alistair23-linux/drivers/media/platform/rcar_fdp1.c
Nicolas Iooss 4c171636bc [media] v4l: rcar_fdp1: use %4.4s to format a 4-byte string
Using %4s to format f->fmt.pix_mp.pixelformat in fdp1_try_fmt() and
fdp1_s_fmt() may lead to more characters being printed (when the byte
following field pixelformat is not zero).

Add ".4" to the format specifier to limit the number of printed
characters to four. The resulting format specifier "%4.4s" is also used
by other media drivers to print pixelformat value.

Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Reviewed-by: Kieran Bingham <kieran@bingham.xyz>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-02-03 11:50:40 -02:00

2446 lines
65 KiB
C

/*
* Renesas RCar Fine Display Processor
*
* Video format converter and frame deinterlacer device.
*
* Author: Kieran Bingham, <kieran@bingham.xyz>
* Copyright (c) 2016 Renesas Electronics Corporation.
*
* This code is developed and inspired from the vim2m, rcar_jpu,
* m2m-deinterlace, and vsp1 drivers.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the
* License, or (at your option) any later version
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <media/rcar-fcp.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-dma-contig.h>
static unsigned int debug;
module_param(debug, uint, 0644);
MODULE_PARM_DESC(debug, "activate debug info");
/* Minimum and maximum frame width/height */
#define FDP1_MIN_W 80U
#define FDP1_MIN_H 80U
#define FDP1_MAX_W 3840U
#define FDP1_MAX_H 2160U
#define FDP1_MAX_PLANES 3U
#define FDP1_MAX_STRIDE 8190U
/* Flags that indicate a format can be used for capture/output */
#define FDP1_CAPTURE BIT(0)
#define FDP1_OUTPUT BIT(1)
#define DRIVER_NAME "rcar_fdp1"
/* Number of Job's to have available on the processing queue */
#define FDP1_NUMBER_JOBS 8
#define dprintk(fdp1, fmt, arg...) \
v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
/*
* FDP1 registers and bits
*/
/* FDP1 start register - Imm */
#define FD1_CTL_CMD 0x0000
#define FD1_CTL_CMD_STRCMD BIT(0)
/* Sync generator register - Imm */
#define FD1_CTL_SGCMD 0x0004
#define FD1_CTL_SGCMD_SGEN BIT(0)
/* Register set end register - Imm */
#define FD1_CTL_REGEND 0x0008
#define FD1_CTL_REGEND_REGEND BIT(0)
/* Channel activation register - Vupdt */
#define FD1_CTL_CHACT 0x000c
#define FD1_CTL_CHACT_SMW BIT(9)
#define FD1_CTL_CHACT_WR BIT(8)
#define FD1_CTL_CHACT_SMR BIT(3)
#define FD1_CTL_CHACT_RD2 BIT(2)
#define FD1_CTL_CHACT_RD1 BIT(1)
#define FD1_CTL_CHACT_RD0 BIT(0)
/* Operation Mode Register - Vupdt */
#define FD1_CTL_OPMODE 0x0010
#define FD1_CTL_OPMODE_PRG BIT(4)
#define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
#define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
#define FD1_CTL_VPERIOD 0x0014
#define FD1_CTL_CLKCTRL 0x0018
#define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
/* Software reset register */
#define FD1_CTL_SRESET 0x001c
#define FD1_CTL_SRESET_SRST BIT(0)
/* Control status register (V-update-status) */
#define FD1_CTL_STATUS 0x0024
#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
#define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
#define FD1_CTL_STATUS_SGREGSET BIT(10)
#define FD1_CTL_STATUS_SGVERR BIT(9)
#define FD1_CTL_STATUS_SGFREND BIT(8)
#define FD1_CTL_STATUS_BSY BIT(0)
#define FD1_CTL_VCYCLE_STAT 0x0028
/* Interrupt enable register */
#define FD1_CTL_IRQENB 0x0038
/* Interrupt status register */
#define FD1_CTL_IRQSTA 0x003c
/* Interrupt control register */
#define FD1_CTL_IRQFSET 0x0040
/* Common IRQ Bit settings */
#define FD1_CTL_IRQ_VERE BIT(16)
#define FD1_CTL_IRQ_VINTE BIT(4)
#define FD1_CTL_IRQ_FREE BIT(0)
#define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
FD1_CTL_IRQ_VINTE | \
FD1_CTL_IRQ_FREE)
/* RPF */
#define FD1_RPF_SIZE 0x0060
#define FD1_RPF_SIZE_MASK GENMASK(12, 0)
#define FD1_RPF_SIZE_H_SHIFT 16
#define FD1_RPF_SIZE_V_SHIFT 0
#define FD1_RPF_FORMAT 0x0064
#define FD1_RPF_FORMAT_CIPM BIT(16)
#define FD1_RPF_FORMAT_RSPYCS BIT(13)
#define FD1_RPF_FORMAT_RSPUVS BIT(12)
#define FD1_RPF_FORMAT_CF BIT(8)
#define FD1_RPF_PSTRIDE 0x0068
#define FD1_RPF_PSTRIDE_Y_SHIFT 16
#define FD1_RPF_PSTRIDE_C_SHIFT 0
/* RPF0 Source Component Y Address register */
#define FD1_RPF0_ADDR_Y 0x006c
/* RPF1 Current Picture Registers */
#define FD1_RPF1_ADDR_Y 0x0078
#define FD1_RPF1_ADDR_C0 0x007c
#define FD1_RPF1_ADDR_C1 0x0080
/* RPF2 next picture register */
#define FD1_RPF2_ADDR_Y 0x0084
#define FD1_RPF_SMSK_ADDR 0x0090
#define FD1_RPF_SWAP 0x0094
/* WPF */
#define FD1_WPF_FORMAT 0x00c0
#define FD1_WPF_FORMAT_PDV_SHIFT 24
#define FD1_WPF_FORMAT_FCNL BIT(20)
#define FD1_WPF_FORMAT_WSPYCS BIT(15)
#define FD1_WPF_FORMAT_WSPUVS BIT(14)
#define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
#define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
#define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
#define FD1_WPF_FORMAT_CSC BIT(8)
#define FD1_WPF_RNDCTL 0x00c4
#define FD1_WPF_RNDCTL_CBRM BIT(28)
#define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
#define FD1_WPF_PSTRIDE 0x00c8
#define FD1_WPF_PSTRIDE_Y_SHIFT 16
#define FD1_WPF_PSTRIDE_C_SHIFT 0
/* WPF Destination picture */
#define FD1_WPF_ADDR_Y 0x00cc
#define FD1_WPF_ADDR_C0 0x00d0
#define FD1_WPF_ADDR_C1 0x00d4
