alistair23-linux/arch/x86/kernel/amd_nb.c
Woods, Brian be3518a16e x86/amd_nb: Add PCI device IDs for family 17h, model 30h
Add the PCI device IDs for family 17h model 30h, since they are needed
for accessing various registers via the data fabric/SMN interface.

Signed-off-by: Brian Woods <brian.woods@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: Bjorn Helgaas <bhelgaas@google.com>
CC: Clemens Ladisch <clemens@ladisch.de>
CC: Guenter Roeck <linux@roeck-us.net>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Jean Delvare <jdelvare@suse.com>
CC: Jia Zhang <qianyue.zj@alibaba-inc.com>
CC: <linux-hwmon@vger.kernel.org>
CC: <linux-pci@vger.kernel.org>
CC: Pu Wen <puwen@hygon.cn>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181106200754.60722-4-brian.woods@amd.com
2018-11-07 21:36:09 +01:00

532 lines
13 KiB
C

/*
* Shared support code for AMD K8 northbridges and derivates.
* Copyright 2006 Andi Kleen, SUSE Labs. Subject to GPLv2.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <asm/amd_nb.h>
#define PCI_DEVICE_ID_AMD_17H_ROOT 0x1450
#define PCI_DEVICE_ID_AMD_17H_M10H_ROOT 0x15d0
#define PCI_DEVICE_ID_AMD_17H_M30H_ROOT 0x1480
#define PCI_DEVICE_ID_AMD_17H_DF_F4 0x1464
#define PCI_DEVICE_ID_AMD_17H_M10H_DF_F4 0x15ec
#define PCI_DEVICE_ID_AMD_17H_M30H_DF_F4 0x1494
/* Protect the PCI config register pairs used for SMN and DF indirect access. */
static DEFINE_MUTEX(smn_mutex);
static u32 *flush_words;
static const struct pci_device_id amd_root_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_ROOT) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_ROOT) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_ROOT) },
{}
};
#define PCI_DEVICE_ID_AMD_CNB17H_F4 0x1704
const struct pci_device_id amd_nb_misc_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_K8_NB_MISC) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) },
{}
};
EXPORT_SYMBOL_GPL(amd_nb_misc_ids);
static const struct pci_device_id amd_nb_link_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F4) },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F4) },
{}
};
static const struct pci_device_id hygon_root_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HYGON, PCI_DEVICE_ID_AMD_17H_ROOT) },
{}
};
const struct pci_device_id hygon_nb_misc_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HYGON, PCI_DEVICE_ID_AMD_17H_DF_F3) },
{}
};
static const struct pci_device_id hygon_nb_link_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HYGON, PCI_DEVICE_ID_AMD_17H_DF_F4) },
{}
};
const struct amd_nb_bus_dev_range amd_nb_bus_dev_ranges[] __initconst = {
{ 0x00, 0x18, 0x20 },
{ 0xff, 0x00, 0x20 },
{ 0xfe, 0x00, 0x20 },
{ }
};
static struct amd_northbridge_info amd_northbridges;
u16 amd_nb_num(void)
{
return amd_northbridges.num;
}
EXPORT_SYMBOL_GPL(amd_nb_num);
bool amd_nb_has_feature(unsigned int feature)
{
return ((amd_northbridges.flags & feature) == feature);
}
EXPORT_SYMBOL_GPL(amd_nb_has_feature);
struct amd_northbridge *node_to_amd_nb(int node)
{
return (node < amd_northbridges.num) ? &amd_northbridges.nb[node] : NULL;
}
EXPORT_SYMBOL_GPL(node_to_amd_nb);
static struct pci_dev *next_northbridge(struct pci_dev *dev,
const struct pci_device_id *ids)
{
do {
dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev);
if (!dev)
break;
} while (!pci_match_id(ids, dev));
return dev;
}
static int __amd_smn_rw(u16 node, u32 address, u32 *value, bool write)
{
struct pci_dev *root;
int err = -ENODEV;
if (node >= amd_northbridges.num)
goto out;
root = node_to_amd_nb(node)->root;
if (!root)
goto out;
mutex_lock(&smn_mutex);
err = pci_write_config_dword(root, 0x60, address);
if (err) {
pr_warn("Error programming SMN address 0x%x.\n", address);
goto out_unlock;
}
err = (write ? pci_write_config_dword(root, 0x64, *value)
: pci_read_config_dword(root, 0x64, value));
if (err)
pr_warn("Error %s SMN address 0x%x.\n",
(write ? "writing to" : "reading from"), address);
out_unlock:
mutex_unlock(&smn_mutex);
out:
return err;
}
int amd_smn_read(u16 node, u32 address, u32 *value)
{
return __amd_smn_rw(node, address, value, false);
}
EXPORT_SYMBOL_GPL(amd_smn_read);
int amd_smn_write(u16 node, u32 address, u32 value)
{
return __amd_smn_rw(node, address, &value, true);
}
EXPORT_SYMBOL_GPL(amd_smn_write);
/*
* Data Fabric Indirect Access uses FICAA/FICAD.
