alistair23-linux/arch/sparc64/kernel/pci_sun4v.c
David S. Miller e18e2a00ef [SPARC64]: Move over to GENERIC_HARDIRQS.
This is the long overdue conversion of sparc64 over to
the generic IRQ layer.

The kernel image is slightly larger, but the BSS is ~60K
smaller due to the reduced size of struct ino_bucket.

A lot of IRQ implementation details, including ino_bucket,
were moved out of asm-sparc64/irq.h and are now private to
arch/sparc64/kernel/irq.c, and most of the code in irq.c
totally disappeared.

One thing that's different at the moment is IRQ distribution,
we do it at enable_irq() time.  If the cpu mask is ALL then
we round-robin using a global rotating cpu counter, else
we pick the first cpu in the mask to support single cpu
targetting.  This is similar to what powerpc's XICS IRQ
support code does.

This works fine on my UP SB1000, and the SMP build goes
fine and runs on that machine, but lots of testing on
different setups is needed.

Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-20 01:23:32 -07:00

1230 lines
29 KiB
C

/* pci_sun4v.c: SUN4V specific PCI controller support.
*
* Copyright (C) 2006 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <asm/pbm.h>
#include <asm/iommu.h>
#include <asm/irq.h>
#include <asm/upa.h>
#include <asm/pstate.h>
#include <asm/oplib.h>
#include <asm/hypervisor.h>
#include "pci_impl.h"
#include "iommu_common.h"
#include "pci_sun4v.h"
#define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
struct pci_iommu_batch {
struct pci_dev *pdev; /* Device mapping is for. */
unsigned long prot; /* IOMMU page protections */
unsigned long entry; /* Index into IOTSB. */
u64 *pglist; /* List of physical pages */
unsigned long npages; /* Number of pages in list. */
};
static DEFINE_PER_CPU(struct pci_iommu_batch, pci_iommu_batch);
/* Interrupts must be disabled. */
static inline void pci_iommu_batch_start(struct pci_dev *pdev, unsigned long prot, unsigned long entry)
{
struct pci_iommu_batch *p = &__get_cpu_var(pci_iommu_batch);
p->pdev = pdev;
p->prot = prot;
p->entry = entry;
p->npages = 0;
}
/* Interrupts must be disabled. */
static long pci_iommu_batch_flush(struct pci_iommu_batch *p)
{
struct pcidev_cookie *pcp = p->pdev->sysdata;
unsigned long devhandle = pcp->pbm->devhandle;
unsigned long prot = p->prot;
unsigned long entry = p->entry;
u64 *pglist = p->pglist;
unsigned long npages = p->npages;
while (npages != 0) {
long num;
num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
npages, prot, __pa(pglist));
if (unlikely(num < 0)) {
if (printk_ratelimit())
printk("pci_iommu_batch_flush: IOMMU map of "
"[%08lx:%08lx:%lx:%lx:%lx] failed with "
"status %ld\n",
devhandle, HV_PCI_TSBID(0, entry),
npages, prot, __pa(pglist), num);
return -1;
}
entry += num;
npages -= num;
pglist += num;
}
p->entry = entry;
p->npages = 0;
return 0;
}
/* Interrupts must be disabled. */
static inline long pci_iommu_batch_add(u64 phys_page)
{
struct pci_iommu_batch *p = &__get_cpu_var(pci_iommu_batch);
BUG_ON(p->npages >= PGLIST_NENTS);
p->pglist[p->npages++] = phys_page;
if (p->npages == PGLIST_NENTS)
return pci_iommu_batch_flush(p);
return 0;
}
/* Interrupts must be disabled. */
static inline long pci_iommu_batch_end(void)
{
struct pci_iommu_batch *p = &__get_cpu_var(pci_iommu_batch);
BUG_ON(p->npages >= PGLIST_NENTS);
return pci_iommu_batch_flush(p);
}
static long pci_arena_alloc(struct pci_iommu_arena *arena, unsigned long npages)
{
unsigned long n, i, start, end, limit;
int pass;
limit = arena->limit;
start = arena->hint;
pass = 0;
again:
n = find_next_zero_bit(arena->map, limit, start);
end = n + npages;
if (unlikely(end >= limit)) {
if (likely(pass < 1)) {
limit = start;
start = 0;
pass++;
goto again;
} else {
/* Scanned the whole thing, give up. */
return -1;
}
}
for (i = n; i < end; i++) {
if (test_bit(i, arena->map)) {
start = i + 1;
goto again;
}
}
for (i = n; i < end; i++)
__set_bit(i, arena->map);
arena->hint = end;
return n;
}
static void pci_arena_free(struct pci_iommu_arena *arena, unsigned long base, unsigned long npages)
{
unsigned long i;
for (i = base; i < (base + npages); i++)
__clear_bit(i, arena->map);
}
static void *pci_4v_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp, gfp_t gfp)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, order, first_page, npages, n;