#define FD1_WPF_SWAP 0x00d8
#define FD1_WPF_SWAP_OSWAP_SHIFT 0
#define FD1_WPF_SWAP_SSWAP_SHIFT 4
/* WPF/RPF Common */
#define FD1_RWPF_SWAP_BYTE BIT(0)
#define FD1_RWPF_SWAP_WORD BIT(1)
#define FD1_RWPF_SWAP_LWRD BIT(2)
#define FD1_RWPF_SWAP_LLWD BIT(3)
/* IPC */
#define FD1_IPC_MODE 0x0100
#define FD1_IPC_MODE_DLI BIT(8)
#define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
#define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
#define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
#define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
#define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
#define FD1_IPC_SMSK_THRESH 0x0104
#define FD1_IPC_SMSK_THRESH_CONST 0x00010002
#define FD1_IPC_COMB_DET 0x0108
#define FD1_IPC_COMB_DET_CONST 0x00200040
#define FD1_IPC_MOTDEC 0x010c
#define FD1_IPC_MOTDEC_CONST 0x00008020
/* DLI registers */
#define FD1_IPC_DLI_BLEND 0x0120
#define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
#define FD1_IPC_DLI_HGAIN 0x0124
#define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
#define FD1_IPC_DLI_SPRS 0x0128
#define FD1_IPC_DLI_SPRS_CONST 0x009004ff
#define FD1_IPC_DLI_ANGLE 0x012c
#define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
#define FD1_IPC_DLI_ISOPIX0 0x0130
#define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
#define FD1_IPC_DLI_ISOPIX1 0x0134
#define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
/* Sensor registers */
#define FD1_IPC_SENSOR_TH0 0x0140
#define FD1_IPC_SENSOR_TH0_CONST 0x20208080
#define FD1_IPC_SENSOR_TH1 0x0144
#define FD1_IPC_SENSOR_TH1_CONST 0
#define FD1_IPC_SENSOR_CTL0 0x0170
#define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
#define FD1_IPC_SENSOR_CTL1 0x0174
#define FD1_IPC_SENSOR_CTL1_CONST 0
#define FD1_IPC_SENSOR_CTL2 0x0178
#define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
#define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
#define FD1_IPC_SENSOR_CTL3 0x017c
#define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
#define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
/* Line memory pixel number register */
#define FD1_IPC_LMEM 0x01e0
#define FD1_IPC_LMEM_LINEAR 1024
#define FD1_IPC_LMEM_TILE 960
/* Internal Data (HW Version) */
#define FD1_IP_INTDATA 0x0800
#define FD1_IP_H3 0x02010101
#define FD1_IP_M3W 0x02010202
/* LUTs */
#define FD1_LUT_DIF_ADJ 0x1000
#define FD1_LUT_SAD_ADJ 0x1400
#define FD1_LUT_BLD_GAIN 0x1800
#define FD1_LUT_DIF_GAIN 0x1c00
#define FD1_LUT_MDET 0x2000
/**
* struct fdp1_fmt - The FDP1 internal format data
* @fourcc: the fourcc code, to match the V4L2 API
* @bpp: bits per pixel per plane
* @num_planes: number of planes
* @hsub: horizontal subsampling factor
* @vsub: vertical subsampling factor
* @fmt: 7-bit format code for the fdp1 hardware
* @swap_yc: the Y and C components are swapped (Y comes before C)
* @swap_uv: the U and V components are swapped (V comes before U)
* @swap: swap register control
* @types: types of queue this format is applicable to
*/
struct fdp1_fmt {
u32 fourcc;
u8 bpp[3];
u8 num_planes;
u8 hsub;
u8 vsub;
u8 fmt;
bool swap_yc;
bool swap_uv;
u8 swap;
u8 types;
};
static const struct fdp1_fmt fdp1_formats[] = {
/* RGB formats are only supported by the Write Pixel Formatter */
{ V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
{ V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD,
FDP1_CAPTURE },
/* YUV Formats are supported by Read and Write Pixel Formatters */
{ V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
{ V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
FDP1_CAPTURE | FDP1_OUTPUT },
};
static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
{
return fmt->fmt <= 0x1b; /* Last RGB code */
}
/*
* FDP1 Lookup tables range from 0...255 only
*
* Each table must be less than 256 entries, and all tables
* are padded out to 256 entries by duplicating the last value.
*/
static const u8 fdp1_diff_adj[] = {
0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
};
static const u8 fdp1_sad_adj[] = {
0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
};
static const u8 fdp1_bld_gain[] = {
0x80,
};
static const u8 fdp1_dif_gain[] = {
0x80,
};
static const u8 fdp1_mdet[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
/* Per-queue, driver-specific private data */
struct fdp1_q_data {
const struct fdp1_fmt *fmt;
struct v4l2_pix_format_mplane format;
unsigned int vsize;
unsigned int stride_y;
unsigned int stride_c;
};
static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
{
const struct fdp1_fmt *fmt;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
fmt = &fdp1_formats[i];
if (fmt->fourcc == pixelformat)
return fmt;
}
return NULL;
}
enum fdp1_deint_mode {
FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
FDP1_ADAPT2D3D,
FDP1_FIXED2D,
FDP1_FIXED3D,
FDP1_PREVFIELD,
FDP1_NEXTFIELD,
};
#define FDP1_DEINT_MODE_USES_NEXT(mode) \
(mode == FDP1_ADAPT2D3D || \
mode == FDP1_FIXED3D || \
mode == FDP1_NEXTFIELD)
#define FDP1_DEINT_MODE_USES_PREV(mode) \
(mode == FDP1_ADAPT2D3D || \
mode == FDP1_FIXED3D || \
mode == FDP1_PREVFIELD)
/*
* FDP1 operates on potentially 3 fields, which are tracked
* from the VB buffers using this context structure.
* Will always be a field or a full frame, never two fields.
