alistair23-linux/drivers/cpuidle/cpuidle.c
Rafael J. Wysocki 45f1ff59e2 cpuidle: Return nohz hint from cpuidle_select()
Add a new pointer argument to cpuidle_select() and to the ->select
cpuidle governor callback to allow a boolean value indicating
whether or not the tick should be stopped before entering the
selected state to be returned from there.

Make the ladder governor ignore that pointer (to preserve its
current behavior) and make the menu governor return 'false" through
it if:
 (1) the idle exit latency is constrained at 0, or
 (2) the selected state is a polling one, or
 (3) the expected idle period duration is within the tick period
     range.

In addition to that, the correction factor computations in the menu
governor need to take the possibility that the tick may not be
stopped into account to avoid artificially small correction factor
values.  To that end, add a mechanism to record tick wakeups, as
suggested by Peter Zijlstra, and use it to modify the menu_update()
behavior when tick wakeup occurs.  Namely, if the CPU is woken up by
the tick and the return value of tick_nohz_get_sleep_length() is not
within the tick boundary, the predicted idle duration is likely too
short, so make menu_update() try to compensate for that by updating
the governor statistics as though the CPU was idle for a long time.

Since the value returned through the new argument pointer of
cpuidle_select() is not used by its caller yet, this change by
itself is not expected to alter the functionality of the code.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2018-04-06 09:29:34 +02:00

706 lines
16 KiB
C

/*
* cpuidle.c - core cpuidle infrastructure
*
* (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Shaohua Li <shaohua.li@intel.com>
* Adam Belay <abelay@novell.com>
*
* This code is licenced under the GPL.
*/
#include <linux/clockchips.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/notifier.h>
#include <linux/pm_qos.h>
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/tick.h>
#include <trace/events/power.h>
#include "cpuidle.h"
DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev);
DEFINE_MUTEX(cpuidle_lock);
LIST_HEAD(cpuidle_detected_devices);
static int enabled_devices;
static int off __read_mostly;
static int initialized __read_mostly;
int cpuidle_disabled(void)
{
return off;
}
void disable_cpuidle(void)
{
off = 1;
}
bool cpuidle_not_available(struct cpuidle_driver *drv,
struct cpuidle_device *dev)
{
return off || !initialized || !drv || !dev || !dev->enabled;
}
/**
* cpuidle_play_dead - cpu off-lining
*
* Returns in case of an error or no driver
*/
int cpuidle_play_dead(void)
{
struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
int i;
if (!drv)
return -ENODEV;
/* Find lowest-power state that supports long-term idle */
for (i = drv->state_count - 1; i >= 0; i--)
if (drv->states[i].enter_dead)
return drv->states[i].enter_dead(dev, i);
return -ENODEV;
}
static int find_deepest_state(struct cpuidle_driver *drv,
struct cpuidle_device *dev,
unsigned int max_latency,
unsigned int forbidden_flags,
bool s2idle)
{
unsigned int latency_req = 0;
int i, ret = 0;
for (i = 1; i < drv->state_count; i++) {
struct cpuidle_state *s = &drv->states[i];
struct cpuidle_state_usage *su = &dev->states_usage[i];
if (s->disabled || su->disable || s->exit_latency <= latency_req
|| s->exit_latency > max_latency
|| (s->flags & forbidden_flags)
|| (s2idle && !s->enter_s2idle))
continue;
latency_req = s->exit_latency;
ret = i;
}
return ret;
}
/**
* cpuidle_use_deepest_state - Set/clear governor override flag.
* @enable: New value of the flag.
*
* Set/unset the current CPU to use the deepest idle state (override governors
* going forward if set).
*/
void cpuidle_use_deepest_state(bool enable)
{
struct cpuidle_device *dev;
preempt_disable();
dev = cpuidle_get_device();
if (dev)
dev->use_deepest_state = enable;
preempt_enable();
}
/**
* cpuidle_find_deepest_state - Find the deepest available idle state.
* @drv: cpuidle driver for the given CPU.
* @dev: cpuidle device for the given CPU.
*/
int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
struct cpuidle_device *dev)
{
return find_deepest_state(drv, dev, UINT_MAX, 0, false);
}
#ifdef CONFIG_SUSPEND
static void enter_s2idle_proper(struct cpuidle_driver *drv,
struct cpuidle_device *dev, int index)
{
ktime_t time_start, time_end;
time_start = ns_to_ktime(local_clock());
/*
* trace_suspend_resume() called by tick_freeze() for the last CPU
* executing it contains RCU usage regarded as invalid in the idle
* context, so tell RCU about that.
