alistair23-linux/drivers/gpu/drm/sun4i/sun4i_frontend.c
Chen-Yu Tsai d0ec0a3e48
drm/sun4i: Add support for A23 display pipeline
The A23's display pipeline is similar to the A33. Differences include:

  - Display backend supports larger layers, 8192x8192 instead of 2048x2048

  - TCON has DMA input

  - There is no SAT module packed in the display backend

Add support for the display pipeline and its components.

As the MIPI DSI output device is not officially documented, and there
are no A23 reference devices to test it, it is not covered by this
patch.

Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190125032314.20915-7-wens@csie.org
2019-01-25 10:42:07 +01:00

749 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Free Electrons
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <drm/drmP.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include "sun4i_drv.h"
#include "sun4i_frontend.h"
static const u32 sun4i_frontend_vert_coef[32] = {
0x00004000, 0x000140ff, 0x00033ffe, 0x00043ffd,
0x00063efc, 0xff083dfc, 0x000a3bfb, 0xff0d39fb,
0xff0f37fb, 0xff1136fa, 0xfe1433fb, 0xfe1631fb,
0xfd192ffb, 0xfd1c2cfb, 0xfd1f29fb, 0xfc2127fc,
0xfc2424fc, 0xfc2721fc, 0xfb291ffd, 0xfb2c1cfd,
0xfb2f19fd, 0xfb3116fe, 0xfb3314fe, 0xfa3611ff,
0xfb370fff, 0xfb390dff, 0xfb3b0a00, 0xfc3d08ff,
0xfc3e0600, 0xfd3f0400, 0xfe3f0300, 0xff400100,
};
static const u32 sun4i_frontend_horz_coef[64] = {
0x40000000, 0x00000000, 0x40fe0000, 0x0000ff03,
0x3ffd0000, 0x0000ff05, 0x3ffc0000, 0x0000ff06,
0x3efb0000, 0x0000ff08, 0x3dfb0000, 0x0000ff09,
0x3bfa0000, 0x0000fe0d, 0x39fa0000, 0x0000fe0f,
0x38fa0000, 0x0000fe10, 0x36fa0000, 0x0000fe12,
0x33fa0000, 0x0000fd16, 0x31fa0000, 0x0000fd18,
0x2ffa0000, 0x0000fd1a, 0x2cfa0000, 0x0000fc1e,
0x29fa0000, 0x0000fc21, 0x27fb0000, 0x0000fb23,
0x24fb0000, 0x0000fb26, 0x21fb0000, 0x0000fb29,
0x1ffc0000, 0x0000fa2b, 0x1cfc0000, 0x0000fa2e,
0x19fd0000, 0x0000fa30, 0x16fd0000, 0x0000fa33,
0x14fd0000, 0x0000fa35, 0x11fe0000, 0x0000fa37,
0x0ffe0000, 0x0000fa39, 0x0dfe0000, 0x0000fa3b,
0x0afe0000, 0x0000fa3e, 0x08ff0000, 0x0000fb3e,
0x06ff0000, 0x0000fb40, 0x05ff0000, 0x0000fc40,
0x03ff0000, 0x0000fd41, 0x01ff0000, 0x0000fe42,
};
/*
* These coefficients are taken from the A33 BSP from Allwinner.
*
* The first three values of each row are coded as 13-bit signed fixed-point
* numbers, with 10 bits for the fractional part. The fourth value is a
* constant coded as a 14-bit signed fixed-point number with 4 bits for the
* fractional part.
*
* The values in table order give the following colorspace translation:
* G = 1.164 * Y - 0.391 * U - 0.813 * V + 135
* R = 1.164 * Y + 1.596 * V - 222
* B = 1.164 * Y + 2.018 * U + 276
*
* This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255],
* following the BT601 spec.