*
* Fabric Indirect Configuration Access Address (FICAA): Constructed based
* on the device's Instance Id and the PCI function and register offset of
* the desired register.
*
* Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO
* and FICAD HI registers but so far we only need the LO register.
*/
int amd_df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
{
struct pci_dev *F4;
u32 ficaa;
int err = -ENODEV;
if (node >= amd_northbridges.num)
goto out;
F4 = node_to_amd_nb(node)->link;
if (!F4)
goto out;
ficaa = 1;
ficaa |= reg & 0x3FC;
ficaa |= (func & 0x7) << 11;
ficaa |= instance_id << 16;
mutex_lock(&smn_mutex);
err = pci_write_config_dword(F4, 0x5C, ficaa);
if (err) {
pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
goto out_unlock;
}
err = pci_read_config_dword(F4, 0x98, lo);
if (err)
pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);
out_unlock:
mutex_unlock(&smn_mutex);
out:
return err;
}
EXPORT_SYMBOL_GPL(amd_df_indirect_read);
int amd_cache_northbridges(void)
{
const struct pci_device_id *misc_ids = amd_nb_misc_ids;
const struct pci_device_id *link_ids = amd_nb_link_ids;
const struct pci_device_id *root_ids = amd_root_ids;
struct pci_dev *root, *misc, *link;
struct amd_northbridge *nb;
u16 roots_per_misc = 0;
u16 misc_count = 0;
u16 root_count = 0;
u16 i, j;
if (amd_northbridges.num)
return 0;
if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
root_ids = hygon_root_ids;
misc_ids = hygon_nb_misc_ids;
link_ids = hygon_nb_link_ids;
}
misc = NULL;
while ((misc = next_northbridge(misc, misc_ids)) != NULL)
misc_count++;
if (!misc_count)
return -ENODEV;
root = NULL;
while ((root = next_northbridge(root, root_ids)) != NULL)
root_count++;
if (root_count) {
roots_per_misc = root_count / misc_count;
/*
* There should be _exactly_ N roots for each DF/SMN
* interface.
*/
if (!roots_per_misc || (root_count % roots_per_misc)) {
pr_info("Unsupported AMD DF/PCI configuration found\n");
return -ENODEV;
}
}
nb = kcalloc(misc_count, sizeof(struct amd_northbridge), GFP_KERNEL);
if (!nb)
return -ENOMEM;
amd_northbridges.nb = nb;
amd_northbridges.num = misc_count;
link = misc = root = NULL;
for (i = 0; i < amd_northbridges.num; i++) {
node_to_amd_nb(i)->root = root =
next_northbridge(root, root_ids);
node_to_amd_nb(i)->misc = misc =
next_northbridge(misc, misc_ids);
node_to_amd_nb(i)->link = link =
next_northbridge(link, link_ids);
/*
* If there are more PCI root devices than data fabric/
* system management network interfaces, then the (N)
* PCI roots per DF/SMN interface are functionally the
* same (for DF/SMN access) and N-1 are redundant. N-1
* PCI roots should be skipped per DF/SMN interface so
* the following DF/SMN interfaces get mapped to
* correct PCI roots.