*/
struct fdp1_field_buffer {
struct vb2_v4l2_buffer *vb;
dma_addr_t addrs[3];
/* Should be NONE:TOP:BOTTOM only */
enum v4l2_field field;
/* Flag to indicate this is the last field in the vb */
bool last_field;
/* Buffer queue lists */
struct list_head list;
};
struct fdp1_buffer {
struct v4l2_m2m_buffer m2m_buf;
struct fdp1_field_buffer fields[2];
unsigned int num_fields;
};
static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
{
return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
}
struct fdp1_job {
struct fdp1_field_buffer *previous;
struct fdp1_field_buffer *active;
struct fdp1_field_buffer *next;
struct fdp1_field_buffer *dst;
/* A job can only be on one list at a time */
struct list_head list;
};
struct fdp1_dev {
struct v4l2_device v4l2_dev;
struct video_device vfd;
struct mutex dev_mutex;
spinlock_t irqlock;
spinlock_t device_process_lock;
void __iomem *regs;
unsigned int irq;
struct device *dev;
/* Job Queues */
struct fdp1_job jobs[FDP1_NUMBER_JOBS];
struct list_head free_job_list;
struct list_head queued_job_list;
struct list_head hw_job_list;
unsigned int clk_rate;
struct rcar_fcp_device *fcp;
struct v4l2_m2m_dev *m2m_dev;
};
struct fdp1_ctx {
struct v4l2_fh fh;
struct fdp1_dev *fdp1;
struct v4l2_ctrl_handler hdl;
unsigned int sequence;
/* Processed buffers in this transaction */
u8 num_processed;
/* Transaction length (i.e. how many buffers per transaction) */
u32 translen;
/* Abort requested by m2m */
int aborting;
/* Deinterlace processing mode */
enum fdp1_deint_mode deint_mode;
/*
* Adaptive 2D/3D mode uses a shared mask
* This is allocated at streamon, if the ADAPT2D3D mode
* is requested
*/
unsigned int smsk_size;
dma_addr_t smsk_addr[2];
void *smsk_cpu;
/* Capture pipeline, can specify an alpha value
* for supported formats. 0-255 only
*/
unsigned char alpha;
/* Source and destination queue data */
struct fdp1_q_data out_q; /* HW Source */
struct fdp1_q_data cap_q; /* HW Destination */
/*
* Field Queues
* Interlaced fields are used on 3 occasions, and tracked in this list.
*
* V4L2 Buffers are tracked inside the fdp1_buffer
* and released when the last 'field' completes
*/
struct list_head fields_queue;
unsigned int buffers_queued;
/*
* For de-interlacing we need to track our previous buffer
* while preparing our job lists.
*/
struct fdp1_field_buffer *previous;
};
static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
{
return container_of(fh, struct fdp1_ctx, fh);
}
static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
enum v4l2_buf_type type)
{
if (V4L2_TYPE_IS_OUTPUT(type))
return &ctx->out_q;
else
return &ctx->cap_q;
}
/*
* list_remove_job: Take the first item off the specified job list
*
* Returns: pointer to a job, or NULL if the list is empty.
*/
static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
struct list_head *list)
{
struct fdp1_job *job;
unsigned long flags;
spin_lock_irqsave(&fdp1->irqlock, flags);
job = list_first_entry_or_null(list, struct fdp1_job, list);
if (job)
list_del(&job->list);
spin_unlock_irqrestore(&fdp1->irqlock, flags);
return job;
}
/*
* list_add_job: Add a job to the specified job list
*
* Returns: void - always succeeds
*/
static void list_add_job(struct fdp1_dev *fdp1,
struct list_head *list,
struct fdp1_job *job)
{
unsigned long flags;
spin_lock_irqsave(&fdp1->irqlock, flags);
list_add_tail(&job->list, list);
spin_unlock_irqrestore(&fdp1->irqlock, flags);
}
static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
{
return list_remove_job(fdp1, &fdp1->free_job_list);
}
static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
/* Ensure that all residue from previous jobs is gone */
memset(job, 0, sizeof(struct fdp1_job));
list_add_job(fdp1, &fdp1->free_job_list, job);
}
static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
list_add_job(fdp1, &fdp1->queued_job_list, job);
}
static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
{
return list_remove_job(fdp1, &fdp1->queued_job_list);
}
static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
list_add_job(fdp1, &fdp1->hw_job_list, job);
}
static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
{
return list_remove_job(fdp1, &fdp1->hw_job_list);
}
/*
* Buffer lists handling
*/
static void fdp1_field_complete(struct fdp1_ctx *ctx,
struct fdp1_field_buffer *fbuf)
{
/* job->previous may be on the first field */
if (!fbuf)
return;
if (fbuf->last_field)
v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
}
static void fdp1_queue_field(struct fdp1_ctx *ctx,
struct fdp1_field_buffer *fbuf)
{
unsigned long flags;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
list_add_tail(&fbuf->list, &ctx->fields_queue);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
ctx->buffers_queued++;
}
static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
{
struct fdp1_field_buffer *fbuf;
unsigned long flags;
ctx->buffers_queued--;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
fbuf = list_first_entry_or_null(&ctx->fields_queue,
struct fdp1_field_buffer, list);
if (fbuf)
list_del(&fbuf->list);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
return fbuf;
}
/*
* Return the next field in the queue - or NULL,
* without removing the item from the list
*/
static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
{
struct fdp1_field_buffer *fbuf;
unsigned long flags;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
fbuf = list_first_entry_or_null(&ctx->fields_queue,
struct fdp1_field_buffer, list);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
return fbuf;
}
static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
{
u32 value = ioread32(fdp1->regs + reg);
if (debug >= 2)
dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
return value;
}
static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
{
if (debug >= 2)
dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
iowrite32(val, fdp1->regs + reg);
}
/* IPC registers are to be programmed with constant values */
static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
}
static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_q_data *src_q_data = &ctx->out_q;
unsigned int x0, x1;
unsigned int hsize = src_q_data->format.width;
unsigned int vsize = src_q_data->format.height;
x0 = hsize / 3;
x1 = 2 * hsize / 3;
fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
FD1_IPC_SENSOR_CTL2);
fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
(x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
FD1_IPC_SENSOR_CTL3);
}
/*
* fdp1_write_lut: Write a padded LUT to the hw
*
* FDP1 uses constant data for de-interlacing processing,
* with large tables. These hardware tables are all 256 bytes
* long, however they often contain repeated data at the end.
*
* The last byte of the table is written to all remaining entries.
