alistair23-linux/include/linux/dlm.h
David Teigland 3ae1acf93a [DLM] add lock timeouts and warnings [2/6]
New features: lock timeouts and time warnings.  If the DLM_LKF_TIMEOUT
flag is set, then the request/conversion will be canceled after waiting
the specified number of centiseconds (specified per lock).  This feature
is only available for locks requested through libdlm (can be enabled for
kernel dlm users if there's a use for it.)

If the new DLM_LSFL_TIMEWARN flag is set when creating the lockspace, then
a warning message will be sent to userspace (using genetlink) after a
request/conversion has been waiting for a given number of centiseconds
(configurable per node).  The time warnings will be used in the future
to do deadlock detection in userspace.

Signed-off-by: David Teigland <teigland@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2007-07-09 08:22:33 +01:00

304 lines
9.3 KiB
C

/******************************************************************************
*******************************************************************************
**
** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
** Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
**
** This copyrighted material is made available to anyone wishing to use,
** modify, copy, or redistribute it subject to the terms and conditions
** of the GNU General Public License v.2.
**
*******************************************************************************
******************************************************************************/
#ifndef __DLM_DOT_H__
#define __DLM_DOT_H__
/*
* Interface to Distributed Lock Manager (DLM)
* routines and structures to use DLM lockspaces
*/
/*
* Lock Modes
*/
#define DLM_LOCK_IV -1 /* invalid */
#define DLM_LOCK_NL 0 /* null */
#define DLM_LOCK_CR 1 /* concurrent read */
#define DLM_LOCK_CW 2 /* concurrent write */
#define DLM_LOCK_PR 3 /* protected read */
#define DLM_LOCK_PW 4 /* protected write */
#define DLM_LOCK_EX 5 /* exclusive */
/*
* Maximum size in bytes of a dlm_lock name
*/
#define DLM_RESNAME_MAXLEN 64
/*
* Flags to dlm_lock
*
* DLM_LKF_NOQUEUE
*
* Do not queue the lock request on the wait queue if it cannot be granted
* immediately. If the lock cannot be granted because of this flag, DLM will
* either return -EAGAIN from the dlm_lock call or will return 0 from
* dlm_lock and -EAGAIN in the lock status block when the AST is executed.
*
* DLM_LKF_CANCEL
*
* Used to cancel a pending lock request or conversion. A converting lock is
* returned to its previously granted mode.
*
* DLM_LKF_CONVERT
*
* Indicates a lock conversion request. For conversions the name and namelen
* are ignored and the lock ID in the LKSB is used to identify the lock.
*
* DLM_LKF_VALBLK
*
* Requests DLM to return the current contents of the lock value block in the
* lock status block. When this flag is set in a lock conversion from PW or EX
* modes, DLM assigns the value specified in the lock status block to the lock
* value block of the lock resource. The LVB is a DLM_LVB_LEN size array
* containing application-specific information.
*
* DLM_LKF_QUECVT
*
* Force a conversion request to be queued, even if it is compatible with
* the granted modes of other locks on the same resource.
*
* DLM_LKF_IVVALBLK
*
* Invalidate the lock value block.
*
* DLM_LKF_CONVDEADLK
*
* Allows the dlm to resolve conversion deadlocks internally by demoting the
* granted mode of a converting lock to NL. The DLM_SBF_DEMOTED flag is
* returned for a conversion that's been effected by this.
*
* DLM_LKF_PERSISTENT
*
* Only relevant to locks originating in userspace. A persistent lock will not
* be removed if the process holding the lock exits.
*
* DLM_LKF_NODLKWT
* DLM_LKF_NODLCKBLK
*
* net yet implemented
*
* DLM_LKF_EXPEDITE
*
* Used only with new requests for NL mode locks. Tells the lock manager
* to grant the lock, ignoring other locks in convert and wait queues.
*
* DLM_LKF_NOQUEUEBAST
*
* Send blocking AST's before returning -EAGAIN to the caller. It is only
* used along with the NOQUEUE flag. Blocking AST's are not sent for failed
* NOQUEUE requests otherwise.
*
* DLM_LKF_HEADQUE
*
* Add a lock to the head of the convert or wait queue rather than the tail.
*
* DLM_LKF_NOORDER
*
* Disregard the standard grant order rules and grant a lock as soon as it
* is compatible with other granted locks.
*
* DLM_LKF_ORPHAN
*
* not yet implemented
*
* DLM_LKF_ALTPR
*
* If the requested mode cannot be granted immediately, try to grant the lock
* in PR mode instead. If this alternate mode is granted instead of the
* requested mode, DLM_SBF_ALTMODE is returned in the lksb.
*
* DLM_LKF_ALTCW
*
* The same as ALTPR, but the alternate mode is CW.
*
* DLM_LKF_FORCEUNLOCK
*
* Unlock the lock even if it is converting or waiting or has sublocks.
* Only really for use by the userland device.c code.
*
*/
#define DLM_LKF_NOQUEUE 0x00000001
#define DLM_LKF_CANCEL 0x00000002
#define DLM_LKF_CONVERT 0x00000004
#define DLM_LKF_VALBLK 0x00000008