*/
const u32 sunxi_bt601_yuv2rgb_coef[12] = {
0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877,
0x000004a7, 0x00000000, 0x00000662, 0x00003211,
0x000004a7, 0x00000812, 0x00000000, 0x00002eb1,
};
EXPORT_SYMBOL(sunxi_bt601_yuv2rgb_coef);
static void sun4i_frontend_scaler_init(struct sun4i_frontend *frontend)
{
int i;
if (frontend->data->has_coef_access_ctrl)
regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL,
SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL);
for (i = 0; i < 32; i++) {
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF0_REG(i),
sun4i_frontend_horz_coef[2 * i]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF0_REG(i),
sun4i_frontend_horz_coef[2 * i]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF1_REG(i),
sun4i_frontend_horz_coef[2 * i + 1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF1_REG(i),
sun4i_frontend_horz_coef[2 * i + 1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTCOEF_REG(i),
sun4i_frontend_vert_coef[i]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTCOEF_REG(i),
sun4i_frontend_vert_coef[i]);
}
if (frontend->data->has_coef_rdy)
regmap_write_bits(frontend->regs,
SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_COEF_RDY,
SUN4I_FRONTEND_FRM_CTRL_COEF_RDY);
}
int sun4i_frontend_init(struct sun4i_frontend *frontend)
{
return pm_runtime_get_sync(frontend->dev);
}
EXPORT_SYMBOL(sun4i_frontend_init);
void sun4i_frontend_exit(struct sun4i_frontend *frontend)
{
pm_runtime_put(frontend->dev);
}
EXPORT_SYMBOL(sun4i_frontend_exit);
static bool sun4i_frontend_format_chroma_requires_swap(uint32_t fmt)
{
switch (fmt) {
case DRM_FORMAT_YVU411:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YVU444:
return true;
default:
return false;
}
}
static bool sun4i_frontend_format_supports_tiling(uint32_t fmt)
{
switch (fmt) {
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV61:
case DRM_FORMAT_YUV411:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YVU411:
return true;
default:
return false;
}
}
void sun4i_frontend_update_buffer(struct sun4i_frontend *frontend,
struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
unsigned int strides[3] = {};
dma_addr_t paddr;
bool swap;
if (fb->modifier == DRM_FORMAT_MOD_ALLWINNER_TILED) {
unsigned int width = state->src_w >> 16;
unsigned int offset;
strides[0] = SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[0]);
/*
* The X1 offset is the offset to the bottom-right point in the
* end tile, which is the final pixel (at offset width - 1)
* within the end tile (with a 32-byte mask).
*/
offset = (width - 1) & (32 - 1);
regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF0_REG,
SUN4I_FRONTEND_TB_OFF_X1(offset));
if (fb->format->num_planes > 1) {
strides[1] =
SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF1_REG,
SUN4I_FRONTEND_TB_OFF_X1(offset));
}
if (fb->format->num_planes > 2) {
strides[2] =
SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[2]);
regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF2_REG,
SUN4I_FRONTEND_TB_OFF_X1(offset));
}
} else {
strides[0] = fb->pitches[0];
if (fb->format->num_planes > 1)
strides[1] = fb->pitches[1];
if (fb->format->num_planes > 2)
strides[2] = fb->pitches[2];
}
/* Set the line width */
DRM_DEBUG_DRIVER("Frontend stride: %d bytes\n", fb->pitches[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD0_REG,
strides[0]);
if (fb->format->num_planes > 1)
regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD1_REG,
strides[1]);
if (fb->format->num_planes > 2)
regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD2_REG,
strides[2]);
/* Some planar formats require chroma channel swapping by hand. */
swap = sun4i_frontend_format_chroma_requires_swap(fb->format->format);
/* Set the physical address of the buffer in memory */
paddr = drm_fb_cma_get_gem_addr(fb, state, 0);
paddr -= PHYS_OFFSET;
DRM_DEBUG_DRIVER("Setting buffer #0 address to %pad\n", &paddr);
regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR0_REG, paddr);
if (fb->format->num_planes > 1) {
paddr = drm_fb_cma_get_gem_addr(fb, state, swap ? 2 : 1);
paddr -= PHYS_OFFSET;
DRM_DEBUG_DRIVER("Setting buffer #1 address to %pad\n", &paddr);
regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR1_REG,
paddr);
}
if (fb->format->num_planes > 2) {
paddr = drm_fb_cma_get_gem_addr(fb, state, swap ? 1 : 2);
paddr -= PHYS_OFFSET;
DRM_DEBUG_DRIVER("Setting buffer #2 address to %pad\n", &paddr);
regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR2_REG,
paddr);
}
}
EXPORT_SYMBOL(sun4i_frontend_update_buffer);
static int
sun4i_frontend_drm_format_to_input_fmt(const struct drm_format_info *format,