void *ret;
long entry;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (unlikely(order >= MAX_ORDER))
return NULL;
npages = size >> IO_PAGE_SHIFT;
first_page = __get_free_pages(gfp, order);
if (unlikely(first_page == 0UL))
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
spin_lock_irqsave(&iommu->lock, flags);
entry = pci_arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry < 0L))
goto arena_alloc_fail;
*dma_addrp = (iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT));
ret = (void *) first_page;
first_page = __pa(first_page);
local_irq_save(flags);
pci_iommu_batch_start(pdev,
(HV_PCI_MAP_ATTR_READ |
HV_PCI_MAP_ATTR_WRITE),
entry);
for (n = 0; n < npages; n++) {
long err = pci_iommu_batch_add(first_page + (n * PAGE_SIZE));
if (unlikely(err < 0L))
goto iommu_map_fail;
}
if (unlikely(pci_iommu_batch_end() < 0L))
goto iommu_map_fail;
local_irq_restore(flags);
return ret;
iommu_map_fail:
/* Interrupts are disabled. */
spin_lock(&iommu->lock);
pci_arena_free(&iommu->arena, entry, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
arena_alloc_fail:
free_pages(first_page, order);
return NULL;
}
static void pci_4v_free_consistent(struct pci_dev *pdev, size_t size, void *cpu, dma_addr_t dvma)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, order, npages, entry;
u32 devhandle;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
pci_arena_free(&iommu->arena, entry, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
static dma_addr_t pci_4v_map_single(struct pci_dev *pdev, void *ptr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, npages, oaddr;
unsigned long i, base_paddr;
u32 bus_addr, ret;
unsigned long prot;
long entry;
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
if (unlikely(direction == PCI_DMA_NONE))
goto bad;
oaddr = (unsigned long)ptr;
npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
spin_lock_irqsave(&iommu->lock, flags);
entry = pci_arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry < 0L))
goto bad;
bus_addr = (iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT));
ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
base_paddr = __pa(oaddr & IO_PAGE_MASK);
prot = HV_PCI_MAP_ATTR_READ;
if (direction != PCI_DMA_TODEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
local_irq_save(flags);
pci_iommu_batch_start(pdev, prot, entry);
for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
long err = pci_iommu_batch_add(base_paddr);
if (unlikely(err < 0L))
goto iommu_map_fail;
}
if (unlikely(pci_iommu_batch_end() < 0L))
goto iommu_map_fail;
local_irq_restore(flags);
return ret;
bad:
if (printk_ratelimit())
WARN_ON(1);
return PCI_DMA_ERROR_CODE;
iommu_map_fail:
/* Interrupts are disabled. */
spin_lock(&iommu->lock);
pci_arena_free(&iommu->arena, entry, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
return PCI_DMA_ERROR_CODE;
}
static void pci_4v_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, npages;
long entry;
u32 devhandle;
if (unlikely(direction == PCI_DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
return;
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
npages >>= IO_PAGE_SHIFT;
bus_addr &= IO_PAGE_MASK;
spin_lock_irqsave(&iommu->lock, flags);
entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
pci_arena_free(&iommu->arena, entry, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
}
#define SG_ENT_PHYS_ADDRESS(SG) \
(__pa(page_address((SG)->page)) + (SG)->offset)
static inline long fill_sg(long entry, struct pci_dev *pdev,
struct scatterlist *sg,
int nused, int nelems, unsigned long prot)
{
struct scatterlist *dma_sg = sg;
struct scatterlist *sg_end = sg + nelems;
unsigned long flags;
int i;
local_irq_save(flags);
pci_iommu_batch_start(pdev, prot, entry);
for (i = 0; i < nused; i++) {
unsigned long pteval = ~0UL;
u32 dma_npages;
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
dma_sg->dma_length +
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
do {
unsigned long offset;
signed int len;
/* If we are here, we know we have at least one
* more page to map. So walk forward until we
* hit a page crossing, and begin creating new
* mappings from that spot.
