alistair23-linux/arch/powerpc/mm/pgtable_32.c
Christophe Leroy 4cfac2f9c7 powerpc/mm: Simplify __set_fixmap()
__set_fixmap() uses __fix_to_virt() then does the boundary checks
by it self. Instead, we can use fix_to_virt() which does the
verification at build time. For this, we need to use it inline
so that GCC can see the real value of idx at buildtime.

In the meantime, we remove the 'fixmaps' variable.
This variable is set but has never been used from the beginning
(commit 2c419bdeca ("[POWERPC] Port fixmap from x86 and use
for kmap_atomic"))

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-15 22:55:58 +10:00

411 lines
9.8 KiB
C

/*
* This file contains the routines setting up the linux page tables.
* -- paulus
*
* Derived from arch/ppc/mm/init.c:
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/fixmap.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/sections.h>
#include "mmu_decl.h"
unsigned long ioremap_bot;
EXPORT_SYMBOL(ioremap_bot); /* aka VMALLOC_END */
extern char etext[], _stext[], _sinittext[], _einittext[];
__ref pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
pte_t *pte;
if (slab_is_available()) {
pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
} else {
pte = __va(memblock_alloc(PAGE_SIZE, PAGE_SIZE));
if (pte)
clear_page(pte);
}
return pte;
}
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
struct page *ptepage;
gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT;
ptepage = alloc_pages(flags, 0);
if (!ptepage)
return NULL;
if (!pgtable_page_ctor(ptepage)) {
__free_page(ptepage);
return NULL;
}
return ptepage;
}
void __iomem *
ioremap(phys_addr_t addr, unsigned long size)
{
return __ioremap_caller(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap);
void __iomem *
ioremap_wc(phys_addr_t addr, unsigned long size)
{
return __ioremap_caller(addr, size, _PAGE_NO_CACHE,
__builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_wc);
void __iomem *
ioremap_prot(phys_addr_t addr, unsigned long size, unsigned long flags)
{
/* writeable implies dirty for kernel addresses */
if ((flags & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO)
flags |= _PAGE_DIRTY | _PAGE_HWWRITE;
/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
flags &= ~(_PAGE_USER | _PAGE_EXEC);
#ifdef _PAGE_BAP_SR
/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
* which means that we just cleared supervisor access... oops ;-) This
* restores it
*/
flags |= _PAGE_BAP_SR;
#endif
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_prot);
void __iomem *
__ioremap(phys_addr_t addr, unsigned long size, unsigned long flags)
{
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
}
void __iomem *
__ioremap_caller(phys_addr_t addr, unsigned long size, unsigned long flags,
void *caller)
{
unsigned long v, i;
phys_addr_t p;
int err;
/* Make sure we have the base flags */
if ((flags & _PAGE_PRESENT) == 0)
flags |= pgprot_val(PAGE_KERNEL);
/* Non-cacheable page cannot be coherent */
if (flags & _PAGE_NO_CACHE)
flags &= ~_PAGE_COHERENT;
/*
* Choose an address to map it to.
* Once the vmalloc system is running, we use it.
* Before then, we use space going down from IOREMAP_TOP
* (ioremap_bot records where we're up to).
*/
p = addr & PAGE_MASK;
size = PAGE_ALIGN(addr + size) - p;
/*
* If the address lies within the first 16 MB, assume it's in ISA
* memory space
*/
if (p < 16*1024*1024)
p += _ISA_MEM_BASE;
#ifndef CONFIG_CRASH_DUMP
/*
* Don't allow anybody to remap normal RAM that we're using.
* mem_init() sets high_memory so only do the check after that.
*/
if (slab_is_available() && (p < virt_to_phys(high_memory)) &&
!(__allow_ioremap_reserved && memblock_is_region_reserved(p, size))) {
printk("__ioremap(): phys addr 0x%llx is RAM lr %ps\n",
(unsigned long long)p, __builtin_return_address(0));
return NULL;
}
#endif
if (size == 0)
return NULL;
/*
* Is it already mapped? Perhaps overlapped by a previous
* mapping.
*/
v = p_block_mapped(p);
if (v)
goto out;
if (slab_is_available()) {
struct vm_struct *area;
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (area == 0)
return NULL;
area->phys_addr = p;
v = (unsigned long) area->addr;
} else {
v = (ioremap_bot -= size);
}
/*
* Should check if it is a candidate for a BAT mapping
*/
err = 0;
for (i = 0; i < size && err == 0; i += PAGE_SIZE)
err = map_kernel_page(v+i, p+i, flags);
if (err) {
if (slab_is_available())
vunmap((void *)v);
return NULL;
}
out:
return (void __iomem *) (v + ((unsigned long)addr & ~PAGE_MASK));
}
EXPORT_SYMBOL(__ioremap);
void iounmap(volatile void __iomem *addr)
{
/*
