alistair23-linux/fs/udf/inode.c
Jan Kara 81056dd044 udf: Perform preallocation only for regular files
So far we preallocated blocks also for directories but that brings a
problem, when to get rid of preallocated blocks we don't need. So far
we removed them in udf_clear_inode() which has a disadvantage that
1) blocks are unavailable long after writing to a directory finished
   and thus one can get out of space unnecessarily early
2) releasing blocks from udf_clear_inode is problematic because VFS
   does not expect us to redirty inode there and it also slows down
   memory reclaim.

So preallocate blocks only for regular files where we can drop preallocation
in udf_release_file.

Signed-off-by: Jan Kara <jack@suse.cz>
2009-09-14 19:13:00 +02:00

2069 lines
58 KiB
C

/*
* inode.c
*
* PURPOSE
* Inode handling routines for the OSTA-UDF(tm) filesystem.
*
* COPYRIGHT
* This file is distributed under the terms of the GNU General Public
* License (GPL). Copies of the GPL can be obtained from:
* ftp://prep.ai.mit.edu/pub/gnu/GPL
* Each contributing author retains all rights to their own work.
*
* (C) 1998 Dave Boynton
* (C) 1998-2004 Ben Fennema
* (C) 1999-2000 Stelias Computing Inc
*
* HISTORY
*
* 10/04/98 dgb Added rudimentary directory functions
* 10/07/98 Fully working udf_block_map! It works!
* 11/25/98 bmap altered to better support extents
* 12/06/98 blf partition support in udf_iget, udf_block_map
* and udf_read_inode
* 12/12/98 rewrote udf_block_map to handle next extents and descs across
* block boundaries (which is not actually allowed)
* 12/20/98 added support for strategy 4096
* 03/07/99 rewrote udf_block_map (again)
* New funcs, inode_bmap, udf_next_aext
* 04/19/99 Support for writing device EA's for major/minor #
*/
#include "udfdecl.h"
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/crc-itu-t.h>
#include "udf_i.h"
#include "udf_sb.h"
MODULE_AUTHOR("Ben Fennema");
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
MODULE_LICENSE("GPL");
#define EXTENT_MERGE_SIZE 5
static mode_t udf_convert_permissions(struct fileEntry *);
static int udf_update_inode(struct inode *, int);
static void udf_fill_inode(struct inode *, struct buffer_head *);
static int udf_alloc_i_data(struct inode *inode, size_t size);
static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
sector_t *, int *);
static int8_t udf_insert_aext(struct inode *, struct extent_position,
struct kernel_lb_addr, uint32_t);
static void udf_split_extents(struct inode *, int *, int, int,
struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_prealloc_extents(struct inode *, int, int,
struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_merge_extents(struct inode *,
struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_update_extents(struct inode *,
struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
struct extent_position *);
static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
void udf_delete_inode(struct inode *inode)
{
truncate_inode_pages(&inode->i_data, 0);
if (is_bad_inode(inode))
goto no_delete;
inode->i_size = 0;
udf_truncate(inode);
lock_kernel();
udf_update_inode(inode, IS_SYNC(inode));
udf_free_inode(inode);
unlock_kernel();
return;
no_delete:
clear_inode(inode);
}
/*
* If we are going to release inode from memory, we truncate last inode extent
* to proper length. We could use drop_inode() but it's called under inode_lock
* and thus we cannot mark inode dirty there. We use clear_inode() but we have
* to make sure to write inode as it's not written automatically.
*/
void udf_clear_inode(struct inode *inode)
{
struct udf_inode_info *iinfo;
if (!(inode->i_sb->s_flags & MS_RDONLY)) {
lock_kernel();
udf_truncate_tail_extent(inode);
unlock_kernel();
write_inode_now(inode, 0);
invalidate_inode_buffers(inode);
}
iinfo = UDF_I(inode);
kfree(iinfo->i_ext.i_data);
iinfo->i_ext.i_data = NULL;
}
static int udf_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page, udf_get_block, wbc);
}
static int udf_readpage(struct file *file, struct page *page)
{
return block_read_full_page(page, udf_get_block);
}
static int udf_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
*pagep = NULL;
return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
udf_get_block);
}
static sector_t udf_bmap(struct address_space *mapping, sector_t block)
{
return generic_block_bmap(mapping, block, udf_get_block);
}
const struct address_space_operations udf_aops = {
.readpage = udf_readpage,
.writepage = udf_writepage,
.sync_page = block_sync_page,
.write_begin = udf_write_begin,
.write_end = generic_write_end,
.bmap = udf_bmap,
};
void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
{
struct page *page;
char *kaddr;
struct udf_inode_info *iinfo = UDF_I(inode);
struct writeback_control udf_wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = 1,
};
/* from now on we have normal address_space methods */
inode->i_data.a_ops = &udf_aops;
if (!iinfo->i_lenAlloc) {
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
else
iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
mark_inode_dirty(inode);
return;
}
page = grab_cache_page(inode->i_mapping, 0);
BUG_ON(!PageLocked(page));
if (!PageUptodate(page)) {
kaddr = kmap(page);
memset(kaddr + iinfo->i_lenAlloc, 0x00,
PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
iinfo->i_lenAlloc);
flush_dcache_page(page);
SetPageUptodate(page);
kunmap(page);
}
memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
iinfo->i_lenAlloc);
iinfo->i_lenAlloc = 0;
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
else
iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
inode->i_data.a_ops->writepage(page, &udf_wbc);
page_cache_release(page);
mark_inode_dirty(inode);
}
struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
int *err)
{
int newblock;
struct buffer_head *dbh = NULL;
struct kernel_lb_addr eloc;
uint32_t elen;
uint8_t alloctype;
struct extent_position epos;
struct udf_fileident_bh sfibh, dfibh;
loff_t f_pos = udf_ext0_offset(inode);
int size = udf_ext0_offset(inode) + inode->i_size;
struct fileIdentDesc cfi, *sfi, *dfi;
struct udf_inode_info *iinfo = UDF_I(inode);
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
alloctype = ICBTAG_FLAG_AD_SHORT;
else
alloctype = ICBTAG_FLAG_AD_LONG;
if (!inode->i_size) {
iinfo->i_alloc_type = alloctype;
mark_inode_dirty(inode);
return NULL;
}
/* alloc block, and copy data to it */
*block = udf_new_block(inode->i_sb, inode,
iinfo->i_location.partitionReferenceNum,
iinfo->i_location.logicalBlockNum, err);
if (!(*block))
return NULL;
newblock = udf_get_pblock(inode->i_sb, *block,
iinfo->i_location.partitionReferenceNum,
