
* PLL1 rate is calculated as follows
* rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
* parent_rate should always be 24MHz
*/
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
/*
* We can operate only on MHz, this will make our life easier
* later.
*/
u32 freq_mhz = *freq / 1000000;
u32 parent_freq_mhz = parent_rate / 1000000;
/*
* Round down the frequency to the closest multiple of either
* 6 or 16
*/
u32 round_freq_6 = round_down(freq_mhz, 6);
u32 round_freq_16 = round_down(freq_mhz, 16);
if (round_freq_6 > round_freq_16)
freq_mhz = round_freq_6;
else
freq_mhz = round_freq_16;
*freq = freq_mhz * 1000000;
/*
* If the factors pointer are null, we were just called to
* round down the frequency.
* Exit.
*/
if (n == NULL)
return;
/* If the frequency is a multiple of 32 MHz, k is always 3 */
if (!(freq_mhz % 32))
*k = 3;
/* If the frequency is a multiple of 9 MHz, k is always 2 */
else if (!(freq_mhz % 9))
*k = 2;
/* If the frequency is a multiple of 8 MHz, k is always 1 */
else if (!(freq_mhz % 8))
*k = 1;
/* Otherwise, we don't use the k factor */
else
*k = 0;
/*
* If the frequency is a multiple of 2 but not a multiple of
* 3, m is 3. This is the first time we use 6 here, yet we
* will use it on several other places.
* We use this number because it's the lowest frequency we can
* generate (with n = 0, k = 0, m = 3), so every other frequency
* somehow relates to this frequency.
*/
if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
*m = 2;
/*
* If the frequency is a multiple of 6MHz, but the factor is
* odd, m will be 3
*/
else if ((freq_mhz / 6) & 1)
*m = 3;
/* Otherwise, we end up with m = 1 */
else
*m = 1;
/* Calculate n thanks to the above factors we already got */
*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
/*
* If n end up being outbound, and that we can still decrease
* m, do it.
*/
if ((*n + 1) > 31 && (*m + 1) > 1) {
*n = (*n + 1) / 2 - 1;
*m = (*m + 1) / 2 - 1;
}
}
/**
* sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a 6M multiple */
div = *freq / 6000000;
*freq = 6000000 * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
/* m is always zero for pll1 */
*m = 0;
/* k is 1 only on these cases */
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
*k = 1;
else
*k = 0;
/* p will be 2 for divs under 20 and odd divs under 32 */
if (div < 20 || (div < 32 && (div & 1)))
*p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
*p = 1;
/* any other entries have p = 0 */
else
*p = 0;
/* calculate a suitable n based on k and p */
div <<= *p;
div /= (*k + 1);
*n = div / 4 - 1;
}
/**
* sun4i_get_pll5_factors() - calculates n, k factors for PLL5
* PLL5 rate is calculated as follows
* rate = parent_rate * n * (k + 1)
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a parent_rate multiple (24M) */
div = *freq / parent_rate;
*freq = parent_rate * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
if (div < 31)
*k = 0;
else if (div / 2 < 31)
*k = 1;
else if (div / 3 < 31)
*k = 2;
else
*k = 3;
*n = DIV_ROUND_UP(div, (*k+1));
}
/**
* sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
* PLL6x2 rate is calculated as follows
* rate = parent_rate * (n + 1) * (k + 1)
* parent_rate is always 24Mhz
*/
static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a parent_rate multiple (24M) */
div = *freq / parent_rate;
*freq = parent_rate * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*k = div / 32;
if (*k > 3)
*k = 3;
*n = DIV_ROUND_UP(div, (*k+1)) - 1;
}
/**
* sun4i_get_apb1_factors() - calculates m, p factors for APB1
* APB1 rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 calcm, calcp;
if (parent_rate < *freq)
*freq = parent_rate;
parent_rate = DIV_ROUND_UP(parent_rate, *freq);
/* Invalid rate! */
if (parent_rate > 32)
return;
if (parent_rate <= 4)
calcp = 0;
else if (parent_rate <= 8)
calcp = 1;
else if (parent_rate <= 16)
calcp = 2;
else
calcp = 3;
calcm = (parent_rate >> calcp) - 1;
*freq = (parent_rate >> calcp) / (calcm + 1);
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm;
*p = calcp;
}
/**
* sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
* CLK_OUT rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (*freq > parent_rate)
*freq = parent_rate;
div = DIV_ROUND_UP(parent_rate, *freq);
if (div < 32)
calcp = 0;
else if (div / 2 < 32)
calcp = 1;
else if (div / 4 < 32)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