*/
RCU_NONIDLE(tick_freeze());
/*
* The state used here cannot be a "coupled" one, because the "coupled"
* cpuidle mechanism enables interrupts and doing that with timekeeping
* suspended is generally unsafe.
*/
stop_critical_timings();
drv->states[index].enter_s2idle(dev, drv, index);
WARN_ON(!irqs_disabled());
/*
* timekeeping_resume() that will be called by tick_unfreeze() for the
* first CPU executing it calls functions containing RCU read-side
* critical sections, so tell RCU about that.
*/
RCU_NONIDLE(tick_unfreeze());
start_critical_timings();
time_end = ns_to_ktime(local_clock());
dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start);
dev->states_usage[index].s2idle_usage++;
}
/**
* cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle.
* @drv: cpuidle driver for the given CPU.
* @dev: cpuidle device for the given CPU.
*
* If there are states with the ->enter_s2idle callback, find the deepest of
* them and enter it with frozen tick.
*/
int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev)
{
int index;
/*
* Find the deepest state with ->enter_s2idle present, which guarantees
* that interrupts won't be enabled when it exits and allows the tick to
* be frozen safely.
*/
index = find_deepest_state(drv, dev, UINT_MAX, 0, true);
if (index > 0)
enter_s2idle_proper(drv, dev, index);
return index;
}
#endif /* CONFIG_SUSPEND */
/**
* cpuidle_enter_state - enter the state and update stats
* @dev: cpuidle device for this cpu
* @drv: cpuidle driver for this cpu
* @index: index into the states table in @drv of the state to enter
*/
int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
int index)
{
int entered_state;
struct cpuidle_state *target_state = &drv->states[index];
bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP);
ktime_t time_start, time_end;
s64 diff;
/*
* Tell the time framework to switch to a broadcast timer because our
* local timer will be shut down. If a local timer is used from another
* CPU as a broadcast timer, this call may fail if it is not available.
*/
if (broadcast && tick_broadcast_enter()) {
index = find_deepest_state(drv, dev, target_state->exit_latency,
CPUIDLE_FLAG_TIMER_STOP, false);
if (index < 0) {
default_idle_call();
return -EBUSY;
}
target_state = &drv->states[index];
broadcast = false;
}
/* Take note of the planned idle state. */
sched_idle_set_state(target_state);
trace_cpu_idle_rcuidle(index, dev->cpu);
time_start = ns_to_ktime(local_clock());
stop_critical_timings();
entered_state = target_state->enter(dev, drv, index);
start_critical_timings();
sched_clock_idle_wakeup_event();
time_end = ns_to_ktime(local_clock());
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu);
/* The cpu is no longer idle or about to enter idle. */
sched_idle_set_state(NULL);
if (broadcast) {
if (WARN_ON_ONCE(!irqs_disabled()))
local_irq_disable();
tick_broadcast_exit();
}
if (!cpuidle_state_is_coupled(drv, index))
local_irq_enable();
diff = ktime_us_delta(time_end, time_start);
if (diff > INT_MAX)
diff = INT_MAX;
dev->last_residency = (int) diff;
if (entered_state >= 0) {
/* Update cpuidle counters */
/* This can be moved to within driver enter routine
* but that results in multiple copies of same code.
*/
dev->states_usage[entered_state].time += dev->last_residency;
dev->states_usage[entered_state].usage++;
} else {
dev->last_residency = 0;
}
return entered_state;
}
/**
* cpuidle_select - ask the cpuidle framework to choose an idle state
*
* @drv: the cpuidle driver
* @dev: the cpuidle device
* @stop_tick: indication on whether or not to stop the tick
*
* Returns the index of the idle state. The return value must not be negative.
*
* The memory location pointed to by @stop_tick is expected to be written the
* 'false' boolean value if the scheduler tick should not be stopped before
* entering the returned state.
*/
int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
bool *stop_tick)
{
return cpuidle_curr_governor->select(drv, dev, stop_tick);
}
/**
* cpuidle_enter - enter into the specified idle state
*
* @drv: the cpuidle driver tied with the cpu
* @dev: the cpuidle device
* @index: the index in the idle state table
*
* Returns the index in the idle state, < 0 in case of error.