*/
for (j = 1; j < roots_per_misc; j++)
root = next_northbridge(root, root_ids);
}
if (amd_gart_present())
amd_northbridges.flags |= AMD_NB_GART;
/*
* Check for L3 cache presence.
*/
if (!cpuid_edx(0x80000006))
return 0;
/*
* Some CPU families support L3 Cache Index Disable. There are some
* limitations because of E382 and E388 on family 0x10.
*/
if (boot_cpu_data.x86 == 0x10 &&
boot_cpu_data.x86_model >= 0x8 &&
(boot_cpu_data.x86_model > 0x9 ||
boot_cpu_data.x86_stepping >= 0x1))
amd_northbridges.flags |= AMD_NB_L3_INDEX_DISABLE;
if (boot_cpu_data.x86 == 0x15)
amd_northbridges.flags |= AMD_NB_L3_INDEX_DISABLE;
/* L3 cache partitioning is supported on family 0x15 */
if (boot_cpu_data.x86 == 0x15)
amd_northbridges.flags |= AMD_NB_L3_PARTITIONING;
return 0;
}
EXPORT_SYMBOL_GPL(amd_cache_northbridges);
/*
* Ignores subdevice/subvendor but as far as I can figure out
* they're useless anyways
*/
bool __init early_is_amd_nb(u32 device)
{
const struct pci_device_id *misc_ids = amd_nb_misc_ids;
const struct pci_device_id *id;
u32 vendor = device & 0xffff;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
return false;
if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
misc_ids = hygon_nb_misc_ids;
device >>= 16;
for (id = misc_ids; id->vendor; id++)
if (vendor == id->vendor && device == id->device)
return true;
return false;
}
struct resource *amd_get_mmconfig_range(struct resource *res)
{
u32 address;
u64 base, msr;
unsigned int segn_busn_bits;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
return NULL;
/* assume all cpus from fam10h have mmconfig */
if (boot_cpu_data.x86 < 0x10)
return NULL;
address = MSR_FAM10H_MMIO_CONF_BASE;
rdmsrl(address, msr);
/* mmconfig is not enabled */
if (!(msr & FAM10H_MMIO_CONF_ENABLE))
return NULL;
base = msr & (FAM10H_MMIO_CONF_BASE_MASK<<FAM10H_MMIO_CONF_BASE_SHIFT);
segn_busn_bits = (msr >> FAM10H_MMIO_CONF_BUSRANGE_SHIFT) &
FAM10H_MMIO_CONF_BUSRANGE_MASK;
res->flags = IORESOURCE_MEM;
res->start = base;
res->end = base + (1ULL<<(segn_busn_bits + 20)) - 1;
return res;
}
int amd_get_subcaches(int cpu)
{
struct pci_dev *link = node_to_amd_nb(amd_get_nb_id(cpu))->link;
unsigned int mask;
if (!amd_nb_has_feature(AMD_NB_L3_PARTITIONING))
return 0;
pci_read_config_dword(link, 0x1d4, &mask);
return (mask >> (4 * cpu_data(cpu).cpu_core_id)) & 0xf;
}
int amd_set_subcaches(int cpu, unsigned long mask)
{
static unsigned int reset, ban;
struct amd_northbridge *nb = node_to_amd_nb(amd_get_nb_id(cpu));
unsigned int reg;
int cuid;
if (!amd_nb_has_feature(AMD_NB_L3_PARTITIONING) || mask > 0xf)
return -EINVAL;
/* if necessary, collect reset state of L3 partitioning and BAN mode */
if (reset == 0) {
pci_read_config_dword(nb->link, 0x1d4, &reset);
pci_read_config_dword(nb->misc, 0x1b8, &ban);
