alistair23-linux/drivers/w1/slaves/w1_therm.c
Thomas Gleixner 53c8ab3584 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 147
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the [therms] of the gnu general public license as published
  by the free software foundation either version 2 of the license or
  at your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  59 temple place suite 330 boston ma 02111 1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 2 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190524100844.941364072@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:25:18 -07:00

748 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* w1_therm.c
*
* Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
*/
#include <asm/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hwmon.h>
#include <linux/w1.h>
#define W1_THERM_DS18S20 0x10
#define W1_THERM_DS1822 0x22
#define W1_THERM_DS18B20 0x28
#define W1_THERM_DS1825 0x3B
#define W1_THERM_DS28EA00 0x42
/* Allow the strong pullup to be disabled, but default to enabled.
* If it was disabled a parasite powered device might not get the require
* current to do a temperature conversion. If it is enabled parasite powered
* devices have a better chance of getting the current required.
* In case the parasite power-detection is not working (seems to be the case
* for some DS18S20) the strong pullup can also be forced, regardless of the
* power state of the devices.
*
* Summary of options:
* - strong_pullup = 0 Disable strong pullup completely
* - strong_pullup = 1 Enable automatic strong pullup detection
* - strong_pullup = 2 Force strong pullup
*/
static int w1_strong_pullup = 1;
module_param_named(strong_pullup, w1_strong_pullup, int, 0);
struct w1_therm_family_data {
uint8_t rom[9];
atomic_t refcnt;
};
struct therm_info {
u8 rom[9];
u8 crc;
u8 verdict;
};
/* return the address of the refcnt in the family data */
#define THERM_REFCNT(family_data) \
(&((struct w1_therm_family_data *)family_data)->refcnt)
static int w1_therm_add_slave(struct w1_slave *sl)
{
sl->family_data = kzalloc(sizeof(struct w1_therm_family_data),
GFP_KERNEL);
if (!sl->family_data)
return -ENOMEM;
atomic_set(THERM_REFCNT(sl->family_data), 1);
return 0;
}
static void w1_therm_remove_slave(struct w1_slave *sl)
{
int refcnt = atomic_sub_return(1, THERM_REFCNT(sl->family_data));
while (refcnt) {
msleep(1000);
refcnt = atomic_read(THERM_REFCNT(sl->family_data));
}
kfree(sl->family_data);
sl->family_data = NULL;
}
static ssize_t w1_slave_show(struct device *device,
struct device_attribute *attr, char *buf);
static ssize_t w1_slave_store(struct device *device,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t w1_seq_show(struct device *device,
struct device_attribute *attr, char *buf);
static DEVICE_ATTR_RW(w1_slave);
static DEVICE_ATTR_RO(w1_seq);
static struct attribute *w1_therm_attrs[] = {
&dev_attr_w1_slave.attr,
NULL,
};
static struct attribute *w1_ds28ea00_attrs[] = {
&dev_attr_w1_slave.attr,
&dev_attr_w1_seq.attr,
NULL,
};
ATTRIBUTE_GROUPS(w1_therm);
ATTRIBUTE_GROUPS(w1_ds28ea00);
#if IS_REACHABLE(CONFIG_HWMON)
static int w1_read_temp(struct device *dev, u32 attr, int channel,
long *val);
static umode_t w1_is_visible(const void *_data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
return attr == hwmon_temp_input ? 0444 : 0;
}
static int w1_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return w1_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const u32 w1_temp_config[] = {
HWMON_T_INPUT,
0
};
static const struct hwmon_channel_info w1_temp = {
.type = hwmon_temp,
.config = w1_temp_config,
};
static const struct hwmon_channel_info *w1_info[] = {
&w1_temp,
NULL
};
static const struct hwmon_ops w1_hwmon_ops = {
.is_visible = w1_is_visible,
.read = w1_read,
};
static const struct hwmon_chip_info w1_chip_info = {
.ops = &w1_hwmon_ops,
.info = w1_info,
};
#define W1_CHIPINFO (&w1_chip_info)
