alistair23-linux/drivers/scsi/libsas/sas_init.c
Thomas Gleixner 5078709e89 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 59
Based on 1 normalized pattern(s):

  this file is licensed under gplv2 this program is free software you
  can redistribute it and or modify it under the terms of the gnu
  general public license as published by the free software foundation
  either version 2 of the license or at your option any later version
  this program is distributed in the hope that it will be useful but
  without any warranty without even the implied warranty of
  merchantability or fitness for a particular purpose see the gnu
  general public license for more details you should have received a
  copy of the gnu general public license along with this program if
  not write to the free software foundation inc 59 temple place suite
  330 boston ma 02111 1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 5 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520071858.561902672@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:36:44 +02:00

669 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Serial Attached SCSI (SAS) Transport Layer initialization
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <scsi/sas_ata.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "sas_internal.h"
#include "../scsi_sas_internal.h"
static struct kmem_cache *sas_task_cache;
static struct kmem_cache *sas_event_cache;
struct sas_task *sas_alloc_task(gfp_t flags)
{
struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
if (task) {
spin_lock_init(&task->task_state_lock);
task->task_state_flags = SAS_TASK_STATE_PENDING;
}
return task;
}
EXPORT_SYMBOL_GPL(sas_alloc_task);
struct sas_task *sas_alloc_slow_task(gfp_t flags)
{
struct sas_task *task = sas_alloc_task(flags);
struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
if (!task || !slow) {
if (task)
kmem_cache_free(sas_task_cache, task);
kfree(slow);
return NULL;
}
task->slow_task = slow;
slow->task = task;
timer_setup(&slow->timer, NULL, 0);
init_completion(&slow->completion);
return task;
}
EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
void sas_free_task(struct sas_task *task)
{
if (task) {
kfree(task->slow_task);
kmem_cache_free(sas_task_cache, task);
}
}
EXPORT_SYMBOL_GPL(sas_free_task);
/*------------ SAS addr hash -----------*/
void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
{
const u32 poly = 0x00DB2777;
u32 r = 0;
int i;
for (i = 0; i < SAS_ADDR_SIZE; i++) {
int b;
for (b = (SAS_ADDR_SIZE - 1); b >= 0; b--) {
r <<= 1;
if ((1 << b) & sas_addr[i]) {
if (!(r & 0x01000000))
r ^= poly;
} else if (r & 0x01000000) {
r ^= poly;
}
}
}
hashed[0] = (r >> 16) & 0xFF;
hashed[1] = (r >> 8) & 0xFF;
hashed[2] = r & 0xFF;
}
int sas_register_ha(struct sas_ha_struct *sas_ha)
{
char name[64];
int error = 0;
mutex_init(&sas_ha->disco_mutex);
spin_lock_init(&sas_ha->phy_port_lock);
sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
set_bit(SAS_HA_REGISTERED, &sas_ha->state);
spin_lock_init(&sas_ha->lock);
mutex_init(&sas_ha->drain_mutex);
init_waitqueue_head(&sas_ha->eh_wait_q);
INIT_LIST_HEAD(&sas_ha->defer_q);
INIT_LIST_HEAD(&sas_ha->eh_dev_q);
sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
error = sas_register_phys(sas_ha);
if (error) {
pr_notice("couldn't register sas phys:%d\n", error);
return error;
}
error = sas_register_ports(sas_ha);
if (error) {
pr_notice("couldn't register sas ports:%d\n", error);
goto Undo_phys;
}
error = sas_init_events(sas_ha);
if (error) {
pr_notice("couldn't start event thread:%d\n", error);
goto Undo_ports;
}
error = -ENOMEM;
snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
sas_ha->event_q = create_singlethread_workqueue(name);
if (!sas_ha->event_q)
goto Undo_ports;
snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
sas_ha->disco_q = create_singlethread_workqueue(name);
if (!sas_ha->disco_q)
goto Undo_event_q;
INIT_LIST_HEAD(&sas_ha->eh_done_q);
INIT_LIST_HEAD(&sas_ha->eh_ata_q);
return 0;
Undo_event_q:
destroy_workqueue(sas_ha->event_q);
Undo_ports:
sas_unregister_ports(sas_ha);
Undo_phys:
return error;
}
static void sas_disable_events(struct sas_ha_struct *sas_ha)
{
/* Set the state to unregistered to avoid further unchained
