alistair23-linux/drivers/edac/amd64_edac.h
Yazen Ghannam 2eb61c91c3 EDAC/amd64: Add family ops for Family 19h Models 00h-0Fh
Add family ops to support AMD Family 19h systems. Existing Family 17h
functions can be used. Also, add Family 19h to the list of families to
automatically load the module.

Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200110015651.14887-5-Yazen.Ghannam@amd.com
2020-01-16 17:09:23 +01:00

547 lines
15 KiB
C

/*
* AMD64 class Memory Controller kernel module
*
* Copyright (c) 2009 SoftwareBitMaker.
* Copyright (c) 2009-15 Advanced Micro Devices, Inc.
*
* This file may be distributed under the terms of the
* GNU General Public License.
*/
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/edac.h>
#include <asm/cpu_device_id.h>
#include <asm/msr.h>
#include "edac_module.h"
#include "mce_amd.h"
#define amd64_info(fmt, arg...) \
edac_printk(KERN_INFO, "amd64", fmt, ##arg)
#define amd64_warn(fmt, arg...) \
edac_printk(KERN_WARNING, "amd64", "Warning: " fmt, ##arg)
#define amd64_err(fmt, arg...) \
edac_printk(KERN_ERR, "amd64", "Error: " fmt, ##arg)
#define amd64_mc_warn(mci, fmt, arg...) \
edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
#define amd64_mc_err(mci, fmt, arg...) \
edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
/*
* Throughout the comments in this code, the following terms are used:
*
* SysAddr, DramAddr, and InputAddr
*
* These terms come directly from the amd64 documentation
* (AMD publication #26094). They are defined as follows:
*
* SysAddr:
* This is a physical address generated by a CPU core or a device
* doing DMA. If generated by a CPU core, a SysAddr is the result of
* a virtual to physical address translation by the CPU core's address
* translation mechanism (MMU).
*
* DramAddr:
* A DramAddr is derived from a SysAddr by subtracting an offset that
* depends on which node the SysAddr maps to and whether the SysAddr
* is within a range affected by memory hoisting. The DRAM Base
* (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
* determine which node a SysAddr maps to.
*
* If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
* is within the range of addresses specified by this register, then
* a value x from the DHAR is subtracted from the SysAddr to produce a
* DramAddr. Here, x represents the base address for the node that
* the SysAddr maps to plus an offset due to memory hoisting. See
* section 3.4.8 and the comments in amd64_get_dram_hole_info() and
* sys_addr_to_dram_addr() below for more information.
*
* If the SysAddr is not affected by the DHAR then a value y is
* subtracted from the SysAddr to produce a DramAddr. Here, y is the
* base address for the node that the SysAddr maps to. See section
* 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
* information.
*
* InputAddr:
* A DramAddr is translated to an InputAddr before being passed to the
* memory controller for the node that the DramAddr is associated
* with. The memory controller then maps the InputAddr to a csrow.
* If node interleaving is not in use, then the InputAddr has the same
* value as the DramAddr. Otherwise, the InputAddr is produced by
* discarding the bits used for node interleaving from the DramAddr.
* See section 3.4.4 for more information.
*
* The memory controller for a given node uses its DRAM CS Base and
* DRAM CS Mask registers to map an InputAddr to a csrow. See
* sections 3.5.4 and 3.5.5 for more information.