#else
#define W1_CHIPINFO NULL
#endif
static struct w1_family_ops w1_therm_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_therm_groups,
.chip_info = W1_CHIPINFO,
};
static struct w1_family_ops w1_ds28ea00_fops = {
.add_slave = w1_therm_add_slave,
.remove_slave = w1_therm_remove_slave,
.groups = w1_ds28ea00_groups,
.chip_info = W1_CHIPINFO,
};
static struct w1_family w1_therm_family_DS18S20 = {
.fid = W1_THERM_DS18S20,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS18B20 = {
.fid = W1_THERM_DS18B20,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS1822 = {
.fid = W1_THERM_DS1822,
.fops = &w1_therm_fops,
};
static struct w1_family w1_therm_family_DS28EA00 = {
.fid = W1_THERM_DS28EA00,
.fops = &w1_ds28ea00_fops,
};
static struct w1_family w1_therm_family_DS1825 = {
.fid = W1_THERM_DS1825,
.fops = &w1_therm_fops,
};
struct w1_therm_family_converter {
u8 broken;
u16 reserved;
struct w1_family *f;
int (*convert)(u8 rom[9]);
int (*precision)(struct device *device, int val);
int (*eeprom)(struct device *device);
};
/* write configuration to eeprom */
static inline int w1_therm_eeprom(struct device *device);
/* Set precision for conversion */
static inline int w1_DS18B20_precision(struct device *device, int val);
static inline int w1_DS18S20_precision(struct device *device, int val);
/* The return value is millidegrees Centigrade. */
static inline int w1_DS18B20_convert_temp(u8 rom[9]);
static inline int w1_DS18S20_convert_temp(u8 rom[9]);
static struct w1_therm_family_converter w1_therm_families[] = {
{
.f = &w1_therm_family_DS18S20,
.convert = w1_DS18S20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS1822,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS18B20,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18B20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS28EA00,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
},
{
.f = &w1_therm_family_DS1825,
.convert = w1_DS18B20_convert_temp,
.precision = w1_DS18S20_precision,
.eeprom = w1_therm_eeprom
}
};
static inline int w1_therm_eeprom(struct device *device)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct w1_master *dev = sl->master;
u8 rom[9], external_power;
int ret, max_trying = 10;
u8 *family_data = sl->family_data;
if (!sl->family_data) {
ret = -ENODEV;
goto error;
}
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(family_data));
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
memset(rom, 0, sizeof(rom));
while (max_trying--) {
if (!w1_reset_select_slave(sl)) {
unsigned int tm = 10;
unsigned long sleep_rem;
/* check if in parasite mode */
w1_write_8(dev, W1_READ_PSUPPLY);
external_power = w1_read_8(dev);
if (w1_reset_select_slave(sl))
continue;
/* 10ms strong pullup/delay after the copy command */
if (w1_strong_pullup == 2 ||
(!external_power && w1_strong_pullup))
w1_next_pullup(dev, tm);
w1_write_8(dev, W1_COPY_SCRATCHPAD);
if (external_power) {
mutex_unlock(&dev->bus_mutex);
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto dec_refcnt;
}
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
} else if (!w1_strong_pullup) {
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
}
break;
}
}
mt_unlock:
mutex_unlock(&dev->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(family_data));
error:
return ret;
}
/* DS18S20 does not feature configuration register */
static inline int w1_DS18S20_precision(struct device *device, int val)
{
return 0;
}
static inline int w1_DS18B20_precision(struct device *device, int val)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct w1_master *dev = sl->master;
u8 rom[9], crc;
int ret, max_trying = 10;
u8 *family_data = sl->family_data;
uint8_t precision_bits;
uint8_t mask = 0x60;
if (val > 12 || val < 9) {
pr_warn("Unsupported precision\n");
ret = -EINVAL;
goto error;
}
if (!sl->family_data) {
ret = -ENODEV;
goto error;
}
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(family_data));