*/
static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
unsigned int len, unsigned int base)
{
unsigned int i;
u8 pad;
/* Tables larger than the hw are clipped */
len = min(len, 256u);
for (i = 0; i < len; i++)
fdp1_write(fdp1, lut[i], base + (i*4));
/* Tables are padded with the last entry */
pad = lut[i-1];
for (; i < 256; i++)
fdp1_write(fdp1, pad, base + (i*4));
}
static void fdp1_set_lut(struct fdp1_dev *fdp1)
{
fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
FD1_LUT_DIF_ADJ);
fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
FD1_LUT_SAD_ADJ);
fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
FD1_LUT_BLD_GAIN);
fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
FD1_LUT_DIF_GAIN);
fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
FD1_LUT_MDET);
}
static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
struct fdp1_job *job)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
u32 picture_size;
u32 pstride;
u32 format;
u32 smsk_addr;
struct fdp1_q_data *q_data = &ctx->out_q;
/* Picture size is common to Source and Destination frames */
picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
| (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
/* Strides */
pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
if (q_data->format.num_planes > 1)
pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
/* Format control */
format = q_data->fmt->fmt;
if (q_data->fmt->swap_yc)
format |= FD1_RPF_FORMAT_RSPYCS;
if (q_data->fmt->swap_uv)
format |= FD1_RPF_FORMAT_RSPUVS;
if (job->active->field == V4L2_FIELD_BOTTOM) {
format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
smsk_addr = ctx->smsk_addr[0];
} else {
smsk_addr = ctx->smsk_addr[1];
}
/* Deint mode is non-zero when deinterlacing */
if (ctx->deint_mode)
format |= FD1_RPF_FORMAT_CIPM;
fdp1_write(fdp1, format, FD1_RPF_FORMAT);
fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
/* Previous Field Channel (CH0) */
if (job->previous)
fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
/* Current Field Channel (CH1) */
fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
/* Next Field Channel (CH2) */
if (job->next)
fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
}
static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
struct fdp1_job *job)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_q_data *src_q_data = &ctx->out_q;
struct fdp1_q_data *q_data = &ctx->cap_q;
u32 pstride;
u32 format;
u32 swap;
u32 rndctl;
pstride = q_data->format.plane_fmt[0].bytesperline
<< FD1_WPF_PSTRIDE_Y_SHIFT;
if (q_data->format.num_planes > 1)
pstride |= q_data->format.plane_fmt[1].bytesperline
<< FD1_WPF_PSTRIDE_C_SHIFT;
format = q_data->fmt->fmt; /* Output Format Code */
if (q_data->fmt->swap_yc)
format |= FD1_WPF_FORMAT_WSPYCS;
if (q_data->fmt->swap_uv)
format |= FD1_WPF_FORMAT_WSPUVS;
if (fdp1_fmt_is_rgb(q_data->fmt)) {
/* Enable Colour Space conversion */
format |= FD1_WPF_FORMAT_CSC;
/* Set WRTM */
if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
format |= FD1_WPF_FORMAT_WRTM_709_16;
else if (src_q_data->format.quantization ==
V4L2_QUANTIZATION_FULL_RANGE)
format |= FD1_WPF_FORMAT_WRTM_601_0;
else
format |= FD1_WPF_FORMAT_WRTM_601_16;
}
/* Set an alpha value into the Pad Value */
format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
/* Determine picture rounding and clipping */
rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
/* WPF Swap needs both ISWAP and OSWAP setting */
swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
fdp1_write(fdp1, format, FD1_WPF_FORMAT);
fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
fdp1_write(fdp1, swap, FD1_WPF_SWAP);
fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
}
static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
struct fdp1_job *job)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
/* De-interlacing Mode */
switch (ctx->deint_mode) {
default:
case FDP1_PROGRESSIVE:
dprintk(fdp1, "Progressive Mode\n");
opmode |= FD1_CTL_OPMODE_PRG;
ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
break;
case FDP1_ADAPT2D3D:
dprintk(fdp1, "Adapt2D3D Mode\n");
if (ctx->sequence == 0 || ctx->aborting)
ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
else
ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
if (ctx->sequence > 1) {
channels |= FD1_CTL_CHACT_SMW;
channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
}
if (ctx->sequence > 2)
channels |= FD1_CTL_CHACT_SMR;
break;
case FDP1_FIXED3D:
dprintk(fdp1, "Fixed 3D Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
/* Except for first and last frame, enable all channels */
if (!(ctx->sequence == 0 || ctx->aborting))
channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
break;
case FDP1_FIXED2D:
dprintk(fdp1, "Fixed 2D Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
/* No extra channels enabled */
break;
case FDP1_PREVFIELD:
dprintk(fdp1, "Previous Field Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
channels |= FD1_CTL_CHACT_RD0; /* Previous */
break;
case FDP1_NEXTFIELD:
dprintk(fdp1, "Next Field Mode\n");
ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
channels |= FD1_CTL_CHACT_RD2; /* Next */
break;
}
fdp1_write(fdp1, channels, FD1_CTL_CHACT);
fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
}
/*
* fdp1_device_process() - Run the hardware
*
* Configure and start the hardware to generate a single frame
* of output given our input parameters.
*/
static int fdp1_device_process(struct fdp1_ctx *ctx)
{
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_job *job;
unsigned long flags;
spin_lock_irqsave(&fdp1->device_process_lock, flags);
/* Get a job to process */
job = get_queued_job(fdp1);
if (!job) {
/*
* VINT can call us to see if we can queue another job.
* If we have no work to do, we simply return.
*/
spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
return 0;
}
/* First Frame only? ... */
fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
/* Set the mode, and configuration */
fdp1_configure_deint_mode(ctx, job);
/* DLI Static Configuration */
fdp1_set_ipc_dli(ctx);
/* Sensor Configuration */
fdp1_set_ipc_sensor(ctx);
/* Setup the source picture */
fdp1_configure_rpf(ctx, job);
/* Setup the destination picture */
fdp1_configure_wpf(ctx, job);
/* Line Memory Pixel Number Register for linear access */
fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
/* Enable Interrupts */
fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
/* Finally, the Immediate Registers */
/* This job is now in the HW queue */
queue_hw_job(fdp1, job);
/* Start the command */
fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
/* Registers will update to HW at next VINT */
fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
/* Enable VINT Generator */
fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
return 0;
}
/*
* mem2mem callbacks
*/
/**
* job_ready() - check whether an instance is ready to be scheduled to run
*/
static int fdp1_m2m_job_ready(void *priv)
{
struct fdp1_ctx *ctx = priv;
struct fdp1_q_data *src_q_data = &ctx->out_q;
int srcbufs = 1;
int dstbufs = 1;
dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
/* One output buffer is required for each field */
if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
dstbufs = 2;
if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
|| v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
dprintk(ctx->fdp1, "Not enough buffers available\n");
return 0;
}
return 1;
}
static void fdp1_m2m_job_abort(void *priv)
{
struct fdp1_ctx *ctx = priv;
dprintk(ctx->fdp1, "+\n");
/* Will cancel the transaction in the next interrupt handler */
ctx->aborting = 1;
/* Immediate abort sequence */
fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
}
/*
* fdp1_prepare_job: Prepare and queue a new job for a single action of work
*
* Prepare the next field, (or frame in progressive) and an output
* buffer for the hardware to perform a single operation.
*/
static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
{
struct vb2_v4l2_buffer *vbuf;
struct fdp1_buffer *fbuf;
struct fdp1_dev *fdp1 = ctx->fdp1;
struct fdp1_job *job;
unsigned int buffers_required = 1;
dprintk(fdp1, "+\n");
if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
buffers_required = 2;
if (ctx->buffers_queued < buffers_required)
return NULL;
job = fdp1_job_alloc(fdp1);
if (!job) {
dprintk(fdp1, "No free jobs currently available\n");
return NULL;
}
job->active = fdp1_dequeue_field(ctx);
if (!job->active) {
/* Buffer check should prevent this ever happening */
dprintk(fdp1, "No input buffers currently available\n");
fdp1_job_free(fdp1, job);
return NULL;
}
dprintk(fdp1, "+ Buffer en-route...\n");
/* Source buffers have been prepared on our buffer_queue
* Prepare our Output buffer
*/
vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
fbuf = to_fdp1_buffer(vbuf);
job->dst = &fbuf->fields[0];
job->active->vb->sequence = ctx->sequence;
job->dst->vb->sequence = ctx->sequence;
ctx->sequence++;
if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
job->previous = ctx->previous;
/* Active buffer becomes the next job's previous buffer */
ctx->previous = job->active;
}
if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
/* Must be called after 'active' is dequeued */
job->next = fdp1_peek_queued_field(ctx);
}
/* Transfer timestamps and flags from src->dst */
job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
job->dst->vb->flags = job->active->vb->flags &
V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
/* Ideally, the frame-end function will just 'check' to see
* if there are more jobs instead
*/
ctx->translen++;
/* Finally, Put this job on the processing queue */
queue_job(fdp1, job);
dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
return job;
}
/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
*
* A single input buffer is taken and serialised into our fdp1_buffer
* queue. The queue is then processed to create as many jobs as possible
* from our available input.