*/
#define EDAC_AMD64_VERSION "3.5.0"
#define EDAC_MOD_STR "amd64_edac"
/* Extended Model from CPUID, for CPU Revision numbers */
#define K8_REV_D 1
#define K8_REV_E 2
#define K8_REV_F 4
/* Hardware limit on ChipSelect rows per MC and processors per system */
#define NUM_CHIPSELECTS 8
#define DRAM_RANGES 8
#define NUM_CONTROLLERS 8
#define ON true
#define OFF false
/*
* PCI-defined configuration space registers
*/
#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602
#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 0x141b
#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F2 0x141c
#define PCI_DEVICE_ID_AMD_15H_M60H_NB_F1 0x1571
#define PCI_DEVICE_ID_AMD_15H_M60H_NB_F2 0x1572
#define PCI_DEVICE_ID_AMD_16H_NB_F1 0x1531
#define PCI_DEVICE_ID_AMD_16H_NB_F2 0x1532
#define PCI_DEVICE_ID_AMD_16H_M30H_NB_F1 0x1581
#define PCI_DEVICE_ID_AMD_16H_M30H_NB_F2 0x1582
#define PCI_DEVICE_ID_AMD_17H_DF_F0 0x1460
#define PCI_DEVICE_ID_AMD_17H_DF_F6 0x1466
#define PCI_DEVICE_ID_AMD_17H_M10H_DF_F0 0x15e8
#define PCI_DEVICE_ID_AMD_17H_M10H_DF_F6 0x15ee
#define PCI_DEVICE_ID_AMD_17H_M30H_DF_F0 0x1490
#define PCI_DEVICE_ID_AMD_17H_M30H_DF_F6 0x1496
#define PCI_DEVICE_ID_AMD_17H_M70H_DF_F0 0x1440
#define PCI_DEVICE_ID_AMD_17H_M70H_DF_F6 0x1446
#define PCI_DEVICE_ID_AMD_19H_DF_F0 0x1650
#define PCI_DEVICE_ID_AMD_19H_DF_F6 0x1656
/*
* Function 1 - Address Map
*/
#define DRAM_BASE_LO 0x40
#define DRAM_LIMIT_LO 0x44
/*
* F15 M30h D18F1x2[1C:00]
*/
#define DRAM_CONT_BASE 0x200
#define DRAM_CONT_LIMIT 0x204
/*
* F15 M30h D18F1x2[4C:40]
*/
#define DRAM_CONT_HIGH_OFF 0x240
#define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3))
#define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
#define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7))
#define DHAR 0xf0
#define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1))
#define dhar_base(pvt) ((pvt)->dhar & 0xff000000)
#define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16)
/* NOTE: Extra mask bit vs K8 */
#define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16)
#define DCT_CFG_SEL 0x10C
#define DRAM_LOCAL_NODE_BASE 0x120
#define DRAM_LOCAL_NODE_LIM 0x124
#define DRAM_BASE_HI 0x140
#define DRAM_LIMIT_HI 0x144
/*
* Function 2 - DRAM controller
*/
#define DCSB0 0x40
#define DCSB1 0x140
#define DCSB_CS_ENABLE BIT(0)
#define DCSM0 0x60
#define DCSM1 0x160
#define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
#define csrow_sec_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases_sec[(i)] & DCSB_CS_ENABLE)
#define DRAM_CONTROL 0x78
#define DBAM0 0x80
#define DBAM1 0x180
/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
#define DBAM_DIMM(i, reg) ((((reg) >> (4*(i)))) & 0xF)
#define DBAM_MAX_VALUE 11
#define DCLR0 0x90
#define DCLR1 0x190
#define REVE_WIDTH_128 BIT(16)
#define WIDTH_128 BIT(11)
#define DCHR0 0x94
#define DCHR1 0x194
#define DDR3_MODE BIT(8)
#define DCT_SEL_LO 0x110
#define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0))
#define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2))
#define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
#define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5))
#define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10))
#define SWAP_INTLV_REG 0x10c
#define DCT_SEL_HI 0x114
#define F15H_M60H_SCRCTRL 0x1C8
#define F17H_SCR_BASE_ADDR 0x48
#define F17H_SCR_LIMIT_ADDR 0x4C
/*
* Function 3 - Misc Control
*/
#define NBCTL 0x40
#define NBCFG 0x44
#define NBCFG_CHIPKILL BIT(23)
#define NBCFG_ECC_ENABLE BIT(22)
/* F3x48: NBSL */
#define F10_NBSL_EXT_ERR_ECC 0x8
#define NBSL_PP_OBS 0x2