0);
if (!newblock)
return NULL;
dbh = udf_tgetblk(inode->i_sb, newblock);
if (!dbh)
return NULL;
lock_buffer(dbh);
memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
set_buffer_uptodate(dbh);
unlock_buffer(dbh);
mark_buffer_dirty_inode(dbh, inode);
sfibh.soffset = sfibh.eoffset =
f_pos & (inode->i_sb->s_blocksize - 1);
sfibh.sbh = sfibh.ebh = NULL;
dfibh.soffset = dfibh.eoffset = 0;
dfibh.sbh = dfibh.ebh = dbh;
while (f_pos < size) {
iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
NULL, NULL, NULL);
if (!sfi) {
brelse(dbh);
return NULL;
}
iinfo->i_alloc_type = alloctype;
sfi->descTag.tagLocation = cpu_to_le32(*block);
dfibh.soffset = dfibh.eoffset;
dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
sfi->fileIdent +
le16_to_cpu(sfi->lengthOfImpUse))) {
iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
brelse(dbh);
return NULL;
}
}
mark_buffer_dirty_inode(dbh, inode);
memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
iinfo->i_lenAlloc);
iinfo->i_lenAlloc = 0;
eloc.logicalBlockNum = *block;
eloc.partitionReferenceNum =
iinfo->i_location.partitionReferenceNum;
elen = inode->i_sb->s_blocksize;
iinfo->i_lenExtents = elen;
epos.bh = NULL;
epos.block = iinfo->i_location;
epos.offset = udf_file_entry_alloc_offset(inode);
udf_add_aext(inode, &epos, &eloc, elen, 0);
/* UniqueID stuff */
brelse(epos.bh);
mark_inode_dirty(inode);
return dbh;
}
static int udf_get_block(struct inode *inode, sector_t block,
struct buffer_head *bh_result, int create)
{
int err, new;
struct buffer_head *bh;
sector_t phys = 0;
struct udf_inode_info *iinfo;
if (!create) {
phys = udf_block_map(inode, block);
if (phys)
map_bh(bh_result, inode->i_sb, phys);
return 0;
}
err = -EIO;
new = 0;
bh = NULL;
lock_kernel();
iinfo = UDF_I(inode);
if (block == iinfo->i_next_alloc_block + 1) {
iinfo->i_next_alloc_block++;
iinfo->i_next_alloc_goal++;
}
err = 0;
bh = inode_getblk(inode, block, &err, &phys, &new);
BUG_ON(bh);
if (err)
goto abort;
BUG_ON(!phys);
if (new)
set_buffer_new(bh_result);
map_bh(bh_result, inode->i_sb, phys);
abort:
unlock_kernel();
return err;
}
static struct buffer_head *udf_getblk(struct inode *inode, long block,
int create, int *err)
{
struct buffer_head *bh;
struct buffer_head dummy;
dummy.b_state = 0;
dummy.b_blocknr = -1000;
*err = udf_get_block(inode, block, &dummy, create);
if (!*err && buffer_mapped(&dummy)) {
bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
if (buffer_new(&dummy)) {
lock_buffer(bh);
memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
unlock_buffer(bh);
mark_buffer_dirty_inode(bh, inode);
}
return bh;
}
return NULL;
}
/* Extend the file by 'blocks' blocks, return the number of extents added */
int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
struct kernel_long_ad *last_ext, sector_t blocks)
{
sector_t add;
int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
struct super_block *sb = inode->i_sb;
struct kernel_lb_addr prealloc_loc = {};
int prealloc_len = 0;
struct udf_inode_info *iinfo;
/* The previous extent is fake and we should not extend by anything
* - there's nothing to do... */
if (!blocks && fake)
return 0;
iinfo = UDF_I(inode);
/* Round the last extent up to a multiple of block size */
if (last_ext->extLength & (sb->s_blocksize - 1)) {
last_ext->extLength =
(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
iinfo->i_lenExtents =
(iinfo->i_lenExtents + sb->s_blocksize - 1) &
~(sb->s_blocksize - 1);
}
/* Last extent are just preallocated blocks? */
if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
EXT_NOT_RECORDED_ALLOCATED) {
/* Save the extent so that we can reattach it to the end */
prealloc_loc = last_ext->extLocation;
prealloc_len = last_ext->extLength;
/* Mark the extent as a hole */
last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
last_ext->extLocation.logicalBlockNum = 0;
last_ext->extLocation.partitionReferenceNum = 0;
}
/* Can we merge with the previous extent? */
if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
EXT_NOT_RECORDED_NOT_ALLOCATED) {
add = ((1 << 30) - sb->s_blocksize -
(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
sb->s_blocksize_bits;
if (add > blocks)
add = blocks;
blocks -= add;
last_ext->extLength += add << sb->s_blocksize_bits;
}
if (fake) {
udf_add_aext(inode, last_pos, &last_ext->extLocation,
last_ext->extLength, 1);
count++;
} else
udf_write_aext(inode, last_pos, &last_ext->extLocation,
last_ext->extLength, 1);
/* Managed to do everything necessary? */
if (!blocks)
goto out;
/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
last_ext->extLocation.logicalBlockNum = 0;
last_ext->extLocation.partitionReferenceNum = 0;
add = (1 << (30-sb->s_blocksize_bits)) - 1;
last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
(add << sb->s_blocksize_bits);
/* Create enough extents to cover the whole hole */
while (blocks > add) {
blocks -= add;
if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
last_ext->extLength, 1) == -1)
return -1;
count++;
}
if (blocks) {
last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
(blocks << sb->s_blocksize_bits);
if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
last_ext->extLength, 1) == -1)
return -1;
count++;
}
out:
/* Do we have some preallocated blocks saved? */
if (prealloc_len) {
if (udf_add_aext(inode, last_pos, &prealloc_loc,
prealloc_len, 1) == -1)
return -1;
last_ext->extLocation = prealloc_loc;
last_ext->extLength = prealloc_len;
count++;
}
/* last_pos should point to the last written extent... */
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
last_pos->offset -= sizeof(struct short_ad);
else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
last_pos->offset -= sizeof(struct long_ad);
else
return -1;
return count;
}
static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
int *err, sector_t *phys, int *new)
{
static sector_t last_block;
struct buffer_head *result = NULL;
struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
struct extent_position prev_epos, cur_epos, next_epos;
int count = 0, startnum = 0, endnum = 0;
uint32_t elen = 0, tmpelen;
struct kernel_lb_addr eloc, tmpeloc;
int c = 1;
loff_t lbcount = 0, b_off = 0;
uint32_t newblocknum, newblock;
sector_t offset = 0;
int8_t etype;
struct udf_inode_info *iinfo = UDF_I(inode);
int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
int lastblock = 0;
prev_epos.offset = udf_file_entry_alloc_offset(inode);
prev_epos.block = iinfo->i_location;
prev_epos.bh = NULL;
cur_epos = next_epos = prev_epos;
b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
/* find the extent which contains the block we are looking for.