*freq = (parent_rate >> calcp) / calcm;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm - 1;
*p = calcp;
}
/**
* sunxi_factors_clk_setup() - Setup function for factor clocks
*/
static struct clk_factors_config sun4i_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
};
static struct clk_factors_config sun6i_a31_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.n_start = 1,
};
static struct clk_factors_config sun8i_a23_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
.n_start = 1,
};
static struct clk_factors_config sun4i_pll5_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
};
static struct clk_factors_config sun6i_a31_pll6_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.n_start = 1,
};
static struct clk_factors_config sun4i_apb1_config = {
.mshift = 0,
.mwidth = 5,
.pshift = 16,
.pwidth = 2,
};
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
.mshift = 8,
.mwidth = 5,
.pshift = 20,
.pwidth = 2,
};
static const struct factors_data sun4i_pll1_data __initconst = {
.enable = 31,
.table = &sun4i_pll1_config,
.getter = sun4i_get_pll1_factors,
};
static const struct factors_data sun6i_a31_pll1_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll1_config,
.getter = sun6i_a31_get_pll1_factors,
};
static const struct factors_data sun8i_a23_pll1_data __initconst = {
.enable = 31,
.table = &sun8i_a23_pll1_config,
.getter = sun8i_a23_get_pll1_factors,
};
static const struct factors_data sun7i_a20_pll4_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
};
static const struct factors_data sun4i_pll5_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
.name = "pll5",
};
static const struct factors_data sun4i_pll6_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
.name = "pll6",
};
static const struct factors_data sun6i_a31_pll6_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll6_config,
.getter = sun6i_a31_get_pll6_factors,
.name = "pll6x2",
};
static const struct factors_data sun4i_apb1_data __initconst = {
.mux = 24,
.muxmask = BIT(1) | BIT(0),
.table = &sun4i_apb1_config,
.getter = sun4i_get_apb1_factors,
};
static const struct factors_data sun7i_a20_out_data __initconst = {
.enable = 31,
.mux = 24,
.muxmask = BIT(1) | BIT(0),
.table = &sun7i_a20_out_config,
.getter = sun7i_a20_get_out_factors,
};
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
const struct factors_data *data)
{
void __iomem *reg;
reg = of_iomap(node, 0);
if (!reg) {
pr_err("Could not get registers for factors-clk: %s\n",
node->name);
return NULL;
}
return sunxi_factors_register(node, data, &clk_lock, reg);
}
/**
* sunxi_mux_clk_setup() - Setup function for muxes
*/
#define SUNXI_MUX_GATE_WIDTH 2
struct mux_data {
u8 shift;
};
static const struct mux_data sun4i_cpu_mux_data __initconst = {
.shift = 16,
};
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
.shift = 12,
};
static void __init sunxi_mux_clk_setup(struct device_node *node,
struct mux_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *parents[SUNXI_MAX_PARENTS];
void __iomem *reg;
int i = 0;
reg = of_iomap(node, 0);
while (i < SUNXI_MAX_PARENTS &&
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
i++;
of_property_read_string(node, "clock-output-names", &clk_name);
clk = clk_register_mux(NULL, clk_name, parents, i,
CLK_SET_RATE_PARENT, reg,
data->shift, SUNXI_MUX_GATE_WIDTH,
0, &clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_divider_clk_setup() - Setup function for simple divider clocks
*/
struct div_data {
u8 shift;
u8 pow;
u8 width;
const struct clk_div_table *table;
};
static const struct div_data sun4i_axi_data __initconst = {
.shift = 0,
.pow = 0,
.width = 2,
};
static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
{ .val = 0, .div = 1 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 3 },
{ .val = 3, .div = 4 },
{ .val = 4, .div = 4 },
{ .val = 5, .div = 4 },
{ .val = 6, .div = 4 },
{ .val = 7, .div = 4 },
{ } /* sentinel */
};
static const struct div_data sun8i_a23_axi_data __initconst = {
.width = 3,
.table = sun8i_a23_axi_table,
};
static const struct div_data sun4i_ahb_data __initconst = {
.shift = 4,
.pow = 1,
.width = 2,
};
static const struct clk_div_table sun4i_apb0_table[] __initconst = {
{ .val = 0, .div = 2 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 4 },
{ .val = 3, .div = 8 },
{ } /* sentinel */
};
static const struct div_data sun4i_apb0_data __initconst = {
.shift = 8,
.pow = 1,