*/
for (;;) {
unsigned long tmp;
tmp = SG_ENT_PHYS_ADDRESS(sg);
len = sg->length;
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
pteval = tmp & IO_PAGE_MASK;
offset = tmp & (IO_PAGE_SIZE - 1UL);
break;
}
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
offset = 0UL;
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
break;
}
sg++;
}
pteval = (pteval & IOPTE_PAGE);
while (len > 0) {
long err;
err = pci_iommu_batch_add(pteval);
if (unlikely(err < 0L))
goto iommu_map_failed;
pteval += IO_PAGE_SIZE;
len -= (IO_PAGE_SIZE - offset);
offset = 0;
dma_npages--;
}
pteval = (pteval & IOPTE_PAGE) + len;
sg++;
/* Skip over any tail mappings we've fully mapped,
* adjusting pteval along the way. Stop when we
* detect a page crossing event.
*/
while (sg < sg_end &&
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
((pteval ^
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
pteval += sg->length;
sg++;
}
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
pteval = ~0UL;
} while (dma_npages != 0);
dma_sg++;
}
if (unlikely(pci_iommu_batch_end() < 0L))
goto iommu_map_failed;
local_irq_restore(flags);
return 0;
iommu_map_failed:
local_irq_restore(flags);
return -1L;
}
static int pci_4v_map_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, npages, prot;
u32 dma_base;
struct scatterlist *sgtmp;
long entry, err;
int used;
/* Fast path single entry scatterlists. */
if (nelems == 1) {
sglist->dma_address =
pci_4v_map_single(pdev,
(page_address(sglist->page) + sglist->offset),
sglist->length, direction);
if (unlikely(sglist->dma_address == PCI_DMA_ERROR_CODE))
return 0;
sglist->dma_length = sglist->length;
return 1;
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
if (unlikely(direction == PCI_DMA_NONE))
goto bad;
/* Step 1: Prepare scatter list. */
npages = prepare_sg(sglist, nelems);
/* Step 2: Allocate a cluster and context, if necessary. */
spin_lock_irqsave(&iommu->lock, flags);
entry = pci_arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
if (unlikely(entry < 0L))
goto bad;
dma_base = iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT);
/* Step 3: Normalize DMA addresses. */
used = nelems;
sgtmp = sglist;
while (used && sgtmp->dma_length) {
sgtmp->dma_address += dma_base;
sgtmp++;
used--;
}
used = nelems - used;
/* Step 4: Create the mappings. */
prot = HV_PCI_MAP_ATTR_READ;
if (direction != PCI_DMA_TODEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
err = fill_sg(entry, pdev, sglist, used, nelems, prot);
if (unlikely(err < 0L))
goto iommu_map_failed;
return used;
bad:
if (printk_ratelimit())
WARN_ON(1);
return 0;
iommu_map_failed:
spin_lock_irqsave(&iommu->lock, flags);
