alistair23-linux/drivers/firmware/memmap.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

251 lines
7.1 KiB
C

/*
* linux/drivers/firmware/memmap.c
* Copyright (C) 2008 SUSE LINUX Products GmbH
* by Bernhard Walle <bernhard.walle@gmx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License v2.0 as published by
* the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/string.h>
#include <linux/firmware-map.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/bootmem.h>
#include <linux/slab.h>
/*
* Data types ------------------------------------------------------------------
*/
/*
* Firmware map entry. Because firmware memory maps are flat and not
* hierarchical, it's ok to organise them in a linked list. No parent
* information is necessary as for the resource tree.
*/
struct firmware_map_entry {
/*
* start and end must be u64 rather than resource_size_t, because e820
* resources can lie at addresses above 4G.
*/
u64 start; /* start of the memory range */
u64 end; /* end of the memory range (incl.) */
const char *type; /* type of the memory range */
struct list_head list; /* entry for the linked list */
struct kobject kobj; /* kobject for each entry */
};
/*
* Forward declarations --------------------------------------------------------
*/
static ssize_t memmap_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf);
static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
/*
* Static data -----------------------------------------------------------------
*/
struct memmap_attribute {
struct attribute attr;
ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
};
static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
static struct memmap_attribute memmap_end_attr = __ATTR_RO(end);
static struct memmap_attribute memmap_type_attr = __ATTR_RO(type);
/*
* These are default attributes that are added for every memmap entry.
*/
static struct attribute *def_attrs[] = {
&memmap_start_attr.attr,
&memmap_end_attr.attr,
&memmap_type_attr.attr,
NULL
};
static const struct sysfs_ops memmap_attr_ops = {
.show = memmap_attr_show,
};
static struct kobj_type memmap_ktype = {
.sysfs_ops = &memmap_attr_ops,
.default_attrs = def_attrs,
};
/*
* Registration functions ------------------------------------------------------
*/
/*
* Firmware memory map entries. No locking is needed because the
* firmware_map_add() and firmware_map_add_early() functions are called
* in firmware initialisation code in one single thread of execution.
*/
static LIST_HEAD(map_entries);
/**
* firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
* @start: Start of the memory range.
* @end: End of the memory range (inclusive).
* @type: Type of the memory range.
* @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
* entry.
*
* Common implementation of firmware_map_add() and firmware_map_add_early()
* which expects a pre-allocated struct firmware_map_entry.
**/
static int firmware_map_add_entry(u64 start, u64 end,
const char *type,
struct firmware_map_entry *entry)
{
BUG_ON(start > end);
entry->start = start;
entry->end = end;
entry->type = type;
INIT_LIST_HEAD(&entry->list);
kobject_init(&entry->kobj, &memmap_ktype);
list_add_tail(&entry->list, &map_entries);
return 0;
}
/*
* Add memmap entry on sysfs
*/
static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
{
static int map_entries_nr;
static struct kset *mmap_kset;
if (!mmap_kset) {
mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
if (!mmap_kset)
return -ENOMEM;
}
entry->kobj.kset = mmap_kset;
if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
kobject_put(&entry->kobj);
return 0;
}
/**
* firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
* memory hotplug.
* @start: Start of the memory range.
* @end: End of the memory range (inclusive).
* @type: Type of the memory range.
*
* Adds a firmware mapping entry. This function is for memory hotplug, it is
* similar to function firmware_map_add_early(). The only difference is that
* it will create the syfs entry dynamically.
*
* Returns 0 on success, or -ENOMEM if no memory could be allocated.
**/
int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
{
struct firmware_map_entry *entry;
entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
if (!entry)
return -ENOMEM;
firmware_map_add_entry(start, end, type, entry);
/* create the memmap entry */
add_sysfs_fw_map_entry(entry);
return 0;
}
/**
* firmware_map_add_early() - Adds a firmware mapping entry.
* @start: Start of the memory range.
* @end: End of the memory range (inclusive).
* @type: Type of the memory range.
*
* Adds a firmware mapping entry. This function uses the bootmem allocator
* for memory allocation.
*
* That function must be called before late_initcall.
*
* Returns 0 on success, or -ENOMEM if no memory could be allocated.
**/
int __init firmware_map_add_early(u64 start, u64 end, const char *type)
{
struct firmware_map_entry *entry;
entry = alloc_bootmem(sizeof(struct firmware_map_entry));
if (WARN_ON(!entry))
return -ENOMEM;
return firmware_map_add_entry(start, end, type, entry);
}
/*
* Sysfs functions -------------------------------------------------------------
*/
static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
{
return snprintf(buf, PAGE_SIZE, "0x%llx\n",
(unsigned long long)entry->start);
}
static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
{
return snprintf(buf, PAGE_SIZE, "0x%llx\n",
(unsigned long long)entry->end);
}
static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
}
#define to_memmap_attr(_attr) container_of(_attr, struct memmap_attribute, attr)
#define to_memmap_entry(obj) container_of(obj, struct firmware_map_entry, kobj)
static ssize_t memmap_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct firmware_map_entry *entry = to_memmap_entry(kobj);
struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
return memmap_attr->show(entry, buf);
}
/*
* Initialises stuff and adds the entries in the map_entries list to
* sysfs. Important is that firmware_map_add() and firmware_map_add_early()
* must be called before late_initcall. That's just because that function
* is called as late_initcall() function, which means that if you call
* firmware_map_add() or firmware_map_add_early() afterwards, the entries
* are not added to sysfs.
*/
static int __init memmap_init(void)
{
struct firmware_map_entry *entry;
list_for_each_entry(entry, &map_entries, list)
add_sysfs_fw_map_entry(entry);
return 0;
}
late_initcall(memmap_init);