alistair23-linux/arch/um/drivers/chan_kern.c
Jeff Dike 3076212f8d [PATCH] uml: irq locking fixes
As the comment immediately preceding this points out, this list is changed in
irq context, so it needs to be protected with spin_lock_irqsave in process
context when it is processed.

Sometimes, gcc should just compile the comments and forget the code.

The IRQ side of this was better, in the sense that it blocked and unblocked
interrupts, but it still should have saved and restored them.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-29 08:22:24 -07:00

661 lines
14 KiB
C

/*
* Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
* Licensed under the GPL
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/string.h>
#include <linux/tty_flip.h>
#include <asm/irq.h>
#include "chan_kern.h"
#include "user_util.h"
#include "kern.h"
#include "irq_user.h"
#include "sigio.h"
#include "line.h"
#include "os.h"
#ifdef CONFIG_NOCONFIG_CHAN
static void *not_configged_init(char *str, int device,
const struct chan_opts *opts)
{
printk("Using a channel type which is configured out of "
"UML\n");
return NULL;
}
static int not_configged_open(int input, int output, int primary, void *data,
char **dev_out)
{
printk("Using a channel type which is configured out of "
"UML\n");
return -ENODEV;
}
static void not_configged_close(int fd, void *data)
{
printk("Using a channel type which is configured out of "
"UML\n");
}
static int not_configged_read(int fd, char *c_out, void *data)
{
printk("Using a channel type which is configured out of "
"UML\n");
return -EIO;
}
static int not_configged_write(int fd, const char *buf, int len, void *data)
{
printk("Using a channel type which is configured out of "
"UML\n");
return -EIO;
}
static int not_configged_console_write(int fd, const char *buf, int len)
{
printk("Using a channel type which is configured out of "
"UML\n");
return -EIO;
}
static int not_configged_window_size(int fd, void *data, unsigned short *rows,
unsigned short *cols)
{
printk("Using a channel type which is configured out of "
"UML\n");
return -ENODEV;
}
static void not_configged_free(void *data)
{
printk("Using a channel type which is configured out of "
"UML\n");
}
static const struct chan_ops not_configged_ops = {
.init = not_configged_init,
.open = not_configged_open,
.close = not_configged_close,
.read = not_configged_read,
.write = not_configged_write,
.console_write = not_configged_console_write,
.window_size = not_configged_window_size,
.free = not_configged_free,
.winch = 0,
};
#endif /* CONFIG_NOCONFIG_CHAN */
void generic_close(int fd, void *unused)
{
os_close_file(fd);
}
int generic_read(int fd, char *c_out, void *unused)
{
int n;
n = os_read_file(fd, c_out, sizeof(*c_out));
if(n == -EAGAIN)
return 0;
else if(n == 0)
return -EIO;
return n;
}
/* XXX Trivial wrapper around os_write_file */
int generic_write(int fd, const char *buf, int n, void *unused)
{
return os_write_file(fd, buf, n);
}
int generic_window_size(int fd, void *unused, unsigned short *rows_out,
unsigned short *cols_out)
{
int rows, cols;
int ret;
ret = os_window_size(fd, &rows, &cols);
if(ret < 0)
return ret;
ret = ((*rows_out != rows) || (*cols_out != cols));