pci_arena_free(&iommu->arena, entry, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static void pci_4v_unmap_sg(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
struct pcidev_cookie *pcp;
struct pci_iommu *iommu;
unsigned long flags, i, npages;
long entry;
u32 devhandle, bus_addr;
if (unlikely(direction == PCI_DMA_NONE)) {
if (printk_ratelimit())
WARN_ON(1);
}
pcp = pdev->sysdata;
iommu = pcp->pbm->iommu;
devhandle = pcp->pbm->devhandle;
bus_addr = sglist->dma_address & IO_PAGE_MASK;
for (i = 1; i < nelems; i++)
if (sglist[i].dma_length == 0)
break;
i--;
npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) -
bus_addr) >> IO_PAGE_SHIFT;
entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
spin_lock_irqsave(&iommu->lock, flags);
pci_arena_free(&iommu->arena, entry, npages);
do {
unsigned long num;
num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
npages);
entry += num;
npages -= num;
} while (npages != 0);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void pci_4v_dma_sync_single_for_cpu(struct pci_dev *pdev, dma_addr_t bus_addr, size_t sz, int direction)
{
/* Nothing to do... */
}
static void pci_4v_dma_sync_sg_for_cpu(struct pci_dev *pdev, struct scatterlist *sglist, int nelems, int direction)
{
/* Nothing to do... */
}
struct pci_iommu_ops pci_sun4v_iommu_ops = {
.alloc_consistent = pci_4v_alloc_consistent,
.free_consistent = pci_4v_free_consistent,
.map_single = pci_4v_map_single,
.unmap_single = pci_4v_unmap_single,
.map_sg = pci_4v_map_sg,
.unmap_sg = pci_4v_unmap_sg,
.dma_sync_single_for_cpu = pci_4v_dma_sync_single_for_cpu,
.dma_sync_sg_for_cpu = pci_4v_dma_sync_sg_for_cpu,
};
/* SUN4V PCI configuration space accessors. */
struct pdev_entry {
struct pdev_entry *next;
u32 devhandle;
unsigned int bus;
unsigned int device;
unsigned int func;
};
#define PDEV_HTAB_SIZE 16
#define PDEV_HTAB_MASK (PDEV_HTAB_SIZE - 1)
static struct pdev_entry *pdev_htab[PDEV_HTAB_SIZE];
static inline unsigned int pdev_hashfn(u32 devhandle, unsigned int bus, unsigned int device, unsigned int func)
{
unsigned int val;
val = (devhandle ^ (devhandle >> 4));
val ^= bus;
val ^= device;
val ^= func;
return val & PDEV_HTAB_MASK;
}
static int pdev_htab_add(u32 devhandle, unsigned int bus, unsigned int device, unsigned int func)
{
struct pdev_entry *p = kmalloc(sizeof(*p), GFP_KERNEL);
struct pdev_entry **slot;
if (!p)
return -ENOMEM;
slot = &pdev_htab[pdev_hashfn(devhandle, bus, device, func)];
p->next = *slot;
*slot = p;
p->devhandle = devhandle;
p->bus = bus;
p->device = device;
p->func = func;
return 0;
}
/* Recursively descend into the OBP device tree, rooted at toplevel_node,
* looking for a PCI device matching bus and devfn.