.width = 2,
.table = sun4i_apb0_table,
};
static void __init sunxi_divider_clk_setup(struct device_node *node,
struct div_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *clk_parent;
void __iomem *reg;
reg = of_iomap(node, 0);
clk_parent = of_clk_get_parent_name(node, 0);
of_property_read_string(node, "clock-output-names", &clk_name);
clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
reg, data->shift, data->width,
data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
data->table, &clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_gates_reset... - reset bits in leaf gate clk registers handling
*/
struct gates_reset_data {
void __iomem *reg;
spinlock_t *lock;
struct reset_controller_dev rcdev;
};
static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct gates_reset_data *data = container_of(rcdev,
struct gates_reset_data,
rcdev);
unsigned long flags;
u32 reg;
spin_lock_irqsave(data->lock, flags);
reg = readl(data->reg);
writel(reg & ~BIT(id), data->reg);
spin_unlock_irqrestore(data->lock, flags);
return 0;
}
static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct gates_reset_data *data = container_of(rcdev,
struct gates_reset_data,
rcdev);
unsigned long flags;
u32 reg;
spin_lock_irqsave(data->lock, flags);
reg = readl(data->reg);
writel(reg | BIT(id), data->reg);
spin_unlock_irqrestore(data->lock, flags);
return 0;
}
static struct reset_control_ops sunxi_gates_reset_ops = {
.assert = sunxi_gates_reset_assert,
.deassert = sunxi_gates_reset_deassert,
};
/**
* sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
*/
#define SUNXI_GATES_MAX_SIZE 64
struct gates_data {
DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
u32 reset_mask;
};
static const struct gates_data sun4i_axi_gates_data __initconst = {
.mask = {1},
};
static const struct gates_data sun4i_ahb_gates_data __initconst = {
.mask = {0x7F77FFF, 0x14FB3F},
};
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
.mask = {0x147667e7, 0x185915},
};
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
.mask = {0x107067e7, 0x185111},
};
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
.mask = {0xEDFE7F62, 0x794F931},
};
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
.mask = { 0x12f77fff, 0x16ff3f },
};
static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
.mask = {0x25386742, 0x2505111},
};
static const struct gates_data sun9i_a80_ahb0_gates_data __initconst = {
.mask = {0xF5F12B},
};
static const struct gates_data sun9i_a80_ahb1_gates_data __initconst = {
.mask = {0x1E20003},
};
static const struct gates_data sun9i_a80_ahb2_gates_data __initconst = {
.mask = {0x9B7},
};
static const struct gates_data sun4i_apb0_gates_data __initconst = {
.mask = {0x4EF},
};
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
.mask = {0x469},
};
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
.mask = {0x61},
};
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
.mask = { 0x4ff },
};
static const struct gates_data sun9i_a80_apb0_gates_data __initconst = {
.mask = {0xEB822},
};
static const struct gates_data sun4i_apb1_gates_data __initconst = {
.mask = {0xFF00F7},
};
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
.mask = {0xf0007},
};
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
.mask = {0xa0007},
};
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
.mask = {0x3031},
};
static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
.mask = {0x3021},
};
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
.mask = {0x3F000F},
};
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
.mask = { 0xff80ff },
};
static const struct gates_data sun9i_a80_apb1_gates_data __initconst = {
.mask = {0x3F001F},
};
static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
.mask = {0x1F0007},
};
static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
.mask = {0x1C0},
.reset_mask = 0x07,
};
static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
.mask = {0x140},
.reset_mask = 0x03,
};
static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
.reset_mask = BIT(2) | BIT(1) | BIT(0),
};
static void __init sunxi_gates_clk_setup(struct device_node *node,
struct gates_data *data)
{
struct clk_onecell_data *clk_data;
struct gates_reset_data *reset_data;
const char *clk_parent;
const char *clk_name;
void __iomem *reg;
int qty;
int i = 0;
int j = 0;
reg = of_iomap(node, 0);