* The error code depends on the backend driver
*/
int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev,
int index)
{
if (cpuidle_state_is_coupled(drv, index))
return cpuidle_enter_state_coupled(dev, drv, index);
return cpuidle_enter_state(dev, drv, index);
}
/**
* cpuidle_reflect - tell the underlying governor what was the state
* we were in
*
* @dev : the cpuidle device
* @index: the index in the idle state table
*
*/
void cpuidle_reflect(struct cpuidle_device *dev, int index)
{
if (cpuidle_curr_governor->reflect && index >= 0)
cpuidle_curr_governor->reflect(dev, index);
}
/**
* cpuidle_install_idle_handler - installs the cpuidle idle loop handler
*/
void cpuidle_install_idle_handler(void)
{
if (enabled_devices) {
/* Make sure all changes finished before we switch to new idle */
smp_wmb();
initialized = 1;
}
}
/**
* cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
*/
void cpuidle_uninstall_idle_handler(void)
{
if (enabled_devices) {
initialized = 0;
wake_up_all_idle_cpus();
}
/*
* Make sure external observers (such as the scheduler)
* are done looking at pointed idle states.
*/
synchronize_rcu();
}
/**
* cpuidle_pause_and_lock - temporarily disables CPUIDLE
*/
void cpuidle_pause_and_lock(void)
{
mutex_lock(&cpuidle_lock);
cpuidle_uninstall_idle_handler();
}
EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
/**
* cpuidle_resume_and_unlock - resumes CPUIDLE operation
*/
void cpuidle_resume_and_unlock(void)
{
cpuidle_install_idle_handler();
mutex_unlock(&cpuidle_lock);
}
EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
/* Currently used in suspend/resume path to suspend cpuidle */
void cpuidle_pause(void)
{
mutex_lock(&cpuidle_lock);
cpuidle_uninstall_idle_handler();
mutex_unlock(&cpuidle_lock);
}
/* Currently used in suspend/resume path to resume cpuidle */
void cpuidle_resume(void)
{
mutex_lock(&cpuidle_lock);
cpuidle_install_idle_handler();
mutex_unlock(&cpuidle_lock);
}
/**
* cpuidle_enable_device - enables idle PM for a CPU
* @dev: the CPU
*
* This function must be called between cpuidle_pause_and_lock and
* cpuidle_resume_and_unlock when used externally.
*/
int cpuidle_enable_device(struct cpuidle_device *dev)
{
int ret;
struct cpuidle_driver *drv;
if (!dev)
return -EINVAL;
if (dev->enabled)
return 0;
if (!cpuidle_curr_governor)
return -EIO;
drv = cpuidle_get_cpu_driver(dev);
if (!drv)
return -EIO;
if (!dev->registered)
return -EINVAL;
ret = cpuidle_add_device_sysfs(dev);
if (ret)
return ret;
if (cpuidle_curr_governor->enable) {
ret = cpuidle_curr_governor->enable(drv, dev);
if (ret)
goto fail_sysfs;
}
smp_wmb();
dev->enabled = 1;
enabled_devices++;
return 0;
fail_sysfs:
cpuidle_remove_device_sysfs(dev);
return ret;
}
EXPORT_SYMBOL_GPL(cpuidle_enable_device);
/**
* cpuidle_disable_device - disables idle PM for a CPU
* @dev: the CPU
*
* This function must be called between cpuidle_pause_and_lock and
* cpuidle_resume_and_unlock when used externally.
*/
void cpuidle_disable_device(struct cpuidle_device *dev)
{
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
if (!dev || !dev->enabled)
return;
if (!drv || !cpuidle_curr_governor)
return;
dev->enabled = 0;
if (cpuidle_curr_governor->disable)
cpuidle_curr_governor->disable(drv, dev);
cpuidle_remove_device_sysfs(dev);
enabled_devices--;
}
EXPORT_SYMBOL_GPL(cpuidle_disable_device);
static void __cpuidle_unregister_device(struct cpuidle_device *dev)
{
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
list_del(&dev->device_list);
per_cpu(cpuidle_devices, dev->cpu) = NULL;
module_put(drv->owner);
dev->registered = 0;
}
static void __cpuidle_device_init(struct cpuidle_device *dev)
{
memset(dev->states_usage, 0, sizeof(dev->states_usage));
dev->last_residency = 0;
}
/**
* __cpuidle_register_device - internal register function called before register
* and enable routines
* @dev: the cpu
*
* cpuidle_lock mutex must be held before this is called
*/
static int __cpuidle_register_device(struct cpuidle_device *dev)
{
int ret;
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
if (!try_module_get(drv->owner))
return -EINVAL;
per_cpu(cpuidle_devices, dev->cpu) = dev;