* events to be queued, and flush any in-progress drainers
*/
mutex_lock(&sas_ha->drain_mutex);
spin_lock_irq(&sas_ha->lock);
clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
spin_unlock_irq(&sas_ha->lock);
__sas_drain_work(sas_ha);
mutex_unlock(&sas_ha->drain_mutex);
}
int sas_unregister_ha(struct sas_ha_struct *sas_ha)
{
sas_disable_events(sas_ha);
sas_unregister_ports(sas_ha);
/* flush unregistration work */
mutex_lock(&sas_ha->drain_mutex);
__sas_drain_work(sas_ha);
mutex_unlock(&sas_ha->drain_mutex);
destroy_workqueue(sas_ha->disco_q);
destroy_workqueue(sas_ha->event_q);
return 0;
}
static int sas_get_linkerrors(struct sas_phy *phy)
{
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
}
return sas_smp_get_phy_events(phy);
}
int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
{
struct domain_device *dev = NULL;
/* try to route user requested link resets through libata */
if (asd_phy->port)
dev = asd_phy->port->port_dev;
/* validate that dev has been probed */
if (dev)
dev = sas_find_dev_by_rphy(dev->rphy);
if (dev && dev_is_sata(dev)) {
sas_ata_schedule_reset(dev);
sas_ata_wait_eh(dev);
return 0;
}
return -ENODEV;
}
/*
* transport_sas_phy_reset - reset a phy and permit libata to manage the link
*
* phy reset request via sysfs in host workqueue context so we know we
* can block on eh and safely traverse the domain_device topology
*/
static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
{
enum phy_func reset_type;
if (hard_reset)
reset_type = PHY_FUNC_HARD_RESET;
else
reset_type = PHY_FUNC_LINK_RESET;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
return 0;
return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
if (ata_dev && !hard_reset) {
sas_ata_schedule_reset(ata_dev);
sas_ata_wait_eh(ata_dev);
return 0;
} else
return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
}
}
static int sas_phy_enable(struct sas_phy *phy, int enable)
{
int ret;
enum phy_func cmd;
if (enable)
cmd = PHY_FUNC_LINK_RESET;
else
cmd = PHY_FUNC_DISABLE;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
if (enable)
ret = transport_sas_phy_reset(phy, 0);
else
ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
if (enable)
ret = transport_sas_phy_reset(phy, 0);
else
ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
}
return ret;
}
int sas_phy_reset(struct sas_phy *phy, int hard_reset)
{
int ret;
enum phy_func reset_type;
if (!phy->enabled)
return -ENODEV;
if (hard_reset)
reset_type = PHY_FUNC_HARD_RESET;
else
reset_type = PHY_FUNC_LINK_RESET;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
}
return ret;
}
int sas_set_phy_speed(struct sas_phy *phy,
struct sas_phy_linkrates *rates)
{
int ret;
if ((rates->minimum_linkrate &&
rates->minimum_linkrate > phy->maximum_linkrate) ||
(rates->maximum_linkrate &&
rates->maximum_linkrate < phy->minimum_linkrate))
return -EINVAL;
if (rates->minimum_linkrate &&
rates->minimum_linkrate < phy->minimum_linkrate_hw)
rates->minimum_linkrate = phy->minimum_linkrate_hw;
if (rates->maximum_linkrate &&
rates->maximum_linkrate > phy->maximum_linkrate_hw)
rates->maximum_linkrate = phy->maximum_linkrate_hw;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
rates);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
ret = sas_smp_phy_control(ddev, phy->number,
PHY_FUNC_LINK_RESET, rates);
}
return ret;
}
void sas_prep_resume_ha(struct sas_ha_struct *ha)
{
int i;
set_bit(SAS_HA_REGISTERED, &ha->state);
/* clear out any stale link events/data from the suspension path */
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_phy *phy = ha->sas_phy[i];
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
phy->frame_rcvd_size = 0;
}
}
EXPORT_SYMBOL(sas_prep_resume_ha);
static int phys_suspended(struct sas_ha_struct *ha)
{
int i, rc = 0;
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_phy *phy = ha->sas_phy[i];
if (phy->suspended)
rc++;
}
return rc;
}
void sas_resume_ha(struct sas_ha_struct *ha)
{
const unsigned long tmo = msecs_to_jiffies(25000);
int i;
/* deform ports on phys that did not resume
* at this point we may be racing the phy coming back (as posted
* by the lldd). So we post the event and once we are in the
* libsas context check that the phy remains suspended before
* tearing it down.