clk_parent = of_clk_get_parent_name(node, 0);
/* Worst-case size approximation and memory allocation */
qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
return;
clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
if (!clk_data->clks) {
kfree(clk_data);
return;
}
for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
of_property_read_string_index(node, "clock-output-names",
j, &clk_name);
clk_data->clks[i] = clk_register_gate(NULL, clk_name,
clk_parent, 0,
reg + 4 * (i/32), i % 32,
0, &clk_lock);
WARN_ON(IS_ERR(clk_data->clks[i]));
clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
j++;
}
/* Adjust to the real max */
clk_data->clk_num = i;
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
/* Register a reset controler for gates with reset bits */
if (data->reset_mask == 0)
return;
reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
if (!reset_data)
return;
reset_data->reg = reg;
reset_data->lock = &clk_lock;
reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
reset_data->rcdev.ops = &sunxi_gates_reset_ops;
reset_data->rcdev.of_node = node;
reset_controller_register(&reset_data->rcdev);
}
/**
* sunxi_divs_clk_setup() helper data
*/
#define SUNXI_DIVS_MAX_QTY 2
#define SUNXI_DIVISOR_WIDTH 2
struct divs_data {
const struct factors_data *factors; /* data for the factor clock */
int ndivs; /* number of children */
struct {
u8 fixed; /* is it a fixed divisor? if not... */
struct clk_div_table *table; /* is it a table based divisor? */
u8 shift; /* otherwise it's a normal divisor with this shift */
u8 pow; /* is it power-of-two based? */
u8 gate; /* is it independently gateable? */
} div[SUNXI_DIVS_MAX_QTY];
};
static struct clk_div_table pll6_sata_tbl[] = {
{ .val = 0, .div = 6, },
{ .val = 1, .div = 12, },
{ .val = 2, .div = 18, },
{ .val = 3, .div = 24, },
{ } /* sentinel */
};
static const struct divs_data pll5_divs_data __initconst = {
.factors = &sun4i_pll5_data,
.ndivs = 2,
.div = {
{ .shift = 0, .pow = 0, }, /* M, DDR */
{ .shift = 16, .pow = 1, }, /* P, other */
}
};
static const struct divs_data pll6_divs_data __initconst = {
.factors = &sun4i_pll6_data,
.ndivs = 2,
.div = {
{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
{ .fixed = 2 }, /* P, other */
}
};
static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
.factors = &sun6i_a31_pll6_data,
.ndivs = 1,
.div = {
{ .fixed = 2 }, /* normal output */
}
};
/**
* sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
*
* These clocks look something like this
* ________________________
* | ___divisor 1---|----> to consumer
* parent >--| pll___/___divisor 2---|----> to consumer
* | \_______________|____> to consumer
* |________________________|
*/
static void __init sunxi_divs_clk_setup(struct device_node *node,
struct divs_data *data)
{
struct clk_onecell_data *clk_data;
const char *parent;
const char *clk_name;
struct clk **clks, *pclk;
struct clk_hw *gate_hw, *rate_hw;
const struct clk_ops *rate_ops;
struct clk_gate *gate = NULL;
struct clk_fixed_factor *fix_factor;
struct clk_divider *divider;
void __iomem *reg;
int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
int flags, clkflags;
/* Set up factor clock that we will be dividing */
pclk = sunxi_factors_clk_setup(node, data->factors);
parent = __clk_get_name(pclk);
reg = of_iomap(node, 0);
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
return;
clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
if (!clks)
goto free_clkdata;
clk_data->clks = clks;
/* It's not a good idea to have automatic reparenting changing
* our RAM clock! */
clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
/* if number of children known, use it */
if (data->ndivs)
ndivs = data->ndivs;
for (i = 0; i < ndivs; i++) {
if (of_property_read_string_index(node, "clock-output-names",
i, &clk_name) != 0)
break;
gate_hw = NULL;
rate_hw = NULL;
rate_ops = NULL;
/* If this leaf clock can be gated, create a gate */
if (data->div[i].gate) {
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
goto free_clks;
gate->reg = reg;
gate->bit_idx = data->div[i].gate;
gate->lock = &clk_lock;
gate_hw = &gate->hw;
}
/* Leaves can be fixed or configurable divisors */
if (data->div[i].fixed) {
fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
if (!fix_factor)
goto free_gate;
fix_factor->mult = 1;
fix_factor->div = data->div[i].fixed;
rate_hw = &fix_factor->hw;
rate_ops = &clk_fixed_factor_ops;