*rows_out = rows;
*cols_out = cols;
return ret;
}
void generic_free(void *data)
{
kfree(data);
}
static void tty_receive_char(struct tty_struct *tty, char ch)
{
if(tty == NULL) return;
if(I_IXON(tty) && !I_IXOFF(tty) && !tty->raw) {
if(ch == STOP_CHAR(tty)){
stop_tty(tty);
return;
}
else if(ch == START_CHAR(tty)){
start_tty(tty);
return;
}
}
tty_insert_flip_char(tty, ch, TTY_NORMAL);
}
static int open_one_chan(struct chan *chan)
{
int fd;
if(chan->opened)
return 0;
if(chan->ops->open == NULL)
fd = 0;
else fd = (*chan->ops->open)(chan->input, chan->output, chan->primary,
chan->data, &chan->dev);
if(fd < 0)
return fd;
chan->fd = fd;
chan->opened = 1;
return 0;
}
int open_chan(struct list_head *chans)
{
struct list_head *ele;
struct chan *chan;
int ret, err = 0;
list_for_each(ele, chans){
chan = list_entry(ele, struct chan, list);
ret = open_one_chan(chan);
if(chan->primary)
err = ret;
}
return err;
}
void chan_enable_winch(struct list_head *chans, struct tty_struct *tty)
{
struct list_head *ele;
struct chan *chan;
list_for_each(ele, chans){
chan = list_entry(ele, struct chan, list);
if(chan->primary && chan->output && chan->ops->winch){
register_winch(chan->fd, tty);
return;
}
}
}
void enable_chan(struct line *line)
{
struct list_head *ele;
struct chan *chan;
list_for_each(ele, &line->chan_list){
chan = list_entry(ele, struct chan, list);
if(open_one_chan(chan))
continue;
if(chan->enabled)
continue;
line_setup_irq(chan->fd, chan->input, chan->output, line,
chan);
chan->enabled = 1;
}
}
/* Items are added in IRQ context, when free_irq can't be called, and
* removed in process context, when it can.
* This handles interrupt sources which disappear, and which need to
* be permanently disabled. This is discovered in IRQ context, but
* the freeing of the IRQ must be done later.
*/
static DEFINE_SPINLOCK(irqs_to_free_lock);
static LIST_HEAD(irqs_to_free);
void free_irqs(void)
{
struct chan *chan;
LIST_HEAD(list);
struct list_head *ele;
unsigned long flags;
spin_lock_irqsave(&irqs_to_free_lock, flags);
list_splice_init(&irqs_to_free, &list);
spin_unlock_irqrestore(&irqs_to_free_lock, flags);
list_for_each(ele, &list){
chan = list_entry(ele, struct chan, free_list);
if(chan->input)
free_irq(chan->line->driver->read_irq, chan);
if(chan->output)
free_irq(chan->line->driver->write_irq, chan);
chan->enabled = 0;
}
}
static void close_one_chan(struct chan *chan, int delay_free_irq)
{
unsigned long flags;
if(!chan->opened)
return;
if(delay_free_irq){
spin_lock_irqsave(&irqs_to_free_lock, flags);
list_add(&chan->free_list, &irqs_to_free);
spin_unlock_irqrestore(&irqs_to_free_lock, flags);
}
else {
if(chan->input)
free_irq(chan->line->driver->read_irq, chan);
if(chan->output)
free_irq(chan->line->driver->write_irq, chan);
chan->enabled = 0;
}
if(chan->ops->close != NULL)
(*chan->ops->close)(chan->fd, chan->data);
chan->opened = 0;
chan->fd = -1;
}
void close_chan(struct list_head *chans, int delay_free_irq)
{
struct chan *chan;
/* Close in reverse order as open in case more than one of them
* refers to the same device and they save and restore that device's
* state. Then, the first one opened will have the original state,
* so it must be the last closed.
