alistair23-linux/net/xfrm/xfrm_device.c
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

407 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* xfrm_device.c - IPsec device offloading code.
*
* Copyright (c) 2015 secunet Security Networks AG
*
* Author:
* Steffen Klassert <steffen.klassert@secunet.com>
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <linux/notifier.h>
#ifdef CONFIG_XFRM_OFFLOAD
static void __xfrm_transport_prep(struct xfrm_state *x, struct sk_buff *skb,
unsigned int hsize)
{
struct xfrm_offload *xo = xfrm_offload(skb);
skb_reset_mac_len(skb);
pskb_pull(skb, skb->mac_len + hsize + x->props.header_len);
if (xo->flags & XFRM_GSO_SEGMENT) {
skb_reset_transport_header(skb);
skb->transport_header -= x->props.header_len;
}
}
static void __xfrm_mode_tunnel_prep(struct xfrm_state *x, struct sk_buff *skb,
unsigned int hsize)
{
struct xfrm_offload *xo = xfrm_offload(skb);
if (xo->flags & XFRM_GSO_SEGMENT)
skb->transport_header = skb->network_header + hsize;
skb_reset_mac_len(skb);
pskb_pull(skb, skb->mac_len + x->props.header_len);
}
/* Adjust pointers into the packet when IPsec is done at layer2 */
static void xfrm_outer_mode_prep(struct xfrm_state *x, struct sk_buff *skb)
{
switch (x->outer_mode.encap) {
case XFRM_MODE_TUNNEL:
if (x->outer_mode.family == AF_INET)
return __xfrm_mode_tunnel_prep(x, skb,
sizeof(struct iphdr));
if (x->outer_mode.family == AF_INET6)
return __xfrm_mode_tunnel_prep(x, skb,
sizeof(struct ipv6hdr));
break;
case XFRM_MODE_TRANSPORT:
if (x->outer_mode.family == AF_INET)
return __xfrm_transport_prep(x, skb,
sizeof(struct iphdr));
if (x->outer_mode.family == AF_INET6)
return __xfrm_transport_prep(x, skb,
sizeof(struct ipv6hdr));
break;
case XFRM_MODE_ROUTEOPTIMIZATION:
case XFRM_MODE_IN_TRIGGER:
case XFRM_MODE_BEET:
break;
}
}
struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again)
{
int err;
unsigned long flags;
struct xfrm_state *x;
struct sk_buff *skb2;
struct softnet_data *sd;
netdev_features_t esp_features = features;
struct xfrm_offload *xo = xfrm_offload(skb);
struct sec_path *sp;
if (!xo)
return skb;
if (!(features & NETIF_F_HW_ESP))
esp_features = features & ~(NETIF_F_SG | NETIF_F_CSUM_MASK);
sp = skb_sec_path(skb);
x = sp->xvec[sp->len - 1];
if (xo->flags & XFRM_GRO || x->xso.flags & XFRM_OFFLOAD_INBOUND)
return skb;
local_irq_save(flags);
sd = this_cpu_ptr(&softnet_data);
err = !skb_queue_empty(&sd->xfrm_backlog);
local_irq_restore(flags);
if (err) {
*again = true;
return skb;
}
if (skb_is_gso(skb)) {
struct net_device *dev = skb->dev;
if (unlikely(x->xso.dev != dev)) {
struct sk_buff *segs;
/* Packet got rerouted, fixup features and segment it. */
esp_features = esp_features & ~(NETIF_F_HW_ESP
| NETIF_F_GSO_ESP);
segs = skb_gso_segment(skb, esp_features);
if (IS_ERR(segs)) {
kfree_skb(skb);
atomic_long_inc(&dev->tx_dropped);
return NULL;
} else {
consume_skb(skb);
skb = segs;
}
}
}
if (!skb->next) {
esp_features |= skb->dev->gso_partial_features;
xfrm_outer_mode_prep(x, skb);
xo->flags |= XFRM_DEV_RESUME;
err = x->type_offload->xmit(x, skb, esp_features);
if (err) {
if (err == -EINPROGRESS)
return NULL;
XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR);
kfree_skb(skb);
return NULL;
}
skb_push(skb, skb->data - skb_mac_header(skb));
return skb;
}
skb2 = skb;
do {
struct sk_buff *nskb = skb2->next;
esp_features |= skb->dev->gso_partial_features;
skb_mark_not_on_list(skb2);
xo = xfrm_offload(skb2);
xo->flags |= XFRM_DEV_RESUME;
xfrm_outer_mode_prep(x, skb2);
err = x->type_offload->xmit(x, skb2, esp_features);
if (!err) {
skb2->next = nskb;
} else if (err != -EINPROGRESS) {
XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR);
skb2->next = nskb;
kfree_skb_list(skb2);
return NULL;
} else {
if (skb == skb2)
skb = nskb;
if (!skb)
return NULL;
goto skip_push;
}
skb_push(skb2, skb2->data - skb_mac_header(skb2));
skip_push:
skb2 = nskb;
} while (skb2);
return skb;
}
EXPORT_SYMBOL_GPL(validate_xmit_xfrm);
int xfrm_dev_state_add(struct net *net, struct xfrm_state *x,
struct xfrm_user_offload *xuo)
{
int err;
struct dst_entry *dst;
struct net_device *dev;
struct xfrm_state_offload *xso = &x->xso;