ban &= 0x180000;
}
/* deactivate BAN mode if any subcaches are to be disabled */
if (mask != 0xf) {
pci_read_config_dword(nb->misc, 0x1b8, &reg);
pci_write_config_dword(nb->misc, 0x1b8, reg & ~0x180000);
}
cuid = cpu_data(cpu).cpu_core_id;
mask <<= 4 * cuid;
mask |= (0xf ^ (1 << cuid)) << 26;
pci_write_config_dword(nb->link, 0x1d4, mask);
/* reset BAN mode if L3 partitioning returned to reset state */
pci_read_config_dword(nb->link, 0x1d4, &reg);
if (reg == reset) {
pci_read_config_dword(nb->misc, 0x1b8, &reg);
reg &= ~0x180000;
pci_write_config_dword(nb->misc, 0x1b8, reg | ban);
}
return 0;
}
static void amd_cache_gart(void)
{
u16 i;
if (!amd_nb_has_feature(AMD_NB_GART))
return;
flush_words = kmalloc_array(amd_northbridges.num, sizeof(u32), GFP_KERNEL);
if (!flush_words) {
amd_northbridges.flags &= ~AMD_NB_GART;
pr_notice("Cannot initialize GART flush words, GART support disabled\n");
return;
}
for (i = 0; i != amd_northbridges.num; i++)
pci_read_config_dword(node_to_amd_nb(i)->misc, 0x9c, &flush_words[i]);
}
void amd_flush_garts(void)
{
int flushed, i;
unsigned long flags;
static DEFINE_SPINLOCK(gart_lock);
if (!amd_nb_has_feature(AMD_NB_GART))
return;
/*
* Avoid races between AGP and IOMMU. In theory it's not needed
* but I'm not sure if the hardware won't lose flush requests
* when another is pending. This whole thing is so expensive anyways
* that it doesn't matter to serialize more. -AK
*/
spin_lock_irqsave(&gart_lock, flags);
flushed = 0;
for (i = 0; i < amd_northbridges.num; i++) {
pci_write_config_dword(node_to_amd_nb(i)->misc, 0x9c,
flush_words[i] | 1);
flushed++;
}
for (i = 0; i < amd_northbridges.num; i++) {
u32 w;
/* Make sure the hardware actually executed the flush*/
for (;;) {
pci_read_config_dword(node_to_amd_nb(i)->misc,
0x9c, &w);
if (!(w & 1))
break;
cpu_relax();
}
}
spin_unlock_irqrestore(&gart_lock, flags);
if (!flushed)
pr_notice("nothing to flush?\n");
}
EXPORT_SYMBOL_GPL(amd_flush_garts);
static void __fix_erratum_688(void *info)
{
#define MSR_AMD64_IC_CFG 0xC0011021
msr_set_bit(MSR_AMD64_IC_CFG, 3);
msr_set_bit(MSR_AMD64_IC_CFG, 14);
}
/* Apply erratum 688 fix so machines without a BIOS fix work. */
static __init void fix_erratum_688(void)
{
struct pci_dev *F4;
u32 val;
if (boot_cpu_data.x86 != 0x14)
return;
if (!amd_northbridges.num)
return;
F4 = node_to_amd_nb(0)->link;
if (!F4)
return;
if (pci_read_config_dword(F4, 0x164, &val))
return;
if (val & BIT(2))
return;
on_each_cpu(__fix_erratum_688, NULL, 0);
pr_info("x86/cpu/AMD: CPU erratum 688 worked around\n");
}
static __init int init_amd_nbs(void)
{
amd_cache_northbridges();
amd_cache_gart();
fix_erratum_688();
return 0;
}
/* This has to go after the PCI subsystem */
fs_initcall(init_amd_nbs);