*/
i = phys_suspended(ha);
if (i)
dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
i, i > 1 ? "s" : "");
wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_phy *phy = ha->sas_phy[i];
if (phy->suspended) {
dev_warn(&phy->phy->dev, "resume timeout\n");
sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT);
}
}
/* all phys are back up or timed out, turn on i/o so we can
* flush out disks that did not return
*/
scsi_unblock_requests(ha->core.shost);
sas_drain_work(ha);
}
EXPORT_SYMBOL(sas_resume_ha);
void sas_suspend_ha(struct sas_ha_struct *ha)
{
int i;
sas_disable_events(ha);
scsi_block_requests(ha->core.shost);
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_port *port = ha->sas_port[i];
sas_discover_event(port, DISCE_SUSPEND);
}
/* flush suspend events while unregistered */
mutex_lock(&ha->drain_mutex);
__sas_drain_work(ha);
mutex_unlock(&ha->drain_mutex);
}
EXPORT_SYMBOL(sas_suspend_ha);
static void sas_phy_release(struct sas_phy *phy)
{
kfree(phy->hostdata);
phy->hostdata = NULL;
}
static void phy_reset_work(struct work_struct *work)
{
struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
}
static void phy_enable_work(struct work_struct *work)
{
struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
d->enable_result = sas_phy_enable(d->phy, d->enable);
}
static int sas_phy_setup(struct sas_phy *phy)
{
struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
mutex_init(&d->event_lock);
INIT_SAS_WORK(&d->reset_work, phy_reset_work);
INIT_SAS_WORK(&d->enable_work, phy_enable_work);
d->phy = phy;
phy->hostdata = d;
return 0;
}
static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
{
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
struct sas_phy_data *d = phy->hostdata;
int rc;
if (!d)
return -ENOMEM;
/* libsas workqueue coordinates ata-eh reset with discovery */
mutex_lock(&d->event_lock);
d->reset_result = 0;
d->hard_reset = hard_reset;
spin_lock_irq(&ha->lock);
sas_queue_work(ha, &d->reset_work);
spin_unlock_irq(&ha->lock);
rc = sas_drain_work(ha);
if (rc == 0)
rc = d->reset_result;
mutex_unlock(&d->event_lock);
return rc;
}
static int queue_phy_enable(struct sas_phy *phy, int enable)
{
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
struct sas_phy_data *d = phy->hostdata;
int rc;
if (!d)
return -ENOMEM;
/* libsas workqueue coordinates ata-eh reset with discovery */
mutex_lock(&d->event_lock);
d->enable_result = 0;
d->enable = enable;
spin_lock_irq(&ha->lock);
sas_queue_work(ha, &d->enable_work);
spin_unlock_irq(&ha->lock);
rc = sas_drain_work(ha);
if (rc == 0)
rc = d->enable_result;
mutex_unlock(&d->event_lock);
return rc;
}
static struct sas_function_template sft = {
.phy_enable = queue_phy_enable,
.phy_reset = queue_phy_reset,
.phy_setup = sas_phy_setup,
.phy_release = sas_phy_release,
.set_phy_speed = sas_set_phy_speed,
.get_linkerrors = sas_get_linkerrors,
.smp_handler = sas_smp_handler,
};
static inline ssize_t phy_event_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
}
static inline ssize_t phy_event_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
sha->event_thres = simple_strtol(buf, NULL, 10);
/* threshold cannot be set too small */
if (sha->event_thres < 32)
sha->event_thres = 32;
return count;
}
DEVICE_ATTR(phy_event_threshold,
S_IRUGO|S_IWUSR,
phy_event_threshold_show,
phy_event_threshold_store);
EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
struct scsi_transport_template *
sas_domain_attach_transport(struct sas_domain_function_template *dft)
{
struct scsi_transport_template *stt = sas_attach_transport(&sft);
struct sas_internal *i;
if (!stt)
return stt;
i = to_sas_internal(stt);
i->dft = dft;
stt->create_work_queue = 1;
stt->eh_strategy_handler = sas_scsi_recover_host;
return stt;
}
EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy)
{
struct asd_sas_event *event;
gfp_t flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
struct sas_ha_struct *sas_ha = phy->ha;
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
event = kmem_cache_zalloc(sas_event_cache, flags);
if (!event)
return NULL;
atomic_inc(&phy->event_nr);
if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
if (i->dft->lldd_control_phy) {
if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
pr_notice("The phy%d bursting events, shut it down.\n",
phy->id);
sas_notify_phy_event(phy, PHYE_SHUTDOWN);
}
} else {
/* Do not support PHY control, stop allocating events */
WARN_ONCE(1, "PHY control not supported.\n");
kmem_cache_free(sas_event_cache, event);
atomic_dec(&phy->event_nr);
event = NULL;
}
}
return event;
}
void sas_free_event(struct asd_sas_event *event)
{
struct asd_sas_phy *phy = event->phy;
kmem_cache_free(sas_event_cache, event);
atomic_dec(&phy->event_nr);
}
/* ---------- SAS Class register/unregister ---------- */
static int __init sas_class_init(void)
{
sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
if (!sas_task_cache)
goto out;
sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
if (!sas_event_cache)
goto free_task_kmem;
return 0;
free_task_kmem:
kmem_cache_destroy(sas_task_cache);
out:
return -ENOMEM;
}
static void __exit sas_class_exit(void)
{
kmem_cache_destroy(sas_task_cache);
kmem_cache_destroy(sas_event_cache);
}
MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
MODULE_DESCRIPTION("SAS Transport Layer");
MODULE_LICENSE("GPL v2");
module_init(sas_class_init);
module_exit(sas_class_exit);
EXPORT_SYMBOL_GPL(sas_register_ha);
EXPORT_SYMBOL_GPL(sas_unregister_ha);