*/
static int obp_find(struct linux_prom_pci_registers *pregs, int toplevel_node, unsigned int bus, unsigned int devfn)
{
toplevel_node = prom_getchild(toplevel_node);
while (toplevel_node != 0) {
int ret = obp_find(pregs, toplevel_node, bus, devfn);
if (ret != 0)
return ret;
ret = prom_getproperty(toplevel_node, "reg", (char *) pregs,
sizeof(*pregs) * PROMREG_MAX);
if (ret == 0 || ret == -1)
goto next_sibling;
if (((pregs[0].phys_hi >> 16) & 0xff) == bus &&
((pregs[0].phys_hi >> 8) & 0xff) == devfn)
break;
next_sibling:
toplevel_node = prom_getsibling(toplevel_node);
}
return toplevel_node;
}
static int pdev_htab_populate(struct pci_pbm_info *pbm)
{
struct linux_prom_pci_registers pr[PROMREG_MAX];
u32 devhandle = pbm->devhandle;
unsigned int bus;
for (bus = pbm->pci_first_busno; bus <= pbm->pci_last_busno; bus++) {
unsigned int devfn;
for (devfn = 0; devfn < 256; devfn++) {
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
if (obp_find(pr, pbm->prom_node, bus, devfn)) {
int err = pdev_htab_add(devhandle, bus,
device, func);
if (err)
return err;
}
}
}
return 0;
}
static struct pdev_entry *pdev_find(u32 devhandle, unsigned int bus, unsigned int device, unsigned int func)
{
struct pdev_entry *p;
p = pdev_htab[pdev_hashfn(devhandle, bus, device, func)];
while (p) {
if (p->devhandle == devhandle &&
p->bus == bus &&
p->device == device &&
p->func == func)
break;
p = p->next;
}
return p;
}
static inline int pci_sun4v_out_of_range(struct pci_pbm_info *pbm, unsigned int bus, unsigned int device, unsigned int func)
{
if (bus < pbm->pci_first_busno ||
bus > pbm->pci_last_busno)
return 1;
return pdev_find(pbm->devhandle, bus, device, func) == NULL;
}
static int pci_sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (pci_sun4v_out_of_range(pbm, bus, device, func)) {
ret = ~0UL;
} else {
ret = pci_sun4v_config_get(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size);
#if 0
printk("rcfg: [%x:%x:%x:%d]=[%lx]\n",
devhandle, HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, ret);
#endif
}
switch (size) {
case 1:
*value = ret & 0xff;
break;
case 2:
*value = ret & 0xffff;
break;
case 4:
*value = ret & 0xffffffff;
break;
};
return PCIBIOS_SUCCESSFUL;
}
static int pci_sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (pci_sun4v_out_of_range(pbm, bus, device, func)) {
/* Do nothing. */
} else {
ret = pci_sun4v_config_put(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value);
#if 0
printk("wcfg: [%x:%x:%x:%d] v[%x] == [%lx]\n",
devhandle, HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value, ret);
#endif
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops pci_sun4v_ops = {
.read = pci_sun4v_read_pci_cfg,
.write = pci_sun4v_write_pci_cfg,
};
static void pbm_scan_bus(struct pci_controller_info *p,
struct pci_pbm_info *pbm)
{
struct pcidev_cookie *cookie = kmalloc(sizeof(*cookie), GFP_KERNEL);
if (!cookie) {
prom_printf("%s: Critical allocation failure.\n", pbm->name);
prom_halt();
}
/* All we care about is the PBM. */
memset(cookie, 0, sizeof(*cookie));
cookie->pbm = pbm;
pbm->pci_bus = pci_scan_bus(pbm->pci_first_busno, p->pci_ops, pbm);
#if 0
pci_fixup_host_bridge_self(pbm->pci_bus);
pbm->pci_bus->self->sysdata = cookie;
#endif
pci_fill_in_pbm_cookies(pbm->pci_bus, pbm,
pbm->prom_node);
pci_record_assignments(pbm, pbm->pci_bus);
pci_assign_unassigned(pbm, pbm->pci_bus);