alternate between laarr[0] and laarr[1] for locations of the
current extent, and the previous extent */
do {
if (prev_epos.bh != cur_epos.bh) {
brelse(prev_epos.bh);
get_bh(cur_epos.bh);
prev_epos.bh = cur_epos.bh;
}
if (cur_epos.bh != next_epos.bh) {
brelse(cur_epos.bh);
get_bh(next_epos.bh);
cur_epos.bh = next_epos.bh;
}
lbcount += elen;
prev_epos.block = cur_epos.block;
cur_epos.block = next_epos.block;
prev_epos.offset = cur_epos.offset;
cur_epos.offset = next_epos.offset;
etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
if (etype == -1)
break;
c = !c;
laarr[c].extLength = (etype << 30) | elen;
laarr[c].extLocation = eloc;
if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
pgoal = eloc.logicalBlockNum +
((elen + inode->i_sb->s_blocksize - 1) >>
inode->i_sb->s_blocksize_bits);
count++;
} while (lbcount + elen <= b_off);
b_off -= lbcount;
offset = b_off >> inode->i_sb->s_blocksize_bits;
/*
* Move prev_epos and cur_epos into indirect extent if we are at
* the pointer to it
*/
udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
/* if the extent is allocated and recorded, return the block
if the extent is not a multiple of the blocksize, round up */
if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
if (elen & (inode->i_sb->s_blocksize - 1)) {
elen = EXT_RECORDED_ALLOCATED |
((elen + inode->i_sb->s_blocksize - 1) &
~(inode->i_sb->s_blocksize - 1));
etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
}
brelse(prev_epos.bh);
brelse(cur_epos.bh);
brelse(next_epos.bh);
newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
*phys = newblock;
return NULL;
}
last_block = block;
/* Are we beyond EOF? */
if (etype == -1) {
int ret;
if (count) {
if (c)
laarr[0] = laarr[1];
startnum = 1;
} else {
/* Create a fake extent when there's not one */
memset(&laarr[0].extLocation, 0x00,
sizeof(struct kernel_lb_addr));
laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
/* Will udf_extend_file() create real extent from
a fake one? */
startnum = (offset > 0);
}
/* Create extents for the hole between EOF and offset */
ret = udf_extend_file(inode, &prev_epos, laarr, offset);
if (ret == -1) {
brelse(prev_epos.bh);
brelse(cur_epos.bh);
brelse(next_epos.bh);
/* We don't really know the error here so we just make
* something up */
*err = -ENOSPC;
return NULL;
}
c = 0;
offset = 0;
count += ret;
/* We are not covered by a preallocated extent? */
if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
EXT_NOT_RECORDED_ALLOCATED) {
/* Is there any real extent? - otherwise we overwrite
* the fake one... */
if (count)
c = !c;
laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
inode->i_sb->s_blocksize;
memset(&laarr[c].extLocation, 0x00,
sizeof(struct kernel_lb_addr));
count++;
endnum++;
}
endnum = c + 1;
lastblock = 1;
} else {
endnum = startnum = ((count > 2) ? 2 : count);
/* if the current extent is in position 0,
swap it with the previous */
if (!c && count != 1) {
laarr[2] = laarr[0];
laarr[0] = laarr[1];
laarr[1] = laarr[2];
c = 1;
}
/* if the current block is located in an extent,
read the next extent */
etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
if (etype != -1) {
laarr[c + 1].extLength = (etype << 30) | elen;
laarr[c + 1].extLocation = eloc;
count++;
startnum++;
endnum++;
} else
lastblock = 1;
}
/* if the current extent is not recorded but allocated, get the
* block in the extent corresponding to the requested block */
if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
else { /* otherwise, allocate a new block */
if (iinfo->i_next_alloc_block == block)
goal = iinfo->i_next_alloc_goal;
if (!goal) {
if (!(goal = pgoal)) /* XXX: what was intended here? */
goal = iinfo->i_location.logicalBlockNum + 1;
}
newblocknum = udf_new_block(inode->i_sb, inode,
iinfo->i_location.partitionReferenceNum,
goal, err);
if (!newblocknum) {
brelse(prev_epos.bh);
*err = -ENOSPC;
return NULL;
}
iinfo->i_lenExtents += inode->i_sb->s_blocksize;
}
/* if the extent the requsted block is located in contains multiple
* blocks, split the extent into at most three extents. blocks prior
* to requested block, requested block, and blocks after requested
* block */
udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
#ifdef UDF_PREALLOCATE
/* We preallocate blocks only for regular files. It also makes sense
* for directories but there's a problem when to drop the
* preallocation. We might use some delayed work for that but I feel
* it's overengineering for a filesystem like UDF. */
if (S_ISREG(inode->i_mode))
udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
#endif
/* merge any continuous blocks in laarr */
udf_merge_extents(inode, laarr, &endnum);
/* write back the new extents, inserting new extents if the new number
* of extents is greater than the old number, and deleting extents if
* the new number of extents is less than the old number */
udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
brelse(prev_epos.bh);
newblock = udf_get_pblock(inode->i_sb, newblocknum,
iinfo->i_location.partitionReferenceNum, 0);
if (!newblock)
return NULL;
*phys = newblock;
*err = 0;
*new = 1;
iinfo->i_next_alloc_block = block;
iinfo->i_next_alloc_goal = newblocknum;
inode->i_ctime = current_fs_time(inode->i_sb);
if (IS_SYNC(inode))
udf_sync_inode(inode);
else
mark_inode_dirty(inode);
return result;
}
static void udf_split_extents(struct inode *inode, int *c, int offset,
int newblocknum,
struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int *endnum)
{
unsigned long blocksize = inode->i_sb->s_blocksize;
unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
(laarr[*c].extLength >> 30) ==
(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
int curr = *c;
int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) >> blocksize_bits;
int8_t etype = (laarr[curr].extLength >> 30);
if (blen == 1)
;
else if (!offset || blen == offset + 1) {
laarr[curr + 2] = laarr[curr + 1];
laarr[curr + 1] = laarr[curr];
} else {
laarr[curr + 3] = laarr[curr + 1];
laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
}
if (offset) {
if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
udf_free_blocks(inode->i_sb, inode,
&laarr[curr].extLocation,
0, offset);
laarr[curr].extLength =
EXT_NOT_RECORDED_NOT_ALLOCATED |
(offset << blocksize_bits);
laarr[curr].extLocation.logicalBlockNum = 0;
laarr[curr].extLocation.