u32 *val)
{
if (!format->is_yuv)
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_RGB;
else if (drm_format_info_is_yuv_sampling_411(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV411;
else if (drm_format_info_is_yuv_sampling_420(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV420;
else if (drm_format_info_is_yuv_sampling_422(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV422;
else if (drm_format_info_is_yuv_sampling_444(format))
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV444;
else
return -EINVAL;
return 0;
}
static int
sun4i_frontend_drm_format_to_input_mode(const struct drm_format_info *format,
uint64_t modifier, u32 *val)
{
bool tiled = (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED);
switch (format->num_planes) {
case 1:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PACKED;
return 0;
case 2:
*val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_SEMIPLANAR
: SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_SEMIPLANAR;
return 0;
case 3:
*val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_PLANAR
: SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PLANAR;
return 0;
default:
return -EINVAL;
}
}
static int
sun4i_frontend_drm_format_to_input_sequence(const struct drm_format_info *format,
u32 *val)
{
/* Planar formats have an explicit input sequence. */
if (drm_format_info_is_yuv_planar(format)) {
*val = 0;
return 0;
}
switch (format->format) {
case DRM_FORMAT_BGRX8888:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_BGRX;
return 0;
case DRM_FORMAT_NV12:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV;
return 0;
case DRM_FORMAT_NV16:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV;
return 0;
case DRM_FORMAT_NV21:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU;
return 0;
case DRM_FORMAT_NV61:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU;
return 0;
case DRM_FORMAT_UYVY:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UYVY;
return 0;
case DRM_FORMAT_VYUY:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VYUY;
return 0;
case DRM_FORMAT_XRGB8888:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_XRGB;
return 0;
case DRM_FORMAT_YUYV:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YUYV;
return 0;
case DRM_FORMAT_YVYU:
*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YVYU;
return 0;
default:
return -EINVAL;
}
}
static int sun4i_frontend_drm_format_to_output_fmt(uint32_t fmt, u32 *val)
{
switch (fmt) {
case DRM_FORMAT_BGRX8888:
*val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_BGRX8888;
return 0;
case DRM_FORMAT_XRGB8888:
*val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_XRGB8888;
return 0;
default:
return -EINVAL;
}
}
static const uint32_t sun4i_frontend_formats[] = {
DRM_FORMAT_BGRX8888,
DRM_FORMAT_NV12,
DRM_FORMAT_NV16,
DRM_FORMAT_NV21,
DRM_FORMAT_NV61,
DRM_FORMAT_UYVY,
DRM_FORMAT_VYUY,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_YUV411,
DRM_FORMAT_YUV420,
DRM_FORMAT_YUV422,
DRM_FORMAT_YUV444,
DRM_FORMAT_YUYV,
DRM_FORMAT_YVU411,
DRM_FORMAT_YVU420,
DRM_FORMAT_YVU422,
DRM_FORMAT_YVU444,
DRM_FORMAT_YVYU,
};
bool sun4i_frontend_format_is_supported(uint32_t fmt, uint64_t modifier)
{
unsigned int i;
if (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED)
return sun4i_frontend_format_supports_tiling(fmt);
else if (modifier != DRM_FORMAT_MOD_LINEAR)
return false;
for (i = 0; i < ARRAY_SIZE(sun4i_frontend_formats); i++)
if (sun4i_frontend_formats[i] == fmt)
return true;
return false;
}
EXPORT_SYMBOL(sun4i_frontend_format_is_supported);
int sun4i_frontend_update_formats(struct sun4i_frontend *frontend,
struct drm_plane *plane, uint32_t out_fmt)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
const struct drm_format_info *format = fb->format;
uint64_t modifier = fb->modifier;
u32 out_fmt_val;
u32 in_fmt_val, in_mod_val, in_ps_val;
unsigned int i;
u32 bypass;
int ret;
ret = sun4i_frontend_drm_format_to_input_fmt(format, &in_fmt_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid input format\n");
return ret;
}
ret = sun4i_frontend_drm_format_to_input_mode(format, modifier,
&in_mod_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid input mode\n");
return ret;
}
ret = sun4i_frontend_drm_format_to_input_sequence(format, &in_ps_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid pixel sequence\n");
return ret;
}
ret = sun4i_frontend_drm_format_to_output_fmt(out_fmt, &out_fmt_val);
if (ret) {
DRM_DEBUG_DRIVER("Invalid output format\n");
return ret;
}
/*
* I have no idea what this does exactly, but it seems to be
* related to the scaler FIR filter phase parameters.