*/
static void fdp1_m2m_device_run(void *priv)
{
struct fdp1_ctx *ctx = priv;
struct fdp1_dev *fdp1 = ctx->fdp1;
struct vb2_v4l2_buffer *src_vb;
struct fdp1_buffer *buf;
unsigned int i;
dprintk(fdp1, "+\n");
ctx->translen = 0;
/* Get our incoming buffer of either one or two fields, or one frame */
src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
buf = to_fdp1_buffer(src_vb);
for (i = 0; i < buf->num_fields; i++) {
struct fdp1_field_buffer *fbuf = &buf->fields[i];
fdp1_queue_field(ctx, fbuf);
dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
i, fbuf->last_field);
}
/* Queue as many jobs as our data provides for */
while (fdp1_prepare_job(ctx))
;
if (ctx->translen == 0) {
dprintk(fdp1, "No jobs were processed. M2M action complete\n");
v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
return;
}
/* Kick the job processing action */
fdp1_device_process(ctx);
}
/*
* device_frame_end:
*
* Handles the M2M level after a buffer completion event.
*/
static void device_frame_end(struct fdp1_dev *fdp1,
enum vb2_buffer_state state)
{
struct fdp1_ctx *ctx;
unsigned long flags;
struct fdp1_job *job = get_hw_queued_job(fdp1);
dprintk(fdp1, "+\n");
ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
if (ctx == NULL) {
v4l2_err(&fdp1->v4l2_dev,
"Instance released before the end of transaction\n");
return;
}
ctx->num_processed++;
/*
* fdp1_field_complete will call buf_done only when the last vb2_buffer
* reference is complete
*/
if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
fdp1_field_complete(ctx, job->previous);
else
fdp1_field_complete(ctx, job->active);
spin_lock_irqsave(&fdp1->irqlock, flags);
v4l2_m2m_buf_done(job->dst->vb, state);
job->dst = NULL;
spin_unlock_irqrestore(&fdp1->irqlock, flags);
/* Move this job back to the free job list */
fdp1_job_free(fdp1, job);
dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
ctx->num_processed, ctx->translen);
if (ctx->num_processed == ctx->translen ||
ctx->aborting) {
dprintk(ctx->fdp1, "Finishing transaction\n");
ctx->num_processed = 0;
v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
} else {
/*
* For pipelined performance support, this would
* be called from a VINT handler
*/
fdp1_device_process(ctx);
}
}
/*
* video ioctls
*/
static int fdp1_vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", DRIVER_NAME);
return 0;
}
static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
{
unsigned int i, num;
num = 0;
for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
if (fdp1_formats[i].types & type) {
if (num == f->index)
break;
++num;
}
}
/* Format not found */
if (i >= ARRAY_SIZE(fdp1_formats))
return -EINVAL;
/* Format found */
f->pixelformat = fdp1_formats[i].fourcc;
return 0;
}
static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
return fdp1_enum_fmt(f, FDP1_CAPTURE);
}
static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
return fdp1_enum_fmt(f, FDP1_OUTPUT);
}
static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct fdp1_q_data *q_data;
struct fdp1_ctx *ctx = fh_to_ctx(priv);
if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
return -EINVAL;
q_data = get_q_data(ctx, f->type);
f->fmt.pix_mp = q_data->format;
return 0;
}
static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
const struct fdp1_fmt *fmt)
{
unsigned int i;
/* Compute and clamp the stride and image size. */
for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
unsigned int hsub = i > 0 ? fmt->hsub : 1;
unsigned int vsub = i > 0 ? fmt->vsub : 1;
/* From VSP : TODO: Confirm alignment limits for FDP1 */
unsigned int align = 128;
unsigned int bpl;
bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
pix->width / hsub * fmt->bpp[i] / 8,
round_down(FDP1_MAX_STRIDE, align));
pix->plane_fmt[i].bytesperline = round_up(bpl, align);
pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
* pix->height / vsub;
memset(pix->plane_fmt[i].reserved, 0,
sizeof(pix->plane_fmt[i].reserved));
}
if (fmt->num_planes == 3) {
/* The two chroma planes must have the same stride. */
pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
memset(pix->plane_fmt[2].reserved, 0,
sizeof(pix->plane_fmt[2].reserved));
}
}
static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
const struct fdp1_fmt **fmtinfo,
struct v4l2_pix_format_mplane *pix)
{
const struct fdp1_fmt *fmt;
unsigned int width;
unsigned int height;
/* Validate the pixel format to ensure the output queue supports it. */
fmt = fdp1_find_format(pix->pixelformat);
if (!fmt || !(fmt->types & FDP1_OUTPUT))
fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
if (fmtinfo)
*fmtinfo = fmt;
pix->pixelformat = fmt->fourcc;
pix->num_planes = fmt->num_planes;
/*
* Progressive video and all interlaced field orders are acceptable.
* Default to V4L2_FIELD_INTERLACED.
*/
if (pix->field != V4L2_FIELD_NONE &&
pix->field != V4L2_FIELD_ALTERNATE &&
!V4L2_FIELD_HAS_BOTH(pix->field))
pix->field = V4L2_FIELD_INTERLACED;
/*
* The deinterlacer doesn't care about the colorspace, accept all values
* and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
* at the output of the deinterlacer supports a subset of encodings and
* quantization methods and will only be available when the colorspace
* allows it.
*/
if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
/*
* Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
* them to the supported frame size range. The height boundary are
* related to the full frame, divide them by two when the format passes
* fields in separate buffers.