*/
list_for_each_entry_reverse(chan, chans, list) {
close_one_chan(chan, delay_free_irq);
}
}
void deactivate_chan(struct list_head *chans, int irq)
{
struct list_head *ele;
struct chan *chan;
list_for_each(ele, chans) {
chan = list_entry(ele, struct chan, list);
if(chan->enabled && chan->input)
deactivate_fd(chan->fd, irq);
}
}
void reactivate_chan(struct list_head *chans, int irq)
{
struct list_head *ele;
struct chan *chan;
list_for_each(ele, chans) {
chan = list_entry(ele, struct chan, list);
if(chan->enabled && chan->input)
reactivate_fd(chan->fd, irq);
}
}
int write_chan(struct list_head *chans, const char *buf, int len,
int write_irq)
{
struct list_head *ele;
struct chan *chan = NULL;
int n, ret = 0;
list_for_each(ele, chans) {
chan = list_entry(ele, struct chan, list);
if (!chan->output || (chan->ops->write == NULL))
continue;
n = chan->ops->write(chan->fd, buf, len, chan->data);
if (chan->primary) {
ret = n;
if ((ret == -EAGAIN) || ((ret >= 0) && (ret < len)))
reactivate_fd(chan->fd, write_irq);
}
}
return ret;
}
int console_write_chan(struct list_head *chans, const char *buf, int len)
{
struct list_head *ele;
struct chan *chan;
int n, ret = 0;
list_for_each(ele, chans){
chan = list_entry(ele, struct chan, list);
if(!chan->output || (chan->ops->console_write == NULL))
continue;
n = chan->ops->console_write(chan->fd, buf, len);
if(chan->primary) ret = n;
}
return ret;
}
int console_open_chan(struct line *line, struct console *co)
{
int err;
err = open_chan(&line->chan_list);
if(err)
return err;
printk("Console initialized on /dev/%s%d\n", co->name, co->index);
return 0;
}
int chan_window_size(struct list_head *chans, unsigned short *rows_out,
unsigned short *cols_out)
{
struct list_head *ele;
struct chan *chan;
list_for_each(ele, chans){
chan = list_entry(ele, struct chan, list);
if(chan->primary){
if(chan->ops->window_size == NULL)
return 0;
return chan->ops->window_size(chan->fd, chan->data,
rows_out, cols_out);
}
}
return 0;
}
static void free_one_chan(struct chan *chan, int delay_free_irq)
{
list_del(&chan->list);
close_one_chan(chan, delay_free_irq);
if(chan->ops->free != NULL)
(*chan->ops->free)(chan->data);
if(chan->primary && chan->output) ignore_sigio_fd(chan->fd);
kfree(chan);
}
static void free_chan(struct list_head *chans, int delay_free_irq)
{
struct list_head *ele, *next;
struct chan *chan;
list_for_each_safe(ele, next, chans){
chan = list_entry(ele, struct chan, list);
free_one_chan(chan, delay_free_irq);
}
}
static int one_chan_config_string(struct chan *chan, char *str, int size,
char **error_out)
{
int n = 0;
if(chan == NULL){
CONFIG_CHUNK(str, size, n, "none", 1);
return n;
}
CONFIG_CHUNK(str, size, n, chan->ops->type, 0);
if(chan->dev == NULL){
CONFIG_CHUNK(str, size, n, "", 1);
return n;
}
CONFIG_CHUNK(str, size, n, ":", 0);
CONFIG_CHUNK(str, size, n, chan->dev, 0);
return n;
}
static int chan_pair_config_string(struct chan *in, struct chan *out,
char *str, int size, char **error_out)
{
int n;
n = one_chan_config_string(in, str, size, error_out);
str += n;
size -= n;
if(in == out){
CONFIG_CHUNK(str, size, n, "", 1);
return n;
}
CONFIG_CHUNK(str, size, n, ",", 1);
n = one_chan_config_string(out, str, size, error_out);
str += n;
size -= n;
CONFIG_CHUNK(str, size, n, "", 1);
return n;
}
int chan_config_string(struct list_head *chans, char *str, int size,
char **error_out)
{
struct list_head *ele;
struct chan *chan, *in = NULL, *out = NULL;
list_for_each(ele, chans){
chan = list_entry(ele, struct chan, list);
if(!chan->primary)