xfrm_address_t *saddr;
xfrm_address_t *daddr;
if (!x->type_offload)
return -EINVAL;
/* We don't yet support UDP encapsulation and TFC padding. */
if (x->encap || x->tfcpad)
return -EINVAL;
dev = dev_get_by_index(net, xuo->ifindex);
if (!dev) {
if (!(xuo->flags & XFRM_OFFLOAD_INBOUND)) {
saddr = &x->props.saddr;
daddr = &x->id.daddr;
} else {
saddr = &x->id.daddr;
daddr = &x->props.saddr;
}
dst = __xfrm_dst_lookup(net, 0, 0, saddr, daddr,
x->props.family,
xfrm_smark_get(0, x));
if (IS_ERR(dst))
return 0;
dev = dst->dev;
dev_hold(dev);
dst_release(dst);
}
if (!dev->xfrmdev_ops || !dev->xfrmdev_ops->xdo_dev_state_add) {
xso->dev = NULL;
dev_put(dev);
return 0;
}
if (x->props.flags & XFRM_STATE_ESN &&
!dev->xfrmdev_ops->xdo_dev_state_advance_esn) {
xso->dev = NULL;
dev_put(dev);
return -EINVAL;
}
xso->dev = dev;
xso->num_exthdrs = 1;
xso->flags = xuo->flags;
err = dev->xfrmdev_ops->xdo_dev_state_add(x);
if (err) {
xso->num_exthdrs = 0;
xso->flags = 0;
xso->dev = NULL;
dev_put(dev);
if (err != -EOPNOTSUPP)
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(xfrm_dev_state_add);
bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
{
int mtu;
struct dst_entry *dst = skb_dst(skb);
struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
struct net_device *dev = x->xso.dev;
if (!x->type_offload || x->encap)
return false;
if ((!dev || (dev == xfrm_dst_path(dst)->dev)) &&
(!xdst->child->xfrm && x->type->get_mtu)) {
mtu = x->type->get_mtu(x, xdst->child_mtu_cached);
if (skb->len <= mtu)
goto ok;
if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu))
goto ok;
}
return false;
ok:
if (dev && dev->xfrmdev_ops && dev->xfrmdev_ops->xdo_dev_offload_ok)
return x->xso.dev->xfrmdev_ops->xdo_dev_offload_ok(skb, x);
return true;
}
EXPORT_SYMBOL_GPL(xfrm_dev_offload_ok);
void xfrm_dev_resume(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
int ret = NETDEV_TX_BUSY;
struct netdev_queue *txq;
struct softnet_data *sd;
unsigned long flags;
rcu_read_lock();
txq = netdev_core_pick_tx(dev, skb, NULL);
HARD_TX_LOCK(dev, txq, smp_processor_id());
if (!netif_xmit_frozen_or_stopped(txq))
skb = dev_hard_start_xmit(skb, dev, txq, &ret);
HARD_TX_UNLOCK(dev, txq);
if (!dev_xmit_complete(ret)) {
local_irq_save(flags);
sd = this_cpu_ptr(&softnet_data);
skb_queue_tail(&sd->xfrm_backlog, skb);
raise_softirq_irqoff(NET_TX_SOFTIRQ);
local_irq_restore(flags);
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(xfrm_dev_resume);
void xfrm_dev_backlog(struct softnet_data *sd)
{
struct sk_buff_head *xfrm_backlog = &sd->xfrm_backlog;
struct sk_buff_head list;
struct sk_buff *skb;
if (skb_queue_empty(xfrm_backlog))
return;
__skb_queue_head_init(&list);
spin_lock(&xfrm_backlog->lock);
skb_queue_splice_init(xfrm_backlog, &list);
spin_unlock(&xfrm_backlog->lock);
while (!skb_queue_empty(&list)) {
skb = __skb_dequeue(&list);
xfrm_dev_resume(skb);
}
}
#endif
static int xfrm_api_check(struct net_device *dev)
{
#ifdef CONFIG_XFRM_OFFLOAD
if ((dev->features & NETIF_F_HW_ESP_TX_CSUM) &&
!(dev->features & NETIF_F_HW_ESP))
return NOTIFY_BAD;
if ((dev->features & NETIF_F_HW_ESP) &&
(!(dev->xfrmdev_ops &&
dev->xfrmdev_ops->xdo_dev_state_add &&
dev->xfrmdev_ops->xdo_dev_state_delete)))
return NOTIFY_BAD;
#else
if (dev->features & (NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM))
return NOTIFY_BAD;
#endif
return NOTIFY_DONE;
}
static int xfrm_dev_register(struct net_device *dev)
{
return xfrm_api_check(dev);
}
static int xfrm_dev_feat_change(struct net_device *dev)
{
return xfrm_api_check(dev);
}
static int xfrm_dev_down(struct net_device *dev)
{
if (dev->features & NETIF_F_HW_ESP)
xfrm_dev_state_flush(dev_net(dev), dev, true);
return NOTIFY_DONE;
}
static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
switch (event) {
case NETDEV_REGISTER:
return xfrm_dev_register(dev);
case NETDEV_FEAT_CHANGE:
return xfrm_dev_feat_change(dev);
case NETDEV_DOWN:
return xfrm_dev_down(dev);
}
return NOTIFY_DONE;
}
static struct notifier_block xfrm_dev_notifier = {
.notifier_call = xfrm_dev_event,
};
void __init xfrm_dev_init(void)
{
register_netdevice_notifier(&xfrm_dev_notifier);
}