*/
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZPHASE_REG,
frontend->data->ch_phase[0].horzphase);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZPHASE_REG,
frontend->data->ch_phase[1].horzphase);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE0_REG,
frontend->data->ch_phase[0].vertphase[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE0_REG,
frontend->data->ch_phase[1].vertphase[0]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE1_REG,
frontend->data->ch_phase[0].vertphase[1]);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE1_REG,
frontend->data->ch_phase[1].vertphase[1]);
/*
* Checking the input format is sufficient since we currently only
* support RGB output formats to the backend. If YUV output formats
* ever get supported, an YUV input and output would require bypassing
* the CSC engine too.
*/
if (format->is_yuv) {
/* Setup the CSC engine for YUV to RGB conversion. */
bypass = 0;
for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++)
regmap_write(frontend->regs,
SUN4I_FRONTEND_CSC_COEF_REG(i),
sunxi_bt601_yuv2rgb_coef[i]);
} else {
bypass = SUN4I_FRONTEND_BYPASS_CSC_EN;
}
regmap_update_bits(frontend->regs, SUN4I_FRONTEND_BYPASS_REG,
SUN4I_FRONTEND_BYPASS_CSC_EN, bypass);
regmap_write(frontend->regs, SUN4I_FRONTEND_INPUT_FMT_REG,
in_mod_val | in_fmt_val | in_ps_val);
/*
* TODO: It look like the A31 and A80 at least will need the
* bit 7 (ALPHA_EN) enabled when using a format with alpha (so
* ARGB8888).
*/
regmap_write(frontend->regs, SUN4I_FRONTEND_OUTPUT_FMT_REG,
out_fmt_val);
return 0;
}
EXPORT_SYMBOL(sun4i_frontend_update_formats);
void sun4i_frontend_update_coord(struct sun4i_frontend *frontend,
struct drm_plane *plane)
{
struct drm_plane_state *state = plane->state;
struct drm_framebuffer *fb = state->fb;
uint32_t luma_width, luma_height;
uint32_t chroma_width, chroma_height;
/* Set height and width */
DRM_DEBUG_DRIVER("Frontend size W: %u H: %u\n",
state->crtc_w, state->crtc_h);
luma_width = state->src_w >> 16;
luma_height = state->src_h >> 16;
chroma_width = DIV_ROUND_UP(luma_width, fb->format->hsub);
chroma_height = DIV_ROUND_UP(luma_height, fb->format->vsub);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_INSIZE_REG,
SUN4I_FRONTEND_INSIZE(luma_height, luma_width));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_INSIZE_REG,
SUN4I_FRONTEND_INSIZE(chroma_height, chroma_width));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_OUTSIZE_REG,
SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_OUTSIZE_REG,
SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w));
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZFACT_REG,
(luma_width << 16) / state->crtc_w);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZFACT_REG,
(chroma_width << 16) / state->crtc_w);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTFACT_REG,
(luma_height << 16) / state->crtc_h);
regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTFACT_REG,
(chroma_height << 16) / state->crtc_h);
regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_REG_RDY,
SUN4I_FRONTEND_FRM_CTRL_REG_RDY);
}
EXPORT_SYMBOL(sun4i_frontend_update_coord);
int sun4i_frontend_enable(struct sun4i_frontend *frontend)
{
regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
SUN4I_FRONTEND_FRM_CTRL_FRM_START,
SUN4I_FRONTEND_FRM_CTRL_FRM_START);
return 0;
}
EXPORT_SYMBOL(sun4i_frontend_enable);
static struct regmap_config sun4i_frontend_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x0a14,
};
static int sun4i_frontend_bind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct sun4i_frontend *frontend;
struct drm_device *drm = data;
struct sun4i_drv *drv = drm->dev_private;
struct resource *res;
void __iomem *regs;
frontend = devm_kzalloc(dev, sizeof(*frontend), GFP_KERNEL);
if (!frontend)
return -ENOMEM;
dev_set_drvdata(dev, frontend);
frontend->dev = dev;
frontend->node = dev->of_node;
frontend->data = of_device_get_match_data(dev);