partitionReferenceNum = 0;
} else
laarr[curr].extLength = (etype << 30) |
(offset << blocksize_bits);
curr++;
(*c)++;
(*endnum)++;
}
laarr[curr].extLocation.logicalBlockNum = newblocknum;
if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
laarr[curr].extLocation.partitionReferenceNum =
UDF_I(inode)->i_location.partitionReferenceNum;
laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
blocksize;
curr++;
if (blen != offset + 1) {
if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
laarr[curr].extLocation.logicalBlockNum +=
offset + 1;
laarr[curr].extLength = (etype << 30) |
((blen - (offset + 1)) << blocksize_bits);
curr++;
(*endnum)++;
}
}
}
static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int *endnum)
{
int start, length = 0, currlength = 0, i;
if (*endnum >= (c + 1)) {
if (!lastblock)
return;
else
start = c;
} else {
if ((laarr[c + 1].extLength >> 30) ==
(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
start = c + 1;
length = currlength =
(((laarr[c + 1].extLength &
UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >>
inode->i_sb->s_blocksize_bits);
} else
start = c;
}
for (i = start + 1; i <= *endnum; i++) {
if (i == *endnum) {
if (lastblock)
length += UDF_DEFAULT_PREALLOC_BLOCKS;
} else if ((laarr[i].extLength >> 30) ==
(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
length += (((laarr[i].extLength &
UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >>
inode->i_sb->s_blocksize_bits);
} else
break;
}
if (length) {
int next = laarr[start].extLocation.logicalBlockNum +
(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >>
inode->i_sb->s_blocksize_bits);
int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
laarr[start].extLocation.partitionReferenceNum,
next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
length : UDF_DEFAULT_PREALLOC_BLOCKS) -
currlength);
if (numalloc) {
if (start == (c + 1))
laarr[start].extLength +=
(numalloc <<
inode->i_sb->s_blocksize_bits);
else {
memmove(&laarr[c + 2], &laarr[c + 1],
sizeof(struct long_ad) * (*endnum - (c + 1)));
(*endnum)++;
laarr[c + 1].extLocation.logicalBlockNum = next;
laarr[c + 1].extLocation.partitionReferenceNum =
laarr[c].extLocation.
partitionReferenceNum;
laarr[c + 1].extLength =
EXT_NOT_RECORDED_ALLOCATED |
(numalloc <<
inode->i_sb->s_blocksize_bits);
start = c + 1;
}
for (i = start + 1; numalloc && i < *endnum; i++) {
int elen = ((laarr[i].extLength &
UDF_EXTENT_LENGTH_MASK) +
inode->i_sb->s_blocksize - 1) >>
inode->i_sb->s_blocksize_bits;
if (elen > numalloc) {
laarr[i].extLength -=
(numalloc <<
inode->i_sb->s_blocksize_bits);
numalloc = 0;
} else {
numalloc -= elen;
if (*endnum > (i + 1))
memmove(&laarr[i],
&laarr[i + 1],
sizeof(struct long_ad) *
(*endnum - (i + 1)));
i--;
(*endnum)--;
}
}
UDF_I(inode)->i_lenExtents +=
numalloc << inode->i_sb->s_blocksize_bits;
}
}
}
static void udf_merge_extents(struct inode *inode,
struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int *endnum)
{
int i;
unsigned long blocksize = inode->i_sb->s_blocksize;
unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
for (i = 0; i < (*endnum - 1); i++) {
struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
(((li->extLength >> 30) ==
(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
((lip1->extLocation.logicalBlockNum -
li->extLocation.logicalBlockNum) ==
(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) >> blocksize_bits)))) {
if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
lip1->extLength = (lip1->extLength -
(li->extLength &
UDF_EXTENT_LENGTH_MASK) +
UDF_EXTENT_LENGTH_MASK) &
~(blocksize - 1);
li->extLength = (li->extLength &
UDF_EXTENT_FLAG_MASK) +
(UDF_EXTENT_LENGTH_MASK + 1) -
blocksize;
lip1->extLocation.logicalBlockNum =
li->extLocation.logicalBlockNum +
((li->extLength &
UDF_EXTENT_LENGTH_MASK) >>
blocksize_bits);
} else {
li->extLength = lip1->extLength +
(((li->extLength &
UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) & ~(blocksize - 1));
if (*endnum > (i + 2))
memmove(&laarr[i + 1], &laarr[i + 2],
sizeof(struct long_ad) *
(*endnum - (i + 2)));
i--;
(*endnum)--;
}
} else if (((li->extLength >> 30) ==
(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
((lip1->extLength >> 30) ==
(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
((li->extLength &
UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) >> blocksize_bits);
li->extLocation.logicalBlockNum = 0;
li->extLocation.partitionReferenceNum = 0;
if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
lip1->extLength = (lip1->extLength -
(li->extLength &
UDF_EXTENT_LENGTH_MASK) +
UDF_EXTENT_LENGTH_MASK) &
~(blocksize - 1);
li->extLength = (li->extLength &
UDF_EXTENT_FLAG_MASK) +
(UDF_EXTENT_LENGTH_MASK + 1) -
blocksize;
} else {
li->extLength = lip1->extLength +
(((li->extLength &
UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) & ~(blocksize - 1));
if (*endnum > (i + 2))
memmove(&laarr[i + 1], &laarr[i + 2],
sizeof(struct long_ad) *
(*endnum - (i + 2)));
i--;
(*endnum)--;
}
} else if ((li->extLength >> 30) ==
(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
udf_free_blocks(inode->i_sb, inode,
&li->extLocation, 0,
((li->extLength &
UDF_EXTENT_LENGTH_MASK) +
blocksize - 1) >> blocksize_bits);
li->extLocation.logicalBlockNum = 0;
li->extLocation.partitionReferenceNum = 0;
li->extLength = (li->extLength &
UDF_EXTENT_LENGTH_MASK) |
EXT_NOT_RECORDED_NOT_ALLOCATED;
}
}
}
static void udf_update_extents(struct inode *inode,
struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
int startnum, int endnum,
struct extent_position *epos)
{
int start = 0, i;
struct kernel_lb_addr tmploc;
uint32_t tmplen;
if (startnum > endnum) {
for (i = 0; i < (startnum - endnum); i++)
udf_delete_aext(inode, *epos, laarr[i].extLocation,
laarr[i].extLength);
} else if (startnum < endnum) {
for (i = 0; i < (endnum - startnum); i++) {
udf_insert_aext(inode, *epos, laarr[i].extLocation,
laarr[i].extLength);
udf_next_aext(inode, epos, &laarr[i].extLocation,
&laarr[i].extLength, 1);
start++;
}
}
for (i = start; i < endnum; i++) {
udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
udf_write_aext(inode, epos, &laarr[i].extLocation,
laarr[i].extLength, 1);
}
}
struct buffer_head *udf_bread(struct inode *inode, int block,
int create, int *err)
{
struct buffer_head *bh = NULL;
bh = udf_getblk(inode, block, create, err);
if (!bh)
return NULL;
if (buffer_uptodate(bh))
return bh;
ll_rw_block(READ, 1, &bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return bh;
brelse(bh);
*err = -EIO;
return NULL;
}
void udf_truncate(struct inode *inode)
{
int offset;
int err;
struct udf_inode_info *iinfo;
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return;
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
return;
lock_kernel();
iinfo = UDF_I(inode);
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
if (inode->i_sb->s_blocksize <
(udf_file_entry_alloc_offset(inode) +
inode->i_size)) {
udf_expand_file_adinicb(inode, inode->i_size, &err);
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
inode->i_size = iinfo->i_lenAlloc;
unlock_kernel();
return;
} else
udf_truncate_extents(inode);
} else {
offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
0x00, inode->i_sb->s_blocksize -
offset - udf_file_entry_alloc_offset(inode));
iinfo->i_lenAlloc = inode->i_size;
}
} else {
block_truncate_page(inode->i_mapping, inode->i_size,
udf_get_block);
udf_truncate_extents(inode);
}
inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
if (IS_SYNC(inode))
udf_sync_inode(inode);
else
mark_inode_dirty(inode);
unlock_kernel();
}
static void __udf_read_inode(struct inode *inode)
{
struct buffer_head *bh = NULL;
struct fileEntry *fe;
uint16_t ident;
struct udf_inode_info *iinfo = UDF_I(inode);
/*
* Set defaults, but the inode is still incomplete!