*/
width = round_down(pix->width, fmt->hsub);
pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
height = round_down(pix->height, fmt->vsub);
if (pix->field == V4L2_FIELD_ALTERNATE)
pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
else
pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
fdp1_compute_stride(pix, fmt);
}
static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
const struct fdp1_fmt **fmtinfo,
struct v4l2_pix_format_mplane *pix)
{
struct fdp1_q_data *src_data = &ctx->out_q;
enum v4l2_colorspace colorspace;
enum v4l2_ycbcr_encoding ycbcr_enc;
enum v4l2_quantization quantization;
const struct fdp1_fmt *fmt;
bool allow_rgb;
/*
* Validate the pixel format. We can only accept RGB output formats if
* the input encoding and quantization are compatible with the format
* conversions supported by the hardware. The supported combinations are
*
* V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
* V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
* V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
*/
colorspace = src_data->format.colorspace;
ycbcr_enc = src_data->format.ycbcr_enc;
if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
quantization = src_data->format.quantization;
if (quantization == V4L2_QUANTIZATION_DEFAULT)
quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
ycbcr_enc);
allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
(ycbcr_enc == V4L2_YCBCR_ENC_709 &&
quantization == V4L2_QUANTIZATION_LIM_RANGE);
fmt = fdp1_find_format(pix->pixelformat);
if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
if (fmtinfo)
*fmtinfo = fmt;
pix->pixelformat = fmt->fourcc;
pix->num_planes = fmt->num_planes;
pix->field = V4L2_FIELD_NONE;
/*
* The colorspace on the capture queue is copied from the output queue
* as the hardware can't change the colorspace. It can convert YCbCr to
* RGB though, in which case the encoding and quantization are set to
* default values as anything else wouldn't make sense.
*/
pix->colorspace = src_data->format.colorspace;
pix->xfer_func = src_data->format.xfer_func;
if (fdp1_fmt_is_rgb(fmt)) {
pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
pix->quantization = V4L2_QUANTIZATION_DEFAULT;
} else {
pix->ycbcr_enc = src_data->format.ycbcr_enc;
pix->quantization = src_data->format.quantization;
}
/*
* The frame width is identical to the output queue, and the height is
* either doubled or identical depending on whether the output queue
* field order contains one or two fields per frame.
*/
pix->width = src_data->format.width;
if (src_data->format.field == V4L2_FIELD_ALTERNATE)
pix->height = 2 * src_data->format.height;
else
pix->height = src_data->format.height;
fdp1_compute_stride(pix, fmt);
}
static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct fdp1_ctx *ctx = fh_to_ctx(priv);
if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
else
fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
return 0;
}
static void fdp1_set_format(struct fdp1_ctx *ctx,
struct v4l2_pix_format_mplane *pix,
enum v4l2_buf_type type)
{
struct fdp1_q_data *q_data = get_q_data(ctx, type);
const struct fdp1_fmt *fmtinfo;
if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
fdp1_try_fmt_output(ctx, &fmtinfo, pix);
else
fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
q_data->fmt = fmtinfo;
q_data->format = *pix;
q_data->vsize = pix->height;
if (pix->field != V4L2_FIELD_NONE)
q_data->vsize /= 2;
q_data->stride_y = pix->plane_fmt[0].bytesperline;
q_data->stride_c = pix->plane_fmt[1].bytesperline;
/* Adjust strides for interleaved buffers */
if (pix->field == V4L2_FIELD_INTERLACED ||
pix->field == V4L2_FIELD_INTERLACED_TB ||
pix->field == V4L2_FIELD_INTERLACED_BT) {
q_data->stride_y *= 2;
q_data->stride_c *= 2;
}
/* Propagate the format from the output node to the capture node. */
if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
struct fdp1_q_data *dst_data = &ctx->cap_q;
/*
* Copy the format, clear the per-plane bytes per line and image
* size, override the field and double the height if needed.
*/
dst_data->format = q_data->format;
memset(dst_data->format.plane_fmt, 0,
sizeof(dst_data->format.plane_fmt));
dst_data->format.field = V4L2_FIELD_NONE;
if (pix->field == V4L2_FIELD_ALTERNATE)
dst_data->format.height *= 2;
fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
dst_data->vsize = dst_data->format.height;
dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
}
}
static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct fdp1_ctx *ctx = fh_to_ctx(priv);
struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
if (vb2_is_busy(vq)) {
v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
return -EBUSY;
}
fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
return 0;
}
static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
{
struct fdp1_ctx *ctx =
container_of(ctrl->handler, struct fdp1_ctx, hdl);
struct fdp1_q_data *src_q_data = &ctx->out_q;
switch (ctrl->id) {
case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
ctrl->val = 2;
else
ctrl->val = 1;
return 0;
}
return 1;
}
static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct fdp1_ctx *ctx =
container_of(ctrl->handler, struct fdp1_ctx, hdl);
switch (ctrl->id) {
case V4L2_CID_ALPHA_COMPONENT:
ctx->alpha = ctrl->val;
break;
case V4L2_CID_DEINTERLACING_MODE:
ctx->deint_mode = ctrl->val;
break;
}
return 0;
}
static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
.s_ctrl = fdp1_s_ctrl,
.g_volatile_ctrl = fdp1_g_ctrl,
};
static const char * const fdp1_ctrl_deint_menu[] = {
"Progressive",
"Adaptive 2D/3D",
"Fixed 2D",
"Fixed 3D",
"Previous field",
"Next field",
NULL
};
static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
.vidioc_querycap = fdp1_vidioc_querycap,
.vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
.vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
.vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
.vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
.vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
.vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
.vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
.vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
.vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
.vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
.vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
.vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
.vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
.vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
.vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
.vidioc_streamon = v4l2_m2m_ioctl_streamon,
.vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* Queue operations
*/
static int fdp1_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_ctxs[])
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
struct fdp1_q_data *q_data;
unsigned int i;
q_data = get_q_data(ctx, vq->type);
if (*nplanes) {
if (*nplanes > FDP1_MAX_PLANES)
return -EINVAL;
return 0;
}
*nplanes = q_data->format.num_planes;
for (i = 0; i < *nplanes; i++)
sizes[i] = q_data->format.plane_fmt[i].sizeimage;
return 0;
}
static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
struct vb2_v4l2_buffer *vbuf,
unsigned int field_num)
{
struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
unsigned int num_fields;
unsigned int i;
num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
fbuf->vb = vbuf;
fbuf->last_field = (field_num + 1) == num_fields;
for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
switch (vbuf->field) {
case V4L2_FIELD_INTERLACED:
/*
* Interlaced means bottom-top for 60Hz TV standards (NTSC) and
* top-bottom for 50Hz. As TV standards are not applicable to
* the mem-to-mem API, use the height as a heuristic.