pci_fixup_irq(pbm, pbm->pci_bus);
pci_determine_66mhz_disposition(pbm, pbm->pci_bus);
pci_setup_busmastering(pbm, pbm->pci_bus);
}
static void pci_sun4v_scan_bus(struct pci_controller_info *p)
{
if (p->pbm_A.prom_node) {
p->pbm_A.is_66mhz_capable =
prom_getbool(p->pbm_A.prom_node, "66mhz-capable");
pbm_scan_bus(p, &p->pbm_A);
}
if (p->pbm_B.prom_node) {
p->pbm_B.is_66mhz_capable =
prom_getbool(p->pbm_B.prom_node, "66mhz-capable");
pbm_scan_bus(p, &p->pbm_B);
}
/* XXX register error interrupt handlers XXX */
}
static unsigned int pci_sun4v_irq_build(struct pci_pbm_info *pbm,
struct pci_dev *pdev,
unsigned int devino)
{
u32 devhandle = pbm->devhandle;
return sun4v_build_irq(devhandle, devino);
}
static void pci_sun4v_base_address_update(struct pci_dev *pdev, int resource)
{
struct pcidev_cookie *pcp = pdev->sysdata;
struct pci_pbm_info *pbm = pcp->pbm;
struct resource *res, *root;
u32 reg;
int where, size, is_64bit;
res = &pdev->resource[resource];
if (resource < 6) {
where = PCI_BASE_ADDRESS_0 + (resource * 4);
} else if (resource == PCI_ROM_RESOURCE) {
where = pdev->rom_base_reg;
} else {
/* Somebody might have asked allocation of a non-standard resource */
return;
}
/* XXX 64-bit MEM handling is not %100 correct... XXX */
is_64bit = 0;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else {
root = &pbm->mem_space;
if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
== PCI_BASE_ADDRESS_MEM_TYPE_64)
is_64bit = 1;
}
size = res->end - res->start;
pci_read_config_dword(pdev, where, &reg);
reg = ((reg & size) |
(((u32)(res->start - root->start)) & ~size));
if (resource == PCI_ROM_RESOURCE) {
reg |= PCI_ROM_ADDRESS_ENABLE;
res->flags |= IORESOURCE_ROM_ENABLE;
}
pci_write_config_dword(pdev, where, reg);
/* This knows that the upper 32-bits of the address
* must be zero. Our PCI common layer enforces this.
*/
if (is_64bit)
pci_write_config_dword(pdev, where + 4, 0);
}
static void pci_sun4v_resource_adjust(struct pci_dev *pdev,
struct resource *res,
struct resource *root)
{
res->start += root->start;
res->end += root->start;
}
/* Use ranges property to determine where PCI MEM, I/O, and Config
* space are for this PCI bus module.
*/
static void pci_sun4v_determine_mem_io_space(struct pci_pbm_info *pbm)
{
int i, saw_mem, saw_io;
saw_mem = saw_io = 0;
for (i = 0; i < pbm->num_pbm_ranges; i++) {
struct linux_prom_pci_ranges *pr = &pbm->pbm_ranges[i];
unsigned long a;
int type;
type = (pr->child_phys_hi >> 24) & 0x3;
a = (((unsigned long)pr->parent_phys_hi << 32UL) |
((unsigned long)pr->parent_phys_lo << 0UL));
switch (type) {
case 1:
/* 16-bit IO space, 16MB */
pbm->io_space.start = a;
pbm->io_space.end = a + ((16UL*1024UL*1024UL) - 1UL);
pbm->io_space.flags = IORESOURCE_IO;
saw_io = 1;
break;
case 2:
/* 32-bit MEM space, 2GB */
pbm->mem_space.start = a;
pbm->mem_space.end = a + (0x80000000UL - 1UL);
pbm->mem_space.flags = IORESOURCE_MEM;
saw_mem = 1;
break;
case 3:
/* XXX 64-bit MEM handling XXX */
default:
break;
};
}
if (!saw_io || !saw_mem) {
prom_printf("%s: Fatal error, missing %s PBM range.\n",
pbm->name,
(!saw_io ? "IO" : "MEM"));
prom_halt();
}
printk("%s: PCI IO[%lx] MEM[%lx]\n",
pbm->name,
pbm->io_space.start,
pbm->mem_space.start);
}
static void pbm_register_toplevel_resources(struct pci_controller_info *p,
struct pci_pbm_info *pbm)
{
pbm->io_space.name = pbm->mem_space.name = pbm->name;