* Note: get_new_inode() sets the following on a new inode:
* i_sb = sb
* i_no = ino
* i_flags = sb->s_flags
* i_state = 0
* clean_inode(): zero fills and sets
* i_count = 1
* i_nlink = 1
* i_op = NULL;
*/
bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
if (!bh) {
printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
inode->i_ino);
make_bad_inode(inode);
return;
}
if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
ident != TAG_IDENT_USE) {
printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
"failed ident=%d\n", inode->i_ino, ident);
brelse(bh);
make_bad_inode(inode);
return;
}
fe = (struct fileEntry *)bh->b_data;
if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
struct buffer_head *ibh;
ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
&ident);
if (ident == TAG_IDENT_IE && ibh) {
struct buffer_head *nbh = NULL;
struct kernel_lb_addr loc;
struct indirectEntry *ie;
ie = (struct indirectEntry *)ibh->b_data;
loc = lelb_to_cpu(ie->indirectICB.extLocation);
if (ie->indirectICB.extLength &&
(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
&ident))) {
if (ident == TAG_IDENT_FE ||
ident == TAG_IDENT_EFE) {
memcpy(&iinfo->i_location,
&loc,
sizeof(struct kernel_lb_addr));
brelse(bh);
brelse(ibh);
brelse(nbh);
__udf_read_inode(inode);
return;
}
brelse(nbh);
}
}
brelse(ibh);
} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
printk(KERN_ERR "udf: unsupported strategy type: %d\n",
le16_to_cpu(fe->icbTag.strategyType));
brelse(bh);
make_bad_inode(inode);
return;
}
udf_fill_inode(inode, bh);
brelse(bh);
}
static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
{
struct fileEntry *fe;
struct extendedFileEntry *efe;
int offset;
struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
struct udf_inode_info *iinfo = UDF_I(inode);
fe = (struct fileEntry *)bh->b_data;
efe = (struct extendedFileEntry *)bh->b_data;
if (fe->icbTag.strategyType == cpu_to_le16(4))
iinfo->i_strat4096 = 0;
else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
iinfo->i_strat4096 = 1;
iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
ICBTAG_FLAG_AD_MASK;
iinfo->i_unique = 0;
iinfo->i_lenEAttr = 0;
iinfo->i_lenExtents = 0;
iinfo->i_lenAlloc = 0;
iinfo->i_next_alloc_block = 0;
iinfo->i_next_alloc_goal = 0;
if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
iinfo->i_efe = 1;
iinfo->i_use = 0;
if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
sizeof(struct extendedFileEntry))) {
make_bad_inode(inode);
return;
}
memcpy(iinfo->i_ext.i_data,
bh->b_data + sizeof(struct extendedFileEntry),
inode->i_sb->s_blocksize -
sizeof(struct extendedFileEntry));
} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
iinfo->i_efe = 0;
iinfo->i_use = 0;
if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
sizeof(struct fileEntry))) {
make_bad_inode(inode);
return;
}
memcpy(iinfo->i_ext.i_data,
bh->b_data + sizeof(struct fileEntry),
inode->i_sb->s_blocksize - sizeof(struct fileEntry));
} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
iinfo->i_efe = 0;
iinfo->i_use = 1;
iinfo->i_lenAlloc = le32_to_cpu(
((struct unallocSpaceEntry *)bh->b_data)->
lengthAllocDescs);
if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
sizeof(struct unallocSpaceEntry))) {
make_bad_inode(inode);
return;
}
memcpy(iinfo->i_ext.i_data,
bh->b_data + sizeof(struct unallocSpaceEntry),
inode->i_sb->s_blocksize -
sizeof(struct unallocSpaceEntry));
return;
}
inode->i_uid = le32_to_cpu(fe->uid);
if (inode->i_uid == -1 ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
inode->i_gid = le32_to_cpu(fe->gid);
if (inode->i_gid == -1 ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
if (!inode->i_nlink)
inode->i_nlink = 1;
inode->i_size = le64_to_cpu(fe->informationLength);
iinfo->i_lenExtents = inode->i_size;
if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
sbi->s_fmode != UDF_INVALID_MODE)
inode->i_mode = sbi->s_fmode;
else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
sbi->s_dmode != UDF_INVALID_MODE)
inode->i_mode = sbi->s_dmode;
else
inode->i_mode = udf_convert_permissions(fe);
inode->i_mode &= ~sbi->s_umask;
if (iinfo->i_efe == 0) {
inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
(inode->i_sb->s_blocksize_bits - 9);
if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
inode->i_atime = sbi->s_record_time;
if (!udf_disk_stamp_to_time(&inode->i_mtime,
fe->modificationTime))
inode->i_mtime = sbi->s_record_time;
if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
inode->i_ctime = sbi->s_record_time;
iinfo->i_unique = le64_to_cpu(fe->uniqueID);
iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
} else {
inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
(inode->i_sb->s_blocksize_bits - 9);
if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
inode->i_atime = sbi->s_record_time;
if (!udf_disk_stamp_to_time(&inode->i_mtime,
efe->modificationTime))
inode->i_mtime = sbi->s_record_time;
if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
iinfo->i_crtime = sbi->s_record_time;
if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
inode->i_ctime = sbi->s_record_time;
iinfo->i_unique = le64_to_cpu(efe->uniqueID);
iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
offset = sizeof(struct extendedFileEntry) +
iinfo->i_lenEAttr;
}
switch (fe->icbTag.fileType) {
case ICBTAG_FILE_TYPE_DIRECTORY:
inode->i_op = &udf_dir_inode_operations;
inode->i_fop = &udf_dir_operations;
inode->i_mode |= S_IFDIR;
inc_nlink(inode);
break;
case ICBTAG_FILE_TYPE_REALTIME:
case ICBTAG_FILE_TYPE_REGULAR:
case ICBTAG_FILE_TYPE_UNDEF:
case ICBTAG_FILE_TYPE_VAT20:
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
inode->i_data.a_ops = &udf_adinicb_aops;
else
inode->i_data.a_ops = &udf_aops;
inode->i_op = &udf_file_inode_operations;
inode->i_fop = &udf_file_operations;
inode->i_mode |= S_IFREG;
break;
case ICBTAG_FILE_TYPE_BLOCK:
inode->i_mode |= S_IFBLK;
break;
case ICBTAG_FILE_TYPE_CHAR:
inode->i_mode |= S_IFCHR;
break;
case ICBTAG_FILE_TYPE_FIFO:
init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
break;
case ICBTAG_FILE_TYPE_SOCKET:
init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
break;
case ICBTAG_FILE_TYPE_SYMLINK:
inode->i_data.a_ops = &udf_symlink_aops;
inode->i_op = &page_symlink_inode_operations;
inode->i_mode = S_IFLNK | S_IRWXUGO;
break;
case ICBTAG_FILE_TYPE_MAIN:
udf_debug("METADATA FILE-----\n");
break;
case ICBTAG_FILE_TYPE_MIRROR:
udf_debug("METADATA MIRROR FILE-----\n");
break;
case ICBTAG_FILE_TYPE_BITMAP:
udf_debug("METADATA BITMAP FILE-----\n");
break;
default:
printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
"file type=%d\n", inode->i_ino,
fe->icbTag.fileType);
make_bad_inode(inode);
return;
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
struct deviceSpec *dsea =
(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
if (dsea) {
init_special_inode(inode, inode->i_mode,
MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
le32_to_cpu(dsea->minorDeviceIdent)));
/* Developer ID ??? */
} else
make_bad_inode(inode);
}
}
static int udf_alloc_i_data(struct inode *inode, size_t size)
{
struct udf_inode_info *iinfo = UDF_I(inode);
iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
if (!iinfo->i_ext.i_data) {
printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
"no free memory\n", inode->i_ino);
return -ENOMEM;
}
return 0;
}
static mode_t udf_convert_permissions(struct fileEntry *fe)
{
mode_t mode;
uint32_t permissions;
uint32_t flags;
permissions = le32_to_cpu(fe->permissions);
flags = le16_to_cpu(fe->icbTag.flags);
mode = ((permissions) & S_IRWXO) |
((permissions >> 2) & S_IRWXG) |
((permissions >> 4) & S_IRWXU) |
((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
return mode;
}
int udf_write_inode(struct inode *inode, int sync)
{
int ret;
lock_kernel();
ret = udf_update_inode(inode, sync);
unlock_kernel();
return ret;
}
int udf_sync_inode(struct inode *inode)
{
return udf_update_inode(inode, 1);
}
static int udf_update_inode(struct inode *inode, int do_sync)
{
struct buffer_head *bh = NULL;
struct fileEntry *fe;
struct extendedFileEntry *efe;
uint32_t udfperms;
uint16_t icbflags;
uint16_t crclen;
int err = 0;
struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
struct udf_inode_info *iinfo = UDF_I(inode);
bh = udf_tread(inode->i_sb,
udf_get_lb_pblock(inode->i_sb,
&iinfo->i_location, 0));
if (!bh) {
udf_debug("bread failure\n");
return -EIO;
}
memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
fe = (struct fileEntry *)bh->b_data;
efe = (struct extendedFileEntry *)bh->b_data;
if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
struct unallocSpaceEntry *use =
(struct unallocSpaceEntry *)bh->b_data;
use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
sizeof(struct unallocSpaceEntry));
crclen = sizeof(struct unallocSpaceEntry) +
iinfo->i_lenAlloc - sizeof(struct tag);
use->descTag.tagLocation = cpu_to_le32(
iinfo->i_location.
logicalBlockNum);
use->descTag.descCRCLength = cpu_to_le16(crclen);
use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
sizeof(struct tag),
crclen));
use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
mark_buffer_dirty(bh);
brelse(bh);
return err;
}
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
fe->uid = cpu_to_le32(-1);
else
fe->uid = cpu_to_le32(inode->i_uid);
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
fe->gid = cpu_to_le32(-1);
else
fe->gid = cpu_to_le32(inode->i_gid);
udfperms = ((inode->i_mode & S_IRWXO)) |
((inode->i_mode & S_IRWXG) << 2) |
((inode->i_mode & S_IRWXU) << 4);
udfperms |= (le32_to_cpu(fe->permissions) &
(FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
fe->permissions = cpu_to_le32(udfperms);
if (S_ISDIR(inode->i_mode))
fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
else
fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
fe->informationLength = cpu_to_le64(inode->i_size);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
struct regid *eid;
struct deviceSpec *dsea =
(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
if (!dsea) {
dsea = (struct deviceSpec *)
udf_add_extendedattr(inode,
sizeof(struct deviceSpec) +
sizeof(struct regid), 12, 0x3);
dsea->attrType = cpu_to_le32(12);
dsea->attrSubtype = 1;
dsea->attrLength = cpu_to_le32(
sizeof(struct deviceSpec) +
sizeof(struct regid));
dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
}
eid = (struct regid *)dsea->impUse;
memset(eid, 0, sizeof(struct regid));
strcpy(eid->ident, UDF_ID_DEVELOPER);
eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
eid->identSuffix[1] = UDF_OS_ID_LINUX;
dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
}
if (iinfo->i_efe == 0) {
memcpy(bh->b_data + sizeof(struct fileEntry),
iinfo->i_ext.i_data,
inode->i_sb->s_blocksize - sizeof(struct fileEntry));
fe->logicalBlocksRecorded = cpu_to_le64(
(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
(blocksize_bits - 9));
udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
memset(&(fe->impIdent), 0, sizeof(struct regid));
strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
fe->uniqueID = cpu_to_le64(iinfo->i_unique);
fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
crclen = sizeof(struct fileEntry);
} else {
memcpy(bh->b_data + sizeof(struct extendedFileEntry),
iinfo->i_ext.i_data,
inode->i_sb->s_blocksize -
sizeof(struct extendedFileEntry));
efe->objectSize = cpu_to_le64(inode->i_size);
efe->logicalBlocksRecorded = cpu_to_le64(
(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
(blocksize_bits - 9));
if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
(iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
iinfo->i_crtime = inode->i_atime;
if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
(iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
iinfo->i_crtime = inode->i_mtime;
if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
(iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
iinfo->i_crtime = inode->i_ctime;
udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
memset(&(efe->impIdent), 0, sizeof(struct regid));
strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
efe->uniqueID = cpu_to_le64(iinfo->i_unique);
efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
crclen = sizeof(struct extendedFileEntry);
}
if (iinfo->i_strat4096) {
fe->icbTag.strategyType = cpu_to_le16(4096);
fe->icbTag.strategyParameter = cpu_to_le16(1);