if (!frontend->data)
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
frontend->regs = devm_regmap_init_mmio(dev, regs,
&sun4i_frontend_regmap_config);
if (IS_ERR(frontend->regs)) {
dev_err(dev, "Couldn't create the frontend regmap\n");
return PTR_ERR(frontend->regs);
}
frontend->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(frontend->reset)) {
dev_err(dev, "Couldn't get our reset line\n");
return PTR_ERR(frontend->reset);
}
frontend->bus_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(frontend->bus_clk)) {
dev_err(dev, "Couldn't get our bus clock\n");
return PTR_ERR(frontend->bus_clk);
}
frontend->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(frontend->mod_clk)) {
dev_err(dev, "Couldn't get our mod clock\n");
return PTR_ERR(frontend->mod_clk);
}
frontend->ram_clk = devm_clk_get(dev, "ram");
if (IS_ERR(frontend->ram_clk)) {
dev_err(dev, "Couldn't get our ram clock\n");
return PTR_ERR(frontend->ram_clk);
}
list_add_tail(&frontend->list, &drv->frontend_list);
pm_runtime_enable(dev);
return 0;
}
static void sun4i_frontend_unbind(struct device *dev, struct device *master,
void *data)
{
struct sun4i_frontend *frontend = dev_get_drvdata(dev);
list_del(&frontend->list);
pm_runtime_force_suspend(dev);
}
static const struct component_ops sun4i_frontend_ops = {
.bind = sun4i_frontend_bind,
.unbind = sun4i_frontend_unbind,
};
static int sun4i_frontend_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &sun4i_frontend_ops);
}
static int sun4i_frontend_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &sun4i_frontend_ops);
return 0;
}
static int sun4i_frontend_runtime_resume(struct device *dev)
{
struct sun4i_frontend *frontend = dev_get_drvdata(dev);
int ret;
clk_set_rate(frontend->mod_clk, 300000000);
clk_prepare_enable(frontend->bus_clk);
clk_prepare_enable(frontend->mod_clk);
clk_prepare_enable(frontend->ram_clk);
ret = reset_control_reset(frontend->reset);
if (ret) {
dev_err(dev, "Couldn't reset our device\n");
return ret;
}
regmap_update_bits(frontend->regs, SUN4I_FRONTEND_EN_REG,
SUN4I_FRONTEND_EN_EN,
SUN4I_FRONTEND_EN_EN);
sun4i_frontend_scaler_init(frontend);
return 0;
}
static int sun4i_frontend_runtime_suspend(struct device *dev)
{
struct sun4i_frontend *frontend = dev_get_drvdata(dev);
clk_disable_unprepare(frontend->ram_clk);
clk_disable_unprepare(frontend->mod_clk);
clk_disable_unprepare(frontend->bus_clk);
reset_control_assert(frontend->reset);
return 0;
}
static const struct dev_pm_ops sun4i_frontend_pm_ops = {
.runtime_resume = sun4i_frontend_runtime_resume,
.runtime_suspend = sun4i_frontend_runtime_suspend,
};
static const struct sun4i_frontend_data sun4i_a10_frontend = {
.ch_phase = {
{
.horzphase = 0,
.vertphase = { 0, 0 },
},
{
.horzphase = 0xfc000,
.vertphase = { 0xfc000, 0xfc000 },
},
},
.has_coef_rdy = true,
};
static const struct sun4i_frontend_data sun8i_a33_frontend = {
.ch_phase = {
{
.horzphase = 0x400,
.vertphase = { 0x400, 0x400 },
},
{
.horzphase = 0x400,
.vertphase = { 0x400, 0x400 },
},
},
.has_coef_access_ctrl = true,
};
const struct of_device_id sun4i_frontend_of_table[] = {
{
.compatible = "allwinner,sun4i-a10-display-frontend",
.data = &sun4i_a10_frontend
},
{
.compatible = "allwinner,sun7i-a20-display-frontend",
.data = &sun4i_a10_frontend
},
{
.compatible = "allwinner,sun8i-a23-display-frontend",
.data = &sun8i_a33_frontend
},
{
.compatible = "allwinner,sun8i-a33-display-frontend",
.data = &sun8i_a33_frontend
},
{ }
};
EXPORT_SYMBOL(sun4i_frontend_of_table);
MODULE_DEVICE_TABLE(of, sun4i_frontend_of_table);
static struct platform_driver sun4i_frontend_driver = {
.probe = sun4i_frontend_probe,
.remove = sun4i_frontend_remove,
.driver = {
.name = "sun4i-frontend",
.of_match_table = sun4i_frontend_of_table,
.pm = &sun4i_frontend_pm_ops,
},
};
module_platform_driver(sun4i_frontend_driver);
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 Display Engine Frontend Driver");
MODULE_LICENSE("GPL");