*/
fbuf->field = (q_data->format.height < 576) == field_num
? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
break;
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_SEQ_TB:
fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
break;
case V4L2_FIELD_INTERLACED_BT:
case V4L2_FIELD_SEQ_BT:
fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
break;
default:
fbuf->field = vbuf->field;
break;
}
/* Buffer is completed */
if (!field_num)
return;
/* Adjust buffer addresses for second field */
switch (vbuf->field) {
case V4L2_FIELD_INTERLACED:
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_INTERLACED_BT:
for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
fbuf->addrs[i] +=
(i == 0 ? q_data->stride_y : q_data->stride_c);
break;
case V4L2_FIELD_SEQ_TB:
case V4L2_FIELD_SEQ_BT:
for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
fbuf->addrs[i] += q_data->vsize *
(i == 0 ? q_data->stride_y : q_data->stride_c);
break;
}
}
static int fdp1_buf_prepare(struct vb2_buffer *vb)
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
unsigned int i;
if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
bool field_valid = true;
/* Validate the buffer field. */
switch (q_data->format.field) {
case V4L2_FIELD_NONE:
if (vbuf->field != V4L2_FIELD_NONE)
field_valid = false;
break;
case V4L2_FIELD_ALTERNATE:
if (vbuf->field != V4L2_FIELD_TOP &&
vbuf->field != V4L2_FIELD_BOTTOM)
field_valid = false;
break;
case V4L2_FIELD_INTERLACED:
case V4L2_FIELD_SEQ_TB:
case V4L2_FIELD_SEQ_BT:
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_INTERLACED_BT:
if (vbuf->field != q_data->format.field)
field_valid = false;
break;
}
if (!field_valid) {
dprintk(ctx->fdp1,
"buffer field %u invalid for format field %u\n",
vbuf->field, q_data->format.field);
return -EINVAL;
}
} else {
vbuf->field = V4L2_FIELD_NONE;
}
/* Validate the planes sizes. */
for (i = 0; i < q_data->format.num_planes; i++) {
unsigned long size = q_data->format.plane_fmt[i].sizeimage;
if (vb2_plane_size(vb, i) < size) {
dprintk(ctx->fdp1,
"data will not fit into plane [%u/%u] (%lu < %lu)\n",
i, q_data->format.num_planes,
vb2_plane_size(vb, i), size);
return -EINVAL;
}
/* We have known size formats all around */
vb2_set_plane_payload(vb, i, size);
}
buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
for (i = 0; i < buf->num_fields; ++i)
fdp1_buf_prepare_field(q_data, vbuf, i);
return 0;
}
static void fdp1_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}
static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
if (V4L2_TYPE_IS_OUTPUT(q->type)) {
/*
* Force our deint_mode when we are progressive,
* ignoring any setting on the device from the user,
* Otherwise, lock in the requested de-interlace mode.
*/
if (q_data->format.field == V4L2_FIELD_NONE)
ctx->deint_mode = FDP1_PROGRESSIVE;
if (ctx->deint_mode == FDP1_ADAPT2D3D) {
u32 stride;
dma_addr_t smsk_base;
const u32 bpp = 2; /* bytes per pixel */
stride = round_up(q_data->format.width, 8);
ctx->smsk_size = bpp * stride * q_data->vsize;
ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
ctx->smsk_size, &smsk_base, GFP_KERNEL);
if (ctx->smsk_cpu == NULL) {
dprintk(ctx->fdp1, "Failed to alloc smsk\n");
return -ENOMEM;
}
ctx->smsk_addr[0] = smsk_base;
ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
}
}
return 0;
}
static void fdp1_stop_streaming(struct vb2_queue *q)
{
struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
struct vb2_v4l2_buffer *vbuf;
unsigned long flags;
while (1) {
if (V4L2_TYPE_IS_OUTPUT(q->type))
vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
else
vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
if (vbuf == NULL)
break;
spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
}
/* Empty Output queues */
if (V4L2_TYPE_IS_OUTPUT(q->type)) {
/* Empty our internal queues */
struct fdp1_field_buffer *fbuf;
/* Free any queued buffers */
fbuf = fdp1_dequeue_field(ctx);
while (fbuf != NULL) {
fdp1_field_complete(ctx, fbuf);
fbuf = fdp1_dequeue_field(ctx);
}
/* Free smsk_data */
if (ctx->smsk_cpu) {
dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
ctx->smsk_cpu, ctx->smsk_addr[0]);
ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
ctx->smsk_cpu = NULL;
}
WARN(!list_empty(&ctx->fields_queue),
"Buffer queue not empty");
} else {
/* Empty Capture queues (Jobs) */
struct fdp1_job *job;
job = get_queued_job(ctx->fdp1);
while (job) {
if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
fdp1_field_complete(ctx, job->previous);
else
fdp1_field_complete(ctx, job->active);
v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
job->dst = NULL;
job = get_queued_job(ctx->fdp1);
}
/* Free any held buffer in the ctx */
fdp1_field_complete(ctx, ctx->previous);
WARN(!list_empty(&ctx->fdp1->queued_job_list),
"Queued Job List not empty");
WARN(!list_empty(&ctx->fdp1->hw_job_list),
"HW Job list not empty");
}
}
static struct vb2_ops fdp1_qops = {
.queue_setup = fdp1_queue_setup,
.buf_prepare = fdp1_buf_prepare,
.buf_queue = fdp1_buf_queue,
.start_streaming = fdp1_start_streaming,
.stop_streaming = fdp1_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static int queue_init(void *priv, struct vb2_queue *src_vq,
struct vb2_queue *dst_vq)
{
struct fdp1_ctx *ctx = priv;
int ret;
src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
src_vq->drv_priv = ctx;
src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
src_vq->ops = &fdp1_qops;
src_vq->mem_ops = &vb2_dma_contig_memops;
src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
src_vq->lock = &ctx->fdp1->dev_mutex;
src_vq->dev = ctx->fdp1->dev;
ret = vb2_queue_init(src_vq);
if (ret)
return ret;
dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
dst_vq->drv_priv = ctx;
dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
dst_vq->ops = &fdp1_qops;
dst_vq->mem_ops = &vb2_dma_contig_memops;
dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
dst_vq->lock = &ctx->fdp1->dev_mutex;
dst_vq->dev = ctx->fdp1->dev;
return vb2_queue_init(dst_vq);
}
/*
* File operations
*/
static int fdp1_open(struct file *file)
{
struct fdp1_dev *fdp1 = video_drvdata(file);
struct v4l2_pix_format_mplane format;
struct fdp1_ctx *ctx = NULL;
struct v4l2_ctrl *ctrl;
int ret = 0;
if (mutex_lock_interruptible(&fdp1->dev_mutex))
return -ERESTARTSYS;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
ret = -ENOMEM;
goto done;
}
v4l2_fh_init(&ctx->fh, video_devdata(file));
file->private_data = &ctx->fh;
ctx->fdp1 = fdp1;
/* Initialise Queues */
INIT_LIST_HEAD(&ctx->fields_queue);
ctx->translen = 1;
ctx->sequence = 0;
/* Initialise controls */
v4l2_ctrl_handler_init(&ctx->hdl, 3);
v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
V4L2_CID_DEINTERLACING_MODE,
FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
fdp1_ctrl_deint_menu);
ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
if (ctx->hdl.error) {
ret = ctx->hdl.error;
v4l2_ctrl_handler_free(&ctx->hdl);
goto done;
}
ctx->fh.ctrl_handler = &ctx->hdl;
v4l2_ctrl_handler_setup(&ctx->hdl);
/* Configure default parameters. */
memset(&format, 0, sizeof(format));
fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
if (IS_ERR(ctx->fh.m2m_ctx)) {
ret = PTR_ERR(ctx->fh.m2m_ctx);
v4l2_ctrl_handler_free(&ctx->hdl);
kfree(ctx);
goto done;
}
/* Perform any power management required */
pm_runtime_get_sync(fdp1->dev);
v4l2_fh_add(&ctx->fh);
dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
ctx, ctx->fh.m2m_ctx);
done:
mutex_unlock(&fdp1->dev_mutex);
return ret;
}
static int fdp1_release(struct file *file)
{
struct fdp1_dev *fdp1 = video_drvdata(file);
struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
dprintk(fdp1, "Releasing instance %p\n", ctx);
v4l2_fh_del(&ctx->fh);
v4l2_fh_exit(&ctx->fh);
v4l2_ctrl_handler_free(&ctx->hdl);
mutex_lock(&fdp1->dev_mutex);
v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
mutex_unlock(&fdp1->dev_mutex);
kfree(ctx);
pm_runtime_put(fdp1->dev);
return 0;
}
static const struct v4l2_file_operations fdp1_fops = {
.owner = THIS_MODULE,
.open = fdp1_open,
.release = fdp1_release,
.poll = v4l2_m2m_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = v4l2_m2m_fop_mmap,
};
static const struct video_device fdp1_videodev = {
.name = DRIVER_NAME,
.vfl_dir = VFL_DIR_M2M,
.fops = &fdp1_fops,
.device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
.ioctl_ops = &fdp1_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
};
static const struct v4l2_m2m_ops m2m_ops = {
.device_run = fdp1_m2m_device_run,
.job_ready = fdp1_m2m_job_ready,
.job_abort = fdp1_m2m_job_abort,
};
static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
{
struct fdp1_dev *fdp1 = dev_id;
u32 int_status;
u32 ctl_status;
u32 vint_cnt;
u32 cycles;
int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
FD1_CTL_STATUS_VINT_CNT_SHIFT;
/* Clear interrupts */
fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
if (debug >= 2) {
dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
dprintk(fdp1, "CycleStatus = %d (%dms)\n",
cycles, cycles/(fdp1->clk_rate/1000));
dprintk(fdp1,
"Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
ctl_status, vint_cnt,
ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
dprintk(fdp1, "***********************************\n");
}
/* Spurious interrupt */
if (!(FD1_CTL_IRQ_MASK & int_status))
return IRQ_NONE;
/* Work completed, release the frame */
if (FD1_CTL_IRQ_VERE & int_status)
device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
else if (FD1_CTL_IRQ_FREE & int_status)
device_frame_end(fdp1, VB2_BUF_STATE_DONE);
return IRQ_HANDLED;
}
static int fdp1_probe(struct platform_device *pdev)
{
struct fdp1_dev *fdp1;
struct video_device *vfd;
struct device_node *fcp_node;
struct resource *res;
struct clk *clk;
unsigned int i;
int ret;
int hw_version;
fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
if (!fdp1)
return -ENOMEM;
INIT_LIST_HEAD(&fdp1->free_job_list);
INIT_LIST_HEAD(&fdp1->queued_job_list);
INIT_LIST_HEAD(&fdp1->hw_job_list);
/* Initialise the jobs on the free list */
for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
mutex_init(&fdp1->dev_mutex);
spin_lock_init(&fdp1->irqlock);
spin_lock_init(&fdp1->device_process_lock);
fdp1->dev = &pdev->dev;
platform_set_drvdata(pdev, fdp1);
/* Memory-mapped registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fdp1->regs))
return PTR_ERR(fdp1->regs);
/* Interrupt service routine registration */
fdp1->irq = ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(&pdev->dev, "cannot find IRQ\n");
return ret;
}
ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
dev_name(&pdev->dev), fdp1);
if (ret) {
dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
return ret;
}
/* FCP */
fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
if (fcp_node) {
fdp1->fcp = rcar_fcp_get(fcp_node);
of_node_put(fcp_node);
if (IS_ERR(fdp1->fcp)) {
dev_err(&pdev->dev, "FCP not found (%ld)\n",
PTR_ERR(fdp1->fcp));
return PTR_ERR(fdp1->fcp);
}
}
/* Determine our clock rate */
clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
fdp1->clk_rate = clk_get_rate(clk);
clk_put(clk);
/* V4L2 device registration */
ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
if (ret) {
v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
return ret;
}
/* M2M registration */
fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
if (IS_ERR(fdp1->m2m_dev)) {
v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
ret = PTR_ERR(fdp1->m2m_dev);
goto unreg_dev;
}
/* Video registration */
fdp1->vfd = fdp1_videodev;
vfd = &fdp1->vfd;
vfd->lock = &fdp1->dev_mutex;
vfd->v4l2_dev = &fdp1->v4l2_dev;
video_set_drvdata(vfd, fdp1);
strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
if (ret) {
v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
goto release_m2m;
}
v4l2_info(&fdp1->v4l2_dev,
"Device registered as /dev/video%d\n", vfd->num);
/* Power up the cells to read HW */
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(fdp1->dev);
hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
switch (hw_version) {
case FD1_IP_H3:
dprintk(fdp1, "FDP1 Version R-Car H3\n");
break;
case FD1_IP_M3W:
dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
break;
default:
dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
hw_version);
}
/* Allow the hw to sleep until an open call puts it to use */
pm_runtime_put(fdp1->dev);
return 0;
release_m2m:
v4l2_m2m_release(fdp1->m2m_dev);
unreg_dev:
v4l2_device_unregister(&fdp1->v4l2_dev);
return ret;
}
static int fdp1_remove(struct platform_device *pdev)
{
struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
v4l2_m2m_release(fdp1->m2m_dev);
video_unregister_device(&fdp1->vfd);
v4l2_device_unregister(&fdp1->v4l2_dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
{
struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
rcar_fcp_disable(fdp1->fcp);
return 0;
}
static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
{
struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
/* Program in the static LUTs */
fdp1_set_lut(fdp1);
return rcar_fcp_enable(fdp1->fcp);
}
static const struct dev_pm_ops fdp1_pm_ops = {
SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
fdp1_pm_runtime_resume,
NULL)
};
static const struct of_device_id fdp1_dt_ids[] = {
{ .compatible = "renesas,fdp1" },
{ },
};
MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
static struct platform_driver fdp1_pdrv = {
.probe = fdp1_probe,
.remove = fdp1_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = fdp1_dt_ids,
.pm = &fdp1_pm_ops,
},
};
module_platform_driver(fdp1_pdrv);
MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);