fe->icbTag.numEntries = cpu_to_le16(2);
} else {
fe->icbTag.strategyType = cpu_to_le16(4);
fe->icbTag.numEntries = cpu_to_le16(1);
}
if (S_ISDIR(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
else if (S_ISREG(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
else if (S_ISLNK(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
else if (S_ISBLK(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
else if (S_ISCHR(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
else if (S_ISFIFO(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
else if (S_ISSOCK(inode->i_mode))
fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
icbflags = iinfo->i_alloc_type |
((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
(le16_to_cpu(fe->icbTag.flags) &
~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
fe->icbTag.flags = cpu_to_le16(icbflags);
if (sbi->s_udfrev >= 0x0200)
fe->descTag.descVersion = cpu_to_le16(3);
else
fe->descTag.descVersion = cpu_to_le16(2);
fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
fe->descTag.tagLocation = cpu_to_le32(
iinfo->i_location.logicalBlockNum);
crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
sizeof(struct tag);
fe->descTag.descCRCLength = cpu_to_le16(crclen);
fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
crclen));
fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
/* write the data blocks */
mark_buffer_dirty(bh);
if (do_sync) {
sync_dirty_buffer(bh);
if (buffer_req(bh) && !buffer_uptodate(bh)) {
printk(KERN_WARNING "IO error syncing udf inode "
"[%s:%08lx]\n", inode->i_sb->s_id,
inode->i_ino);
err = -EIO;
}
}
brelse(bh);
return err;
}
struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
{
unsigned long block = udf_get_lb_pblock(sb, ino, 0);
struct inode *inode = iget_locked(sb, block);
if (!inode)
return NULL;
if (inode->i_state & I_NEW) {
memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
__udf_read_inode(inode);
unlock_new_inode(inode);
}
if (is_bad_inode(inode))
goto out_iput;
if (ino->logicalBlockNum >= UDF_SB(sb)->
s_partmaps[ino->partitionReferenceNum].s_partition_len) {
udf_debug("block=%d, partition=%d out of range\n",
ino->logicalBlockNum, ino->partitionReferenceNum);
make_bad_inode(inode);
goto out_iput;
}
return inode;
out_iput:
iput(inode);
return NULL;
}
int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
struct kernel_lb_addr *eloc, uint32_t elen, int inc)
{
int adsize;
struct short_ad *sad = NULL;
struct long_ad *lad = NULL;
struct allocExtDesc *aed;
int8_t etype;
uint8_t *ptr;
struct udf_inode_info *iinfo = UDF_I(inode);
if (!epos->bh)
ptr = iinfo->i_ext.i_data + epos->offset -
udf_file_entry_alloc_offset(inode) +
iinfo->i_lenEAttr;
else
ptr = epos->bh->b_data + epos->offset;
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
adsize = sizeof(struct short_ad);
else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
adsize = sizeof(struct long_ad);
else
return -1;
if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
char *sptr, *dptr;
struct buffer_head *nbh;
int err, loffset;
struct kernel_lb_addr obloc = epos->block;
epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
obloc.partitionReferenceNum,
obloc.logicalBlockNum, &err);
if (!epos->block.logicalBlockNum)
return -1;
nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
&epos->block,
0));
if (!nbh)
return -1;
lock_buffer(nbh);
memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
set_buffer_uptodate(nbh);
unlock_buffer(nbh);
mark_buffer_dirty_inode(nbh, inode);
aed = (struct allocExtDesc *)(nbh->b_data);
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
aed->previousAllocExtLocation =
cpu_to_le32(obloc.logicalBlockNum);
if (epos->offset + adsize > inode->i_sb->s_blocksize) {
loffset = epos->offset;
aed->lengthAllocDescs = cpu_to_le32(adsize);
sptr = ptr - adsize;
dptr = nbh->b_data + sizeof(struct allocExtDesc);
memcpy(dptr, sptr, adsize);
epos->offset = sizeof(struct allocExtDesc) + adsize;
} else {
loffset = epos->offset + adsize;
aed->lengthAllocDescs = cpu_to_le32(0);
sptr = ptr;
epos->offset = sizeof(struct allocExtDesc);
if (epos->bh) {
aed = (struct allocExtDesc *)epos->bh->b_data;
le32_add_cpu(&aed->lengthAllocDescs, adsize);
} else {
iinfo->i_lenAlloc += adsize;
mark_inode_dirty(inode);
}
}
if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
epos->block.logicalBlockNum, sizeof(struct tag));
else
udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
epos->block.logicalBlockNum, sizeof(struct tag));
switch (iinfo->i_alloc_type) {
case ICBTAG_FLAG_AD_SHORT:
sad = (struct short_ad *)sptr;
sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
inode->i_sb->s_blocksize);
sad->extPosition =
cpu_to_le32(epos->block.logicalBlockNum);
break;
case ICBTAG_FLAG_AD_LONG:
lad = (struct long_ad *)sptr;
lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
inode->i_sb->s_blocksize);
lad->extLocation = cpu_to_lelb(epos->block);
memset(lad->impUse, 0x00, sizeof(lad->impUse));
break;
}
if (epos->bh) {
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
udf_update_tag(epos->bh->b_data, loffset);
else
udf_update_tag(epos->bh->b_data,
sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(epos->bh, inode);
brelse(epos->bh);
} else {
mark_inode_dirty(inode);
}
epos->bh = nbh;
}
etype = udf_write_aext(inode, epos, eloc, elen, inc);
if (!epos->bh) {
iinfo->i_lenAlloc += adsize;
mark_inode_dirty(inode);
} else {
aed = (struct allocExtDesc *)epos->bh->b_data;
le32_add_cpu(&aed->lengthAllocDescs, adsize);
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
udf_update_tag(epos->bh->b_data,
epos->offset + (inc ? 0 : adsize));
else
udf_update_tag(epos->bh->b_data,
sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(epos->bh, inode);
}
return etype;
}
int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
struct kernel_lb_addr *eloc, uint32_t elen, int inc)
{
int adsize;
uint8_t *ptr;
struct short_ad *sad;
struct long_ad *lad;
struct udf_inode_info *iinfo = UDF_I(inode);
if (!epos->bh)
ptr = iinfo->i_ext.i_data + epos->offset -
udf_file_entry_alloc_offset(inode) +
iinfo->i_lenEAttr;
else
ptr = epos->bh->b_data + epos->offset;
switch (iinfo->i_alloc_type) {