#define SCRCTRL 0x58
#define F10_ONLINE_SPARE 0xB0
#define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
#define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
#define F10_NB_ARRAY_ADDR 0xB8
#define F10_NB_ARRAY_DRAM BIT(31)
/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
#define SET_NB_ARRAY_ADDR(section) (((section) & 0x3) << 1)
#define F10_NB_ARRAY_DATA 0xBC
#define F10_NB_ARR_ECC_WR_REQ BIT(17)
#define SET_NB_DRAM_INJECTION_WRITE(inj) \
(BIT(((inj.word) & 0xF) + 20) | \
F10_NB_ARR_ECC_WR_REQ | inj.bit_map)
#define SET_NB_DRAM_INJECTION_READ(inj) \
(BIT(((inj.word) & 0xF) + 20) | \
BIT(16) | inj.bit_map)
#define NBCAP 0xE8
#define NBCAP_CHIPKILL BIT(4)
#define NBCAP_SECDED BIT(3)
#define NBCAP_DCT_DUAL BIT(0)
#define EXT_NB_MCA_CFG 0x180
/* MSRs */
#define MSR_MCGCTL_NBE BIT(4)
/* F17h */
/* F0: */
#define DF_DHAR 0x104
/* UMC CH register offsets */
#define UMCCH_BASE_ADDR 0x0
#define UMCCH_BASE_ADDR_SEC 0x10
#define UMCCH_ADDR_MASK 0x20
#define UMCCH_ADDR_MASK_SEC 0x28
#define UMCCH_ADDR_CFG 0x30
#define UMCCH_DIMM_CFG 0x80
#define UMCCH_UMC_CFG 0x100
#define UMCCH_SDP_CTRL 0x104
#define UMCCH_ECC_CTRL 0x14C
#define UMCCH_ECC_BAD_SYMBOL 0xD90
#define UMCCH_UMC_CAP 0xDF0
#define UMCCH_UMC_CAP_HI 0xDF4
/* UMC CH bitfields */
#define UMC_ECC_CHIPKILL_CAP BIT(31)
#define UMC_ECC_ENABLED BIT(30)
#define UMC_SDP_INIT BIT(31)
enum amd_families {
K8_CPUS = 0,
F10_CPUS,
F15_CPUS,
F15_M30H_CPUS,
F15_M60H_CPUS,
F16_CPUS,
F16_M30H_CPUS,
F17_CPUS,
F17_M10H_CPUS,
F17_M30H_CPUS,
F17_M70H_CPUS,
F19_CPUS,
NUM_FAMILIES,
};
/* Error injection control structure */
struct error_injection {
u32 section;
u32 word;
u32 bit_map;
};
/* low and high part of PCI config space regs */
struct reg_pair {
u32 lo, hi;
};
/*
* See F1x[1, 0][7C:40] DRAM Base/Limit Registers
*/
struct dram_range {
struct reg_pair base;
struct reg_pair lim;
};
/* A DCT chip selects collection */
struct chip_select {
u32 csbases[NUM_CHIPSELECTS];
u32 csbases_sec[NUM_CHIPSELECTS];
u8 b_cnt;
u32 csmasks[NUM_CHIPSELECTS];
u32 csmasks_sec[NUM_CHIPSELECTS];
u8 m_cnt;
};
struct amd64_umc {
u32 dimm_cfg; /* DIMM Configuration reg */
u32 umc_cfg; /* Configuration reg */
u32 sdp_ctrl; /* SDP Control reg */
u32 ecc_ctrl; /* DRAM ECC Control reg */
u32 umc_cap_hi; /* Capabilities High reg */
};
struct amd64_pvt {
struct low_ops *ops;
/* pci_device handles which we utilize */
struct pci_dev *F0, *F1, *F2, *F3, *F6;
u16 mc_node_id; /* MC index of this MC node */
u8 fam; /* CPU family */
u8 model; /* ... model */
u8 stepping; /* ... stepping */
int ext_model; /* extended model value of this node */
int channel_count;
/* Raw registers */
u32 dclr0; /* DRAM Configuration Low DCT0 reg */
u32 dclr1; /* DRAM Configuration Low DCT1 reg */
u32 dchr0; /* DRAM Configuration High DCT0 reg */
u32 dchr1; /* DRAM Configuration High DCT1 reg */
u32 nbcap; /* North Bridge Capabilities */
u32 nbcfg; /* F10 North Bridge Configuration */
u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
u32 dhar; /* DRAM Hoist reg */
u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
/* one for each DCT/UMC */
struct chip_select csels[NUM_CONTROLLERS];
/* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
struct dram_range ranges[DRAM_RANGES];
u64 top_mem; /* top of memory below 4GB */
u64 top_mem2; /* top of memory above 4GB */
u32 dct_sel_lo; /* DRAM Controller Select Low */
u32 dct_sel_hi; /* DRAM Controller Select High */
u32 online_spare; /* On-Line spare Reg */
/* x4, x8, or x16 syndromes in use */
u8 ecc_sym_sz;
/* place to store error injection parameters prior to issue */