#define DLM_LKF_QUECVT 0x00000010
#define DLM_LKF_IVVALBLK 0x00000020
#define DLM_LKF_CONVDEADLK 0x00000040
#define DLM_LKF_PERSISTENT 0x00000080
#define DLM_LKF_NODLCKWT 0x00000100
#define DLM_LKF_NODLCKBLK 0x00000200
#define DLM_LKF_EXPEDITE 0x00000400
#define DLM_LKF_NOQUEUEBAST 0x00000800
#define DLM_LKF_HEADQUE 0x00001000
#define DLM_LKF_NOORDER 0x00002000
#define DLM_LKF_ORPHAN 0x00004000
#define DLM_LKF_ALTPR 0x00008000
#define DLM_LKF_ALTCW 0x00010000
#define DLM_LKF_FORCEUNLOCK 0x00020000
#define DLM_LKF_TIMEOUT 0x00040000
/*
* Some return codes that are not in errno.h
*/
#define DLM_ECANCEL 0x10001
#define DLM_EUNLOCK 0x10002
typedef void dlm_lockspace_t;
/*
* Lock status block
*
* Use this structure to specify the contents of the lock value block. For a
* conversion request, this structure is used to specify the lock ID of the
* lock. DLM writes the status of the lock request and the lock ID assigned
* to the request in the lock status block.
*
* sb_lkid: the returned lock ID. It is set on new (non-conversion) requests.
* It is available when dlm_lock returns.
*
* sb_lvbptr: saves or returns the contents of the lock's LVB according to rules
* shown for the DLM_LKF_VALBLK flag.
*
* sb_flags: DLM_SBF_DEMOTED is returned if in the process of promoting a lock,
* it was first demoted to NL to avoid conversion deadlock.
* DLM_SBF_VALNOTVALID is returned if the resource's LVB is marked invalid.
*
* sb_status: the returned status of the lock request set prior to AST
* execution. Possible return values:
*
* 0 if lock request was successful
* -EAGAIN if request would block and is flagged DLM_LKF_NOQUEUE
* -ENOMEM if there is no memory to process request
* -EINVAL if there are invalid parameters
* -DLM_EUNLOCK if unlock request was successful
* -DLM_ECANCEL if a cancel completed successfully
*/
#define DLM_SBF_DEMOTED 0x01
#define DLM_SBF_VALNOTVALID 0x02
#define DLM_SBF_ALTMODE 0x04
struct dlm_lksb {
int sb_status;
uint32_t sb_lkid;
char sb_flags;
char * sb_lvbptr;
};
#define DLM_LSFL_NODIR 0x00000001
#define DLM_LSFL_TIMEWARN 0x00000002
#ifdef __KERNEL__
/*
* dlm_new_lockspace
*
* Starts a lockspace with the given name. If the named lockspace exists in
* the cluster, the calling node joins it.
*/
int dlm_new_lockspace(char *name, int namelen, dlm_lockspace_t **lockspace,
uint32_t flags, int lvblen);
/*
* dlm_release_lockspace
*
* Stop a lockspace.
*/
int dlm_release_lockspace(dlm_lockspace_t *lockspace, int force);
/*
* dlm_lock
*
* Make an asyncronous request to acquire or convert a lock on a named
* resource.
*
* lockspace: context for the request
* mode: the requested mode of the lock (DLM_LOCK_)
* lksb: lock status block for input and async return values
* flags: input flags (DLM_LKF_)
* name: name of the resource to lock, can be binary
* namelen: the length in bytes of the resource name (MAX_RESNAME_LEN)
* parent: the lock ID of a parent lock or 0 if none
* lockast: function DLM executes when it completes processing the request
* astarg: argument passed to lockast and bast functions
* bast: function DLM executes when this lock later blocks another request
*
* Returns:
* 0 if request is successfully queued for processing
* -EINVAL if any input parameters are invalid
* -EAGAIN if request would block and is flagged DLM_LKF_NOQUEUE
* -ENOMEM if there is no memory to process request
* -ENOTCONN if there is a communication error
*
* If the call to dlm_lock returns an error then the operation has failed and
* the AST routine will not be called. If dlm_lock returns 0 it is still
* possible that the lock operation will fail. The AST routine will be called
* when the locking is complete and the status is returned in the lksb.
*
* If the AST routines or parameter are passed to a conversion operation then
* they will overwrite those values that were passed to a previous dlm_lock
* call.
*
* AST routines should not block (at least not for long), but may make
* any locking calls they please.
*/
int dlm_lock(dlm_lockspace_t *lockspace,
int mode,
struct dlm_lksb *lksb,
uint32_t flags,
void *name,
unsigned int namelen,
uint32_t parent_lkid,
void (*lockast) (void *astarg),
void *astarg,
void (*bast) (void *astarg, int mode));
/*
* dlm_unlock
*
* Asynchronously release a lock on a resource. The AST routine is called
* when the resource is successfully unlocked.
*
* lockspace: context for the request
* lkid: the lock ID as returned in the lksb
* flags: input flags (DLM_LKF_)
* lksb: if NULL the lksb parameter passed to last lock request is used
* astarg: the arg used with the completion ast for the unlock
*
* Returns:
* 0 if request is successfully queued for processing
* -EINVAL if any input parameters are invalid
* -ENOTEMPTY if the lock still has sublocks
* -EBUSY if the lock is waiting for a remote lock operation
* -ENOTCONN if there is a communication error
*/
int dlm_unlock(dlm_lockspace_t *lockspace,
uint32_t lkid,
uint32_t flags,
struct dlm_lksb *lksb,
void *astarg);
#endif /* __KERNEL__ */
#endif /* __DLM_DOT_H__ */