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
memset(rom, 0, sizeof(rom));
/* translate precision to bitmask (see datasheet page 9) */
switch (val) {
case 9:
precision_bits = 0x00;
break;
case 10:
precision_bits = 0x20;
break;
case 11:
precision_bits = 0x40;
break;
case 12:
default:
precision_bits = 0x60;
break;
}
while (max_trying--) {
crc = 0;
if (!w1_reset_select_slave(sl)) {
int count = 0;
/* read values to only alter precision bits */
w1_write_8(dev, W1_READ_SCRATCHPAD);
count = w1_read_block(dev, rom, 9);
if (count != 9)
dev_warn(device, "w1_read_block() returned %u instead of 9.\n", count);
crc = w1_calc_crc8(rom, 8);
if (rom[8] == crc) {
rom[4] = (rom[4] & ~mask) | (precision_bits & mask);
if (!w1_reset_select_slave(sl)) {
w1_write_8(dev, W1_WRITE_SCRATCHPAD);
w1_write_8(dev, rom[2]);
w1_write_8(dev, rom[3]);
w1_write_8(dev, rom[4]);
break;
}
}
}
}
mutex_unlock(&dev->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(family_data));
error:
return ret;
}
static inline int w1_DS18B20_convert_temp(u8 rom[9])
{
s16 t = le16_to_cpup((__le16 *)rom);
return t*1000/16;
}
static inline int w1_DS18S20_convert_temp(u8 rom[9])
{
int t, h;
if (!rom[7])
return 0;
if (rom[1] == 0)
t = ((s32)rom[0] >> 1)*1000;
else
t = 1000*(-1*(s32)(0x100-rom[0]) >> 1);
t -= 250;
h = 1000*((s32)rom[7] - (s32)rom[6]);
h /= (s32)rom[7];
t += h;
return t;
}
static inline int w1_convert_temp(u8 rom[9], u8 fid)
{
int i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i)
if (w1_therm_families[i].f->fid == fid)
return w1_therm_families[i].convert(rom);
return 0;
}
static ssize_t w1_slave_store(struct device *device,
struct device_attribute *attr, const char *buf,
size_t size)
{
int val, ret;
struct w1_slave *sl = dev_to_w1_slave(device);
int i;
ret = kstrtoint(buf, 0, &val);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i) {
if (w1_therm_families[i].f->fid == sl->family->fid) {
/* zero value indicates to write current configuration to eeprom */
if (val == 0)
ret = w1_therm_families[i].eeprom(device);
else
ret = w1_therm_families[i].precision(device, val);
break;
}
}
return ret ? : size;
}
static ssize_t read_therm(struct device *device,
struct w1_slave *sl, struct therm_info *info)
{
struct w1_master *dev = sl->master;
u8 external_power;
int ret, max_trying = 10;
u8 *family_data = sl->family_data;
if (!family_data) {
ret = -ENODEV;
goto error;
}
/* prevent the slave from going away in sleep */
atomic_inc(THERM_REFCNT(family_data));
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
memset(info->rom, 0, sizeof(info->rom));
while (max_trying--) {
info->verdict = 0;
info->crc = 0;
if (!w1_reset_select_slave(sl)) {
int count = 0;
unsigned int tm = 750;
unsigned long sleep_rem;
w1_write_8(dev, W1_READ_PSUPPLY);
external_power = w1_read_8(dev);
if (w1_reset_select_slave(sl))
continue;
/* 750ms strong pullup (or delay) after the convert */
if (w1_strong_pullup == 2 ||
(!external_power && w1_strong_pullup))
w1_next_pullup(dev, tm);
w1_write_8(dev, W1_CONVERT_TEMP);
if (external_power) {
mutex_unlock(&dev->bus_mutex);
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto dec_refcnt;
}
ret = mutex_lock_interruptible(&dev->bus_mutex);
if (ret != 0)
goto dec_refcnt;
} else if (!w1_strong_pullup) {
sleep_rem = msleep_interruptible(tm);
if (sleep_rem != 0) {
ret = -EINTR;
goto mt_unlock;
}
}
if (!w1_reset_select_slave(sl)) {
w1_write_8(dev, W1_READ_SCRATCHPAD);
count = w1_read_block(dev, info->rom, 9);
if (count != 9) {
dev_warn(device, "w1_read_block() "
"returned %u instead of 9.\n",
count);
}
info->crc = w1_calc_crc8(info->rom, 8);
if (info->rom[8] == info->crc)
info->verdict = 1;
}
}
if (info->verdict)
break;
}
mt_unlock:
mutex_unlock(&dev->bus_mutex);
dec_refcnt:
atomic_dec(THERM_REFCNT(family_data));
error:
return ret;
}
static ssize_t w1_slave_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
struct therm_info info;
u8 *family_data = sl->family_data;