list_add(&dev->device_list, &cpuidle_detected_devices);
ret = cpuidle_coupled_register_device(dev);
if (ret)
__cpuidle_unregister_device(dev);
else
dev->registered = 1;
return ret;
}
/**
* cpuidle_register_device - registers a CPU's idle PM feature
* @dev: the cpu
*/
int cpuidle_register_device(struct cpuidle_device *dev)
{
int ret = -EBUSY;
if (!dev)
return -EINVAL;
mutex_lock(&cpuidle_lock);
if (dev->registered)
goto out_unlock;
__cpuidle_device_init(dev);
ret = __cpuidle_register_device(dev);
if (ret)
goto out_unlock;
ret = cpuidle_add_sysfs(dev);
if (ret)
goto out_unregister;
ret = cpuidle_enable_device(dev);
if (ret)
goto out_sysfs;
cpuidle_install_idle_handler();
out_unlock:
mutex_unlock(&cpuidle_lock);
return ret;
out_sysfs:
cpuidle_remove_sysfs(dev);
out_unregister:
__cpuidle_unregister_device(dev);
goto out_unlock;
}
EXPORT_SYMBOL_GPL(cpuidle_register_device);
/**
* cpuidle_unregister_device - unregisters a CPU's idle PM feature
* @dev: the cpu
*/
void cpuidle_unregister_device(struct cpuidle_device *dev)
{
if (!dev || dev->registered == 0)
return;
cpuidle_pause_and_lock();
cpuidle_disable_device(dev);
cpuidle_remove_sysfs(dev);
__cpuidle_unregister_device(dev);
cpuidle_coupled_unregister_device(dev);
cpuidle_resume_and_unlock();
}
EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
/**
* cpuidle_unregister: unregister a driver and the devices. This function
* can be used only if the driver has been previously registered through
* the cpuidle_register function.
*
* @drv: a valid pointer to a struct cpuidle_driver
*/
void cpuidle_unregister(struct cpuidle_driver *drv)
{
int cpu;
struct cpuidle_device *device;
for_each_cpu(cpu, drv->cpumask) {
device = &per_cpu(cpuidle_dev, cpu);
cpuidle_unregister_device(device);
}
cpuidle_unregister_driver(drv);
}
EXPORT_SYMBOL_GPL(cpuidle_unregister);
/**
* cpuidle_register: registers the driver and the cpu devices with the
* coupled_cpus passed as parameter. This function is used for all common
* initialization pattern there are in the arch specific drivers. The
* devices is globally defined in this file.
*
* @drv : a valid pointer to a struct cpuidle_driver
* @coupled_cpus: a cpumask for the coupled states
*
* Returns 0 on success, < 0 otherwise
*/
int cpuidle_register(struct cpuidle_driver *drv,
const struct cpumask *const coupled_cpus)
{
int ret, cpu;
struct cpuidle_device *device;
ret = cpuidle_register_driver(drv);
if (ret) {
pr_err("failed to register cpuidle driver\n");
return ret;
}
for_each_cpu(cpu, drv->cpumask) {
device = &per_cpu(cpuidle_dev, cpu);
device->cpu = cpu;
#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
/*
* On multiplatform for ARM, the coupled idle states could be
* enabled in the kernel even if the cpuidle driver does not
* use it. Note, coupled_cpus is a struct copy.
*/
if (coupled_cpus)
device->coupled_cpus = *coupled_cpus;
#endif
ret = cpuidle_register_device(device);
if (!ret)
continue;
pr_err("Failed to register cpuidle device for cpu%d\n", cpu);
cpuidle_unregister(drv);
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(cpuidle_register);
#ifdef CONFIG_SMP
/*
* This function gets called when a part of the kernel has a new latency
* requirement. This means we need to get all processors out of their C-state,
* and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
* wakes them all right up.
*/
static int cpuidle_latency_notify(struct notifier_block *b,
unsigned long l, void *v)
{
wake_up_all_idle_cpus();
return NOTIFY_OK;
}
static struct notifier_block cpuidle_latency_notifier = {
.notifier_call = cpuidle_latency_notify,
};
static inline void latency_notifier_init(struct notifier_block *n)
{
pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY, n);
}
#else /* CONFIG_SMP */
#define latency_notifier_init(x) do { } while (0)
#endif /* CONFIG_SMP */
/**
* cpuidle_init - core initializer
*/
static int __init cpuidle_init(void)
{
int ret;
if (cpuidle_disabled())
return -ENODEV;
ret = cpuidle_add_interface(cpu_subsys.dev_root);
if (ret)
return ret;
latency_notifier_init(&cpuidle_latency_notifier);
return 0;
}
module_param(off, int, 0444);
core_initcall(cpuidle_init);