request_resource(&ioport_resource, &pbm->io_space);
request_resource(&iomem_resource, &pbm->mem_space);
pci_register_legacy_regions(&pbm->io_space,
&pbm->mem_space);
}
static unsigned long probe_existing_entries(struct pci_pbm_info *pbm,
struct pci_iommu *iommu)
{
struct pci_iommu_arena *arena = &iommu->arena;
unsigned long i, cnt = 0;
u32 devhandle;
devhandle = pbm->devhandle;
for (i = 0; i < arena->limit; i++) {
unsigned long ret, io_attrs, ra;
ret = pci_sun4v_iommu_getmap(devhandle,
HV_PCI_TSBID(0, i),
&io_attrs, &ra);
if (ret == HV_EOK) {
cnt++;
__set_bit(i, arena->map);
}
}
return cnt;
}
static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
{
struct pci_iommu *iommu = pbm->iommu;
unsigned long num_tsb_entries, sz;
u32 vdma[2], dma_mask, dma_offset;
int err, tsbsize;
err = prom_getproperty(pbm->prom_node, "virtual-dma",
(char *)&vdma[0], sizeof(vdma));
if (err == 0 || err == -1) {
/* No property, use default values. */
vdma[0] = 0x80000000;
vdma[1] = 0x80000000;
}
dma_mask = vdma[0];
switch (vdma[1]) {
case 0x20000000:
dma_mask |= 0x1fffffff;
tsbsize = 64;
break;
case 0x40000000:
dma_mask |= 0x3fffffff;
tsbsize = 128;
break;
case 0x80000000:
dma_mask |= 0x7fffffff;
tsbsize = 256;
break;
default:
prom_printf("PCI-SUN4V: strange virtual-dma size.\n");
prom_halt();
};
tsbsize *= (8 * 1024);
num_tsb_entries = tsbsize / sizeof(iopte_t);
dma_offset = vdma[0];
/* Setup initial software IOMMU state. */
spin_lock_init(&iommu->lock);
iommu->ctx_lowest_free = 1;
iommu->page_table_map_base = dma_offset;
iommu->dma_addr_mask = dma_mask;
/* Allocate and initialize the free area map. */
sz = num_tsb_entries / 8;
sz = (sz + 7UL) & ~7UL;
iommu->arena.map = kmalloc(sz, GFP_KERNEL);
if (!iommu->arena.map) {
prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
prom_halt();
}
memset(iommu->arena.map, 0, sz);
iommu->arena.limit = num_tsb_entries;
sz = probe_existing_entries(pbm, iommu);
printk("%s: TSB entries [%lu], existing mapings [%lu]\n",
pbm->name, num_tsb_entries, sz);
}
static void pci_sun4v_get_bus_range(struct pci_pbm_info *pbm)
{
unsigned int busrange[2];
int prom_node = pbm->prom_node;
int err;
err = prom_getproperty(prom_node, "bus-range",
(char *)&busrange[0],
sizeof(busrange));
if (err == 0 || err == -1) {
prom_printf("%s: Fatal error, no bus-range.\n", pbm->name);
prom_halt();
}
pbm->pci_first_busno = busrange[0];
pbm->pci_last_busno = busrange[1];
}
static void pci_sun4v_pbm_init(struct pci_controller_info *p, int prom_node, u32 devhandle)
{
struct pci_pbm_info *pbm;
int err, i;
if (devhandle & 0x40)
pbm = &p->pbm_B;
else
pbm = &p->pbm_A;
pbm->parent = p;
pbm->prom_node = prom_node;
pbm->pci_first_slot = 1;
pbm->devhandle = devhandle;
sprintf(pbm->name, "SUN4V-PCI%d PBM%c",
p->index, (pbm == &p->pbm_A ? 'A' : 'B'));
printk("%s: devhandle[%x] prom_node[%x:%x]\n",
pbm->name, pbm->devhandle,
pbm->prom_node, prom_getchild(pbm->prom_node));
prom_getstring(prom_node, "name",
pbm->prom_name, sizeof(pbm->prom_name));
err = prom_getproperty(prom_node, "ranges",
(char *) pbm->pbm_ranges,
sizeof(pbm->pbm_ranges));
if (err == 0 || err == -1) {
prom_printf("%s: Fatal error, no ranges property.\n",
pbm->name);
prom_halt();
}
pbm->num_pbm_ranges =
(err / sizeof(struct linux_prom_pci_ranges));
/* Mask out the top 8 bits of the ranges, leaving the real
* physical address.