continue;
if(chan->input)
in = chan;
if(chan->output)
out = chan;
}
return chan_pair_config_string(in, out, str, size, error_out);
}
struct chan_type {
char *key;
const struct chan_ops *ops;
};
static const struct chan_type chan_table[] = {
{ "fd", &fd_ops },
#ifdef CONFIG_NULL_CHAN
{ "null", &null_ops },
#else
{ "null", &not_configged_ops },
#endif
#ifdef CONFIG_PORT_CHAN
{ "port", &port_ops },
#else
{ "port", &not_configged_ops },
#endif
#ifdef CONFIG_PTY_CHAN
{ "pty", &pty_ops },
{ "pts", &pts_ops },
#else
{ "pty", &not_configged_ops },
{ "pts", &not_configged_ops },
#endif
#ifdef CONFIG_TTY_CHAN
{ "tty", &tty_ops },
#else
{ "tty", &not_configged_ops },
#endif
#ifdef CONFIG_XTERM_CHAN
{ "xterm", &xterm_ops },
#else
{ "xterm", &not_configged_ops },
#endif
};
static struct chan *parse_chan(struct line *line, char *str, int device,
const struct chan_opts *opts, char **error_out)
{
const struct chan_type *entry;
const struct chan_ops *ops;
struct chan *chan;
void *data;
int i;
ops = NULL;
data = NULL;
for(i = 0; i < ARRAY_SIZE(chan_table); i++){
entry = &chan_table[i];
if(!strncmp(str, entry->key, strlen(entry->key))){
ops = entry->ops;
str += strlen(entry->key);
break;
}
}
if(ops == NULL){
*error_out = "No match for configured backends";
return NULL;
}
data = (*ops->init)(str, device, opts);
if(data == NULL){
*error_out = "Configuration failed";
return NULL;
}
chan = kmalloc(sizeof(*chan), GFP_ATOMIC);
if(chan == NULL){
*error_out = "Memory allocation failed";
return NULL;
}
*chan = ((struct chan) { .list = LIST_HEAD_INIT(chan->list),
.free_list =
LIST_HEAD_INIT(chan->free_list),
.line = line,
.primary = 1,
.input = 0,
.output = 0,
.opened = 0,
.enabled = 0,
.fd = -1,
.ops = ops,
.data = data });
return chan;
}
int parse_chan_pair(char *str, struct line *line, int device,
const struct chan_opts *opts, char **error_out)
{
struct list_head *chans = &line->chan_list;
struct chan *new, *chan;
char *in, *out;
if(!list_empty(chans)){
chan = list_entry(chans->next, struct chan, list);
free_chan(chans, 0);
INIT_LIST_HEAD(chans);
}
out = strchr(str, ',');
if(out != NULL){
in = str;
*out = '\0';
out++;
new = parse_chan(line, in, device, opts, error_out);
if(new == NULL)
return -1;
new->input = 1;
list_add(&new->list, chans);
new = parse_chan(line, out, device, opts, error_out);
if(new == NULL)
return -1;
list_add(&new->list, chans);
new->output = 1;
}
else {
new = parse_chan(line, str, device, opts, error_out);
if(new == NULL)
return -1;
list_add(&new->list, chans);
new->input = 1;
new->output = 1;
}
return 0;
}
int chan_out_fd(struct list_head *chans)
{
struct list_head *ele;
struct chan *chan;
list_for_each(ele, chans){
chan = list_entry(ele, struct chan, list);
if(chan->primary && chan->output)
return chan->fd;
}
return -1;
}
void chan_interrupt(struct list_head *chans, struct delayed_work *task,
struct tty_struct *tty, int irq)
{
struct list_head *ele, *next;
struct chan *chan;
int err;
char c;
list_for_each_safe(ele, next, chans){
chan = list_entry(ele, struct chan, list);
if(!chan->input || (chan->ops->read == NULL)) continue;
do {
if (tty && !tty_buffer_request_room(tty, 1)) {
schedule_delayed_work(task, 1);
goto out;
}
err = chan->ops->read(chan->fd, &c, chan->data);
if(err > 0)
tty_receive_char(tty, c);
} while(err > 0);
if(err == 0) reactivate_fd(chan->fd, irq);
if(err == -EIO){
if(chan->primary){
if(tty != NULL)
tty_hangup(tty);
close_chan(chans, 1);
return;
}
else close_one_chan(chan, 1);
}
}
out:
if(tty) tty_flip_buffer_push(tty);
}