struct error_injection injection;
/* cache the dram_type */
enum mem_type dram_type;
struct amd64_umc *umc; /* UMC registers */
};
enum err_codes {
DECODE_OK = 0,
ERR_NODE = -1,
ERR_CSROW = -2,
ERR_CHANNEL = -3,
ERR_SYND = -4,
ERR_NORM_ADDR = -5,
};
struct err_info {
int err_code;
struct mem_ctl_info *src_mci;
int csrow;
int channel;
u16 syndrome;
u32 page;
u32 offset;
};
static inline u32 get_umc_base(u8 channel)
{
/* chY: 0xY50000 */
return 0x50000 + (channel << 20);
}
static inline u64 get_dram_base(struct amd64_pvt *pvt, u8 i)
{
u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
if (boot_cpu_data.x86 == 0xf)
return addr;
return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
}
static inline u64 get_dram_limit(struct amd64_pvt *pvt, u8 i)
{
u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
if (boot_cpu_data.x86 == 0xf)
return lim;
return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
}
static inline u16 extract_syndrome(u64 status)
{
return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
}
static inline u8 dct_sel_interleave_addr(struct amd64_pvt *pvt)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30)
return (((pvt->dct_sel_hi >> 9) & 0x1) << 2) |
((pvt->dct_sel_lo >> 6) & 0x3);
return ((pvt)->dct_sel_lo >> 6) & 0x3;
}
/*
* per-node ECC settings descriptor
*/
struct ecc_settings {
u32 old_nbctl;
bool nbctl_valid;
struct flags {
unsigned long nb_mce_enable:1;
unsigned long nb_ecc_prev:1;
} flags;
};
#ifdef CONFIG_EDAC_DEBUG
extern const struct attribute_group amd64_edac_dbg_group;
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
extern const struct attribute_group amd64_edac_inj_group;
#endif
/*
* Each of the PCI Device IDs types have their own set of hardware accessor
* functions and per device encoding/decoding logic.
*/
struct low_ops {
int (*early_channel_count) (struct amd64_pvt *pvt);
void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr,
struct err_info *);
int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode, int cs_mask_nr);
};
struct amd64_family_type {
const char *ctl_name;
u16 f0_id, f1_id, f2_id, f6_id;
/* Maximum number of memory controllers per die/node. */
u8 max_mcs;
struct low_ops ops;
};
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 *val, const char *func);
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 val, const char *func);
#define amd64_read_pci_cfg(pdev, offset, val) \
__amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
#define amd64_write_pci_cfg(pdev, offset, val) \
__amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size);
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
/* Injection helpers */
static inline void disable_caches(void *dummy)
{
write_cr0(read_cr0() | X86_CR0_CD);
wbinvd();
}
static inline void enable_caches(void *dummy)
{
write_cr0(read_cr0() & ~X86_CR0_CD);
}
static inline u8 dram_intlv_en(struct amd64_pvt *pvt, unsigned int i)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
u32 tmp;
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &tmp);
return (u8) tmp & 0xF;
}
return (u8) (pvt->ranges[i].base.lo >> 8) & 0x7;
}
static inline u8 dhar_valid(struct amd64_pvt *pvt)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
u32 tmp;
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
return (tmp >> 1) & BIT(0);
}
return (pvt)->dhar & BIT(0);
}
static inline u32 dct_sel_baseaddr(struct amd64_pvt *pvt)
{
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
u32 tmp;
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
return (tmp >> 11) & 0x1FFF;
}
return (pvt)->dct_sel_lo & 0xFFFFF800;
}