*/
for (i = 0; i < pbm->num_pbm_ranges; i++)
pbm->pbm_ranges[i].parent_phys_hi &= 0x0fffffff;
pci_sun4v_determine_mem_io_space(pbm);
pbm_register_toplevel_resources(p, pbm);
err = prom_getproperty(prom_node, "interrupt-map",
(char *)pbm->pbm_intmap,
sizeof(pbm->pbm_intmap));
if (err == 0 || err == -1) {
prom_printf("%s: Fatal error, no interrupt-map property.\n",
pbm->name);
prom_halt();
}
pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
err = prom_getproperty(prom_node, "interrupt-map-mask",
(char *)&pbm->pbm_intmask,
sizeof(pbm->pbm_intmask));
if (err == 0 || err == -1) {
prom_printf("%s: Fatal error, no interrupt-map-mask.\n",
pbm->name);
prom_halt();
}
pci_sun4v_get_bus_range(pbm);
pci_sun4v_iommu_init(pbm);
pdev_htab_populate(pbm);
}
void sun4v_pci_init(int node, char *model_name)
{
struct pci_controller_info *p;
struct pci_iommu *iommu;
struct linux_prom64_registers regs;
u32 devhandle;
int i;
prom_getproperty(node, "reg", (char *)&regs, sizeof(regs));
devhandle = (regs.phys_addr >> 32UL) & 0x0fffffff;
for (p = pci_controller_root; p; p = p->next) {
struct pci_pbm_info *pbm;
if (p->pbm_A.prom_node && p->pbm_B.prom_node)
continue;
pbm = (p->pbm_A.prom_node ?
&p->pbm_A :
&p->pbm_B);
if (pbm->devhandle == (devhandle ^ 0x40)) {
pci_sun4v_pbm_init(p, node, devhandle);
return;
}
}
for_each_possible_cpu(i) {
unsigned long page = get_zeroed_page(GFP_ATOMIC);
if (!page)
goto fatal_memory_error;
per_cpu(pci_iommu_batch, i).pglist = (u64 *) page;
}
p = kmalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
if (!p)
goto fatal_memory_error;
memset(p, 0, sizeof(*p));
iommu = kmalloc(sizeof(struct pci_iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
memset(iommu, 0, sizeof(*iommu));
p->pbm_A.iommu = iommu;
iommu = kmalloc(sizeof(struct pci_iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
memset(iommu, 0, sizeof(*iommu));
p->pbm_B.iommu = iommu;
p->next = pci_controller_root;
pci_controller_root = p;
p->index = pci_num_controllers++;
p->pbms_same_domain = 0;
p->scan_bus = pci_sun4v_scan_bus;
p->irq_build = pci_sun4v_irq_build;
p->base_address_update = pci_sun4v_base_address_update;
p->resource_adjust = pci_sun4v_resource_adjust;
p->pci_ops = &pci_sun4v_ops;
/* Like PSYCHO and SCHIZO we have a 2GB aligned area
* for memory space.
*/
pci_memspace_mask = 0x7fffffffUL;
pci_sun4v_pbm_init(p, node, devhandle);
return;
fatal_memory_error:
prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
prom_halt();
}