} else {
divider = kzalloc(sizeof(*divider), GFP_KERNEL);
if (!divider)
goto free_gate;
flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
divider->reg = reg;
divider->shift = data->div[i].shift;
divider->width = SUNXI_DIVISOR_WIDTH;
divider->flags = flags;
divider->lock = &clk_lock;
divider->table = data->div[i].table;
rate_hw = &divider->hw;
rate_ops = &clk_divider_ops;
}
/* Wrap the (potential) gate and the divisor on a composite
* clock to unify them */
clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
NULL, NULL,
rate_hw, rate_ops,
gate_hw, &clk_gate_ops,
clkflags);
WARN_ON(IS_ERR(clk_data->clks[i]));
clk_register_clkdev(clks[i], clk_name, NULL);
}
/* The last clock available on the getter is the parent */
clks[i++] = pclk;
/* Adjust to the real max */
clk_data->clk_num = i;
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
return;
free_gate:
kfree(gate);
free_clks:
kfree(clks);
free_clkdata:
kfree(clk_data);
}
/* Matches for factors clocks */
static const struct of_device_id clk_factors_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
{}
};
/* Matches for divider clocks */
static const struct of_device_id clk_div_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
{}
};
/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
{}
};
/* Matches for mux clocks */
static const struct of_device_id clk_mux_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
{}
};
/* Matches for gate clocks */
static const struct of_device_id clk_gates_match[] __initconst = {
{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
{.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
{.compatible = "allwinner,sun9i-a80-ahb0-gates-clk", .data = &sun9i_a80_ahb0_gates_data,},
{.compatible = "allwinner,sun9i-a80-ahb1-gates-clk", .data = &sun9i_a80_ahb1_gates_data,},
{.compatible = "allwinner,sun9i-a80-ahb2-gates-clk", .data = &sun9i_a80_ahb2_gates_data,},
{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
{.compatible = "allwinner,sun9i-a80-apb0-gates-clk", .data = &sun9i_a80_apb0_gates_data,},
{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
{.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
{.compatible = "allwinner,sun9i-a80-apb1-gates-clk", .data = &sun9i_a80_apb1_gates_data,},
{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
{.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
{}
};
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
void *function)
{
struct device_node *np;
const struct div_data *data;
const struct of_device_id *match;
void (*setup_function)(struct device_node *, const void *) = function;
for_each_matching_node_and_match(np, clk_match, &match) {
data = match->data;
setup_function(np, data);
}
}
static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
{
unsigned int i;
/* Register factor clocks */
of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
/* Register divider clocks */
of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
/* Register divided output clocks */
of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
/* Register mux clocks */
of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
/* Register gate clocks */
of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
/* Protect the clocks that needs to stay on */
for (i = 0; i < nclocks; i++) {
struct clk *clk = clk_get(NULL, clocks[i]);
if (!IS_ERR(clk))
clk_prepare_enable(clk);
}
}
static const char *sun4i_a10_critical_clocks[] __initdata = {
"pll5_ddr",
"ahb_sdram",
};
static void __init sun4i_a10_init_clocks(struct device_node *node)
{
sunxi_init_clocks(sun4i_a10_critical_clocks,
ARRAY_SIZE(sun4i_a10_critical_clocks));
}
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
static const char *sun5i_critical_clocks[] __initdata = {
"pll5_ddr",
"ahb_sdram",
};
static void __init sun5i_init_clocks(struct device_node *node)
{
sunxi_init_clocks(sun5i_critical_clocks,
ARRAY_SIZE(sun5i_critical_clocks));
}
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
static const char *sun6i_critical_clocks[] __initdata = {
"cpu",
};
static void __init sun6i_init_clocks(struct device_node *node)
{
sunxi_init_clocks(sun6i_critical_clocks,
ARRAY_SIZE(sun6i_critical_clocks));
}
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
static void __init sun9i_init_clocks(struct device_node *node)
{
sunxi_init_clocks(NULL, 0);
}
CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);