case ICBTAG_FLAG_AD_SHORT:
sad = (struct short_ad *)ptr;
sad->extLength = cpu_to_le32(elen);
sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
adsize = sizeof(struct short_ad);
break;
case ICBTAG_FLAG_AD_LONG:
lad = (struct long_ad *)ptr;
lad->extLength = cpu_to_le32(elen);
lad->extLocation = cpu_to_lelb(*eloc);
memset(lad->impUse, 0x00, sizeof(lad->impUse));
adsize = sizeof(struct long_ad);
break;
default:
return -1;
}
if (epos->bh) {
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
struct allocExtDesc *aed =
(struct allocExtDesc *)epos->bh->b_data;
udf_update_tag(epos->bh->b_data,
le32_to_cpu(aed->lengthAllocDescs) +
sizeof(struct allocExtDesc));
}
mark_buffer_dirty_inode(epos->bh, inode);
} else {
mark_inode_dirty(inode);
}
if (inc)
epos->offset += adsize;
return (elen >> 30);
}
int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
{
int8_t etype;
while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
(EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
int block;
epos->block = *eloc;
epos->offset = sizeof(struct allocExtDesc);
brelse(epos->bh);
block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
epos->bh = udf_tread(inode->i_sb, block);
if (!epos->bh) {
udf_debug("reading block %d failed!\n", block);
return -1;
}
}
return etype;
}
int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
{
int alen;
int8_t etype;
uint8_t *ptr;
struct short_ad *sad;
struct long_ad *lad;
struct udf_inode_info *iinfo = UDF_I(inode);
if (!epos->bh) {
if (!epos->offset)
epos->offset = udf_file_entry_alloc_offset(inode);
ptr = iinfo->i_ext.i_data + epos->offset -
udf_file_entry_alloc_offset(inode) +
iinfo->i_lenEAttr;
alen = udf_file_entry_alloc_offset(inode) +
iinfo->i_lenAlloc;
} else {
if (!epos->offset)
epos->offset = sizeof(struct allocExtDesc);
ptr = epos->bh->b_data + epos->offset;
alen = sizeof(struct allocExtDesc) +
le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
lengthAllocDescs);
}
switch (iinfo->i_alloc_type) {
case ICBTAG_FLAG_AD_SHORT:
sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
if (!sad)
return -1;
etype = le32_to_cpu(sad->extLength) >> 30;
eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
eloc->partitionReferenceNum =
iinfo->i_location.partitionReferenceNum;
*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
break;
case ICBTAG_FLAG_AD_LONG:
lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
if (!lad)
return -1;
etype = le32_to_cpu(lad->extLength) >> 30;
*eloc = lelb_to_cpu(lad->extLocation);
*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
break;
default:
udf_debug("alloc_type = %d unsupported\n",
iinfo->i_alloc_type);
return -1;
}
return etype;
}
static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
struct kernel_lb_addr neloc, uint32_t nelen)
{
struct kernel_lb_addr oeloc;
uint32_t oelen;
int8_t etype;
if (epos.bh)
get_bh(epos.bh);
while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
udf_write_aext(inode, &epos, &neloc, nelen, 1);
neloc = oeloc;
nelen = (etype << 30) | oelen;
}
udf_add_aext(inode, &epos, &neloc, nelen, 1);
brelse(epos.bh);
return (nelen >> 30);
}
int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
struct kernel_lb_addr eloc, uint32_t elen)
{
struct extent_position oepos;
int adsize;
int8_t etype;
struct allocExtDesc *aed;
struct udf_inode_info *iinfo;
if (epos.bh) {
get_bh(epos.bh);
get_bh(epos.bh);
}
iinfo = UDF_I(inode);
if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
adsize = sizeof(struct short_ad);
else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
adsize = sizeof(struct long_ad);
else
adsize = 0;
oepos = epos;
if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
return -1;
while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
if (oepos.bh != epos.bh) {
oepos.block = epos.block;
brelse(oepos.bh);
get_bh(epos.bh);
oepos.bh = epos.bh;
oepos.offset = epos.offset - adsize;
}
}
memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
elen = 0;
if (epos.bh != oepos.bh) {
udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
udf_write_aext(inode, &oepos, &eloc, elen, 1);
udf_write_aext(inode, &oepos, &eloc, elen, 1);
if (!oepos.bh) {
iinfo->i_lenAlloc -= (adsize * 2);
mark_inode_dirty(inode);
} else {
aed = (struct allocExtDesc *)oepos.bh->b_data;
le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
udf_update_tag(oepos.bh->b_data,
oepos.offset - (2 * adsize));
else
udf_update_tag(oepos.bh->b_data,
sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(oepos.bh, inode);
}
} else {
udf_write_aext(inode, &oepos, &eloc, elen, 1);
if (!oepos.bh) {
iinfo->i_lenAlloc -= adsize;
mark_inode_dirty(inode);
} else {
aed = (struct allocExtDesc *)oepos.bh->b_data;
le32_add_cpu(&aed->lengthAllocDescs, -adsize);
if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
udf_update_tag(oepos.bh->b_data,
epos.offset - adsize);
else
udf_update_tag(oepos.bh->b_data,
sizeof(struct allocExtDesc));
mark_buffer_dirty_inode(oepos.bh, inode);
}
}
brelse(epos.bh);
brelse(oepos.bh);
return (elen >> 30);
}
int8_t inode_bmap(struct inode *inode, sector_t block,
struct extent_position *pos, struct kernel_lb_addr *eloc,
uint32_t *elen, sector_t *offset)
{
unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
loff_t lbcount = 0, bcount =
(loff_t) block << blocksize_bits;
int8_t etype;
struct udf_inode_info *iinfo;
iinfo = UDF_I(inode);
pos->offset = 0;
pos->block = iinfo->i_location;
pos->bh = NULL;
*elen = 0;
do {
etype = udf_next_aext(inode, pos, eloc, elen, 1);
if (etype == -1) {
*offset = (bcount - lbcount) >> blocksize_bits;
iinfo->i_lenExtents = lbcount;
return -1;
}
lbcount += *elen;
} while (lbcount <= bcount);
*offset = (bcount + *elen - lbcount) >> blocksize_bits;
return etype;
}
long udf_block_map(struct inode *inode, sector_t block)
{
struct kernel_lb_addr eloc;
uint32_t elen;
sector_t offset;
struct extent_position epos = {};
int ret;
lock_kernel();
if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
(EXT_RECORDED_ALLOCATED >> 30))
ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
else
ret = 0;
unlock_kernel();
brelse(epos.bh);
if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
return udf_fixed_to_variable(ret);
else
return ret;
}