* If mapped by BATs then there is nothing to do.
* Calling vfree() generates a benign warning.
*/
if (v_block_mapped((unsigned long)addr))
return;
if (addr > high_memory && (unsigned long) addr < ioremap_bot)
vunmap((void *) (PAGE_MASK & (unsigned long)addr));
}
EXPORT_SYMBOL(iounmap);
int map_kernel_page(unsigned long va, phys_addr_t pa, int flags)
{
pmd_t *pd;
pte_t *pg;
int err = -ENOMEM;
/* Use upper 10 bits of VA to index the first level map */
pd = pmd_offset(pud_offset(pgd_offset_k(va), va), va);
/* Use middle 10 bits of VA to index the second-level map */
pg = pte_alloc_kernel(pd, va);
if (pg != 0) {
err = 0;
/* The PTE should never be already set nor present in the
* hash table
*/
BUG_ON((pte_val(*pg) & (_PAGE_PRESENT | _PAGE_HASHPTE)) &&
flags);
set_pte_at(&init_mm, va, pg, pfn_pte(pa >> PAGE_SHIFT,
__pgprot(flags)));
}
smp_wmb();
return err;
}
/*
* Map in a chunk of physical memory starting at start.
*/
static void __init __mapin_ram_chunk(unsigned long offset, unsigned long top)
{
unsigned long v, s, f;
phys_addr_t p;
int ktext;
s = offset;
v = PAGE_OFFSET + s;
p = memstart_addr + s;
for (; s < top; s += PAGE_SIZE) {
ktext = ((char *)v >= _stext && (char *)v < etext) ||
((char *)v >= _sinittext && (char *)v < _einittext);
f = ktext ? pgprot_val(PAGE_KERNEL_TEXT) : pgprot_val(PAGE_KERNEL);
map_kernel_page(v, p, f);
#ifdef CONFIG_PPC_STD_MMU_32
if (ktext)
hash_preload(&init_mm, v, 0, 0x300);
#endif
v += PAGE_SIZE;
p += PAGE_SIZE;
}
}
void __init mapin_ram(void)
{
unsigned long s, top;
#ifndef CONFIG_WII
top = total_lowmem;
s = mmu_mapin_ram(top);
__mapin_ram_chunk(s, top);
#else
if (!wii_hole_size) {
s = mmu_mapin_ram(total_lowmem);
__mapin_ram_chunk(s, total_lowmem);
} else {
top = wii_hole_start;
s = mmu_mapin_ram(top);
__mapin_ram_chunk(s, top);
top = memblock_end_of_DRAM();
s = wii_mmu_mapin_mem2(top);
__mapin_ram_chunk(s, top);
}
#endif
}
/* Scan the real Linux page tables and return a PTE pointer for
* a virtual address in a context.
* Returns true (1) if PTE was found, zero otherwise. The pointer to
* the PTE pointer is unmodified if PTE is not found.
*/
static int
get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, pmd_t **pmdp)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int retval = 0;
pgd = pgd_offset(mm, addr & PAGE_MASK);
if (pgd) {
pud = pud_offset(pgd, addr & PAGE_MASK);
if (pud && pud_present(*pud)) {
pmd = pmd_offset(pud, addr & PAGE_MASK);
if (pmd_present(*pmd)) {
pte = pte_offset_map(pmd, addr & PAGE_MASK);
if (pte) {
retval = 1;
*ptep = pte;
if (pmdp)
*pmdp = pmd;
/* XXX caller needs to do pte_unmap, yuck */
}
}
}
}
return(retval);
}
static int __change_page_attr_noflush(struct page *page, pgprot_t prot)
{
pte_t *kpte;
pmd_t *kpmd;
unsigned long address;
BUG_ON(PageHighMem(page));
address = (unsigned long)page_address(page);
if (v_block_mapped(address))
return 0;
if (!get_pteptr(&init_mm, address, &kpte, &kpmd))
return -EINVAL;
__set_pte_at(&init_mm, address, kpte, mk_pte(page, prot), 0);
pte_unmap(kpte);
return 0;
}
/*
* Change the page attributes of an page in the linear mapping.
*
* THIS DOES NOTHING WITH BAT MAPPINGS, DEBUG USE ONLY
*/
static int change_page_attr(struct page *page, int numpages, pgprot_t prot)
{
int i, err = 0;
unsigned long flags;
struct page *start = page;
local_irq_save(flags);
for (i = 0; i < numpages; i++, page++) {
err = __change_page_attr_noflush(page, prot);
if (err)
break;
}
wmb();
flush_tlb_kernel_range((unsigned long)page_address(start),
(unsigned long)page_address(page));
local_irq_restore(flags);
return err;
}
void mark_initmem_nx(void)
{
struct page *page = virt_to_page(_sinittext);
unsigned long numpages = PFN_UP((unsigned long)_einittext) -
PFN_DOWN((unsigned long)_sinittext);
change_page_attr(page, numpages, PAGE_KERNEL);
}
#ifdef CONFIG_STRICT_KERNEL_RWX
void mark_rodata_ro(void)
{
struct page *page;
unsigned long numpages;
page = virt_to_page(_stext);
numpages = PFN_UP((unsigned long)_etext) -
PFN_DOWN((unsigned long)_stext);
change_page_attr(page, numpages, PAGE_KERNEL_ROX);
/*
* mark .rodata as read only. Use __init_begin rather than __end_rodata
* to cover NOTES and EXCEPTION_TABLE.
*/
page = virt_to_page(__start_rodata);
numpages = PFN_UP((unsigned long)__init_begin) -
PFN_DOWN((unsigned long)__start_rodata);
change_page_attr(page, numpages, PAGE_KERNEL_RO);
}
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
void __kernel_map_pages(struct page *page, int numpages, int enable)
{
if (PageHighMem(page))
return;
change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
}
#endif /* CONFIG_DEBUG_PAGEALLOC */