int ret, i;
ssize_t c = PAGE_SIZE;
u8 fid = sl->family->fid;
ret = read_therm(device, sl, &info);
if (ret)
return ret;
for (i = 0; i < 9; ++i)
c -= snprintf(buf + PAGE_SIZE - c, c, "%02x ", info.rom[i]);
c -= snprintf(buf + PAGE_SIZE - c, c, ": crc=%02x %s\n",
info.crc, (info.verdict) ? "YES" : "NO");
if (info.verdict)
memcpy(family_data, info.rom, sizeof(info.rom));
else
dev_warn(device, "Read failed CRC check\n");
for (i = 0; i < 9; ++i)
c -= snprintf(buf + PAGE_SIZE - c, c, "%02x ",
((u8 *)family_data)[i]);
c -= snprintf(buf + PAGE_SIZE - c, c, "t=%d\n",
w1_convert_temp(info.rom, fid));
ret = PAGE_SIZE - c;
return ret;
}
#if IS_REACHABLE(CONFIG_HWMON)
static int w1_read_temp(struct device *device, u32 attr, int channel,
long *val)
{
struct w1_slave *sl = dev_get_drvdata(device);
struct therm_info info;
u8 fid = sl->family->fid;
int ret;
switch (attr) {
case hwmon_temp_input:
ret = read_therm(device, sl, &info);
if (ret)
return ret;
if (!info.verdict) {
ret = -EIO;
return ret;
}
*val = w1_convert_temp(info.rom, fid);
ret = 0;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
#endif
#define W1_42_CHAIN 0x99
#define W1_42_CHAIN_OFF 0x3C
#define W1_42_CHAIN_OFF_INV 0xC3
#define W1_42_CHAIN_ON 0x5A
#define W1_42_CHAIN_ON_INV 0xA5
#define W1_42_CHAIN_DONE 0x96
#define W1_42_CHAIN_DONE_INV 0x69
#define W1_42_COND_READ 0x0F
#define W1_42_SUCCESS_CONFIRM_BYTE 0xAA
#define W1_42_FINISHED_BYTE 0xFF
static ssize_t w1_seq_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct w1_slave *sl = dev_to_w1_slave(device);
ssize_t c = PAGE_SIZE;
int rv;
int i;
u8 ack;
u64 rn;
struct w1_reg_num *reg_num;
int seq = 0;
mutex_lock(&sl->master->bus_mutex);
/* Place all devices in CHAIN state */
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_SKIP_ROM);
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_ON);
w1_write_8(sl->master, W1_42_CHAIN_ON_INV);
msleep(sl->master->pullup_duration);
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
/* In case the bus fails to send 0xFF, limit*/
for (i = 0; i <= 64; i++) {
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_42_COND_READ);
rv = w1_read_block(sl->master, (u8 *)&rn, 8);
reg_num = (struct w1_reg_num *) &rn;
if (reg_num->family == W1_42_FINISHED_BYTE)
break;
if (sl->reg_num.id == reg_num->id)
seq = i;
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_DONE);
w1_write_8(sl->master, W1_42_CHAIN_DONE_INV);
w1_read_block(sl->master, &ack, sizeof(ack));
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
}
/* Exit from CHAIN state */
if (w1_reset_bus(sl->master))
goto error;
w1_write_8(sl->master, W1_SKIP_ROM);
w1_write_8(sl->master, W1_42_CHAIN);
w1_write_8(sl->master, W1_42_CHAIN_OFF);
w1_write_8(sl->master, W1_42_CHAIN_OFF_INV);
/* check for acknowledgment */
ack = w1_read_8(sl->master);
if (ack != W1_42_SUCCESS_CONFIRM_BYTE)
goto error;
mutex_unlock(&sl->master->bus_mutex);
c -= snprintf(buf + PAGE_SIZE - c, c, "%d\n", seq);
return PAGE_SIZE - c;
error:
mutex_unlock(&sl->master->bus_mutex);
return -EIO;
}
static int __init w1_therm_init(void)
{
int err, i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i) {
err = w1_register_family(w1_therm_families[i].f);
if (err)
w1_therm_families[i].broken = 1;
}
return 0;
}
static void __exit w1_therm_fini(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(w1_therm_families); ++i)
if (!w1_therm_families[i].broken)
w1_unregister_family(w1_therm_families[i].f);
}
module_init(w1_therm_init);
module_exit(w1_therm_fini);
MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
MODULE_DESCRIPTION("Driver for 1-wire Dallas network protocol, temperature family.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS18S20));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS1822));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS18B20));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS1825));
MODULE_ALIAS("w1-family-" __stringify(W1_THERM_DS28EA00));