alistair23-linux/drivers/net/macvlan.c
Nikolay Aleksandrov de7d244d0a macvlan: make operstate and carrier more accurate
Currently when a macvlan is being initialized and the lower device is
netif_carrier_ok(), the macvlan device doesn't run through
rfc2863_policy() and is left with UNKNOWN operstate. Fix it by adding an
unconditional linkwatch event for the new macvlan device. Similar fix is
already used by the 8021q device (see register_vlan_dev()). Also fix the
inconsistent state when the lower device has been down and its carrier
was changed (when a device is down NETDEV_CHANGE doesn't get generated).
The second issue can be seen f.e. when we have a macvlan on top of a 8021q
device which has been down and its real device has been changing carrier
states, after setting the 8021q device up, the macvlan device will have
the same carrier state as it was before even though the 8021q can now
have a different state.
Example for case 1:
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP mode DEFAULT group default qlen 1000

$ ip l add l eth2 macvl0 type macvlan
$ ip l set macvl0 up
$ ip l sh macvl0
72: macvl0@eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UNKNOWN mode DEFAULT group default
    link/ether f6:0b:54:0a:9d:a3 brd ff:ff:ff:ff:ff:ff

Example for case 2 (order is important):
Prestate: eth2 UP/CARRIER, vlan1 down, vlan1-macvlan down
$ ip l set vlan1-macvlan up
$ ip l sh vlan1-macvlan
71: vlan1-macvlan@vlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether 4a:b8:44:56:b9:b9 brd ff:ff:ff:ff:ff:ff

[ eth2 loses CARRIER before vlan1 has been UP-ed ]

$ ip l sh eth2
4: eth2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast
state DOWN mode DEFAULT group default qlen 1000
    link/ether 52:54:00:bf:57:16 brd ff:ff:ff:ff:ff:ff
$ ip l sh vlan1-macvlan
71: vlan1-macvlan@vlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether 4a:b8:44:56:b9:b9 brd ff:ff:ff:ff:ff:ff
$ ip l set vlan1 up
$ ip l sh vlan1
70: vlan1@eth2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
noqueue state LOWERLAYERDOWN mode DEFAULT group default qlen 1000
    link/ether 52:54:00:bf:57:16 brd ff:ff:ff:ff:ff:ff
$ ip l sh vlan1-macvlan
71: vlan1-macvlan@vlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether 4a:b8:44:56:b9:b9 brd ff:ff:ff:ff:ff:ff

vlan1-macvlan is still UP, still has carrier and is still in the same
operstate as before. After the patch in case 1 macvl0 has state UP as it
should and in case 2 vlan1-macvlan has state LOWERLAYERDOWN again as it
should. Note that while the lower macvlan device is down their carrier
and thus operstate can go out of sync but that will be fixed once the
lower device goes up again.
This behaviour seems to have been present since beginning of git history.

Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-29 12:15:45 -08:00

1612 lines
40 KiB
C

/*
* Copyright (c) 2007 Patrick McHardy <kaber@trash.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* The code this is based on carried the following copyright notice:
* ---
* (C) Copyright 2001-2006
* Alex Zeffertt, Cambridge Broadband Ltd, ajz@cambridgebroadband.com
* Re-worked by Ben Greear <greearb@candelatech.com>
* ---
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/rculist.h>
#include <linux/notifier.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/if_link.h>
#include <linux/if_macvlan.h>
#include <linux/hash.h>
#include <linux/workqueue.h>
#include <net/rtnetlink.h>
#include <net/xfrm.h>
#include <linux/netpoll.h>
#define MACVLAN_HASH_BITS 8
#define MACVLAN_HASH_SIZE (1<<MACVLAN_HASH_BITS)
#define MACVLAN_BC_QUEUE_LEN 1000
struct macvlan_port {
struct net_device *dev;
struct hlist_head vlan_hash[MACVLAN_HASH_SIZE];
struct list_head vlans;
struct rcu_head rcu;
struct sk_buff_head bc_queue;
struct work_struct bc_work;
bool passthru;
int count;
struct hlist_head vlan_source_hash[MACVLAN_HASH_SIZE];
};
struct macvlan_source_entry {
struct hlist_node hlist;
struct macvlan_dev *vlan;
unsigned char addr[6+2] __aligned(sizeof(u16));
struct rcu_head rcu;
};
struct macvlan_skb_cb {
const struct macvlan_dev *src;
};
#define MACVLAN_SKB_CB(__skb) ((struct macvlan_skb_cb *)&((__skb)->cb[0]))
static void macvlan_port_destroy(struct net_device *dev);
/* Hash Ethernet address */
static u32 macvlan_eth_hash(const unsigned char *addr)
{
u64 value = get_unaligned((u64 *)addr);
/* only want 6 bytes */
#ifdef __BIG_ENDIAN
value >>= 16;
#else
value <<= 16;
#endif
return hash_64(value, MACVLAN_HASH_BITS);
}
static struct macvlan_port *macvlan_port_get_rcu(const struct net_device *dev)
{
return rcu_dereference(dev->rx_handler_data);
}
static struct macvlan_port *macvlan_port_get_rtnl(const struct net_device *dev)
{
return rtnl_dereference(dev->rx_handler_data);
}
#define macvlan_port_exists(dev) (dev->priv_flags & IFF_MACVLAN_PORT)
static struct macvlan_dev *macvlan_hash_lookup(const struct macvlan_port *port,
const unsigned char *addr)
{
struct macvlan_dev *vlan;
u32 idx = macvlan_eth_hash(addr);
hlist_for_each_entry_rcu(vlan, &port->vlan_hash[idx], hlist) {
if (ether_addr_equal_64bits(vlan->dev->dev_addr, addr))
return vlan;
}
return NULL;
}
static struct macvlan_source_entry *macvlan_hash_lookup_source(
const struct macvlan_dev *vlan,
const unsigned char *addr)
{
struct macvlan_source_entry *entry;
u32 idx = macvlan_eth_hash(addr);
struct hlist_head *h = &vlan->port->vlan_source_hash[idx];
hlist_for_each_entry_rcu(entry, h, hlist) {
if (ether_addr_equal_64bits(entry->addr, addr) &&
entry->vlan == vlan)
return entry;
}
return NULL;
}
static int macvlan_hash_add_source(struct macvlan_dev *vlan,
const unsigned char *addr)
{
struct macvlan_port *port = vlan->port;
struct macvlan_source_entry *entry;
struct hlist_head *h;
entry = macvlan_hash_lookup_source(vlan, addr);
if (entry)
return 0;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
ether_addr_copy(entry->addr, addr);
entry->vlan = vlan;
h = &port->vlan_source_hash[macvlan_eth_hash(addr)];
hlist_add_head_rcu(&entry->hlist, h);
vlan->macaddr_count++;
return 0;
}
static void macvlan_hash_add(struct macvlan_dev *vlan)
{
struct macvlan_port *port = vlan->port;
const unsigned char *addr = vlan->dev->dev_addr;
u32 idx = macvlan_eth_hash(addr);
hlist_add_head_rcu(&vlan->hlist, &port->vlan_hash[idx]);
}
static void macvlan_hash_del_source(struct macvlan_source_entry *entry)
{
hlist_del_rcu(&entry->hlist);
kfree_rcu(entry, rcu);
}
static void macvlan_hash_del(struct macvlan_dev *vlan, bool sync)
{
hlist_del_rcu(&vlan->hlist);
if (sync)
synchronize_rcu();
}
static void macvlan_hash_change_addr(struct macvlan_dev *vlan,
const unsigned char *addr)
{
macvlan_hash_del(vlan, true);
/* Now that we are unhashed it is safe to change the device
* address without confusing packet delivery.
*/
memcpy(vlan->dev->dev_addr, addr, ETH_ALEN);
macvlan_hash_add(vlan);
}
static int macvlan_addr_busy(const struct macvlan_port *port,
const unsigned char *addr)
{
/* Test to see if the specified multicast address is
* currently in use by the underlying device or
* another macvlan.
*/
if (ether_addr_equal_64bits(port->dev->dev_addr, addr))
return 1;
if (macvlan_hash_lookup(port, addr))
return 1;
return 0;
}
static int macvlan_broadcast_one(struct sk_buff *skb,
const struct macvlan_dev *vlan,
const struct ethhdr *eth, bool local)
{
struct net_device *dev = vlan->dev;
if (local)
return __dev_forward_skb(dev, skb);
skb->dev = dev;
if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
skb->pkt_type = PACKET_BROADCAST;
else
skb->pkt_type = PACKET_MULTICAST;
return 0;
}
static u32 macvlan_hash_mix(const struct macvlan_dev *vlan)
{
return (u32)(((unsigned long)vlan) >> L1_CACHE_SHIFT);
}
static unsigned int mc_hash(const struct macvlan_dev *vlan,
const unsigned char *addr)
{
u32 val = __get_unaligned_cpu32(addr + 2);
val ^= macvlan_hash_mix(vlan);
return hash_32(val, MACVLAN_MC_FILTER_BITS);
}
static void macvlan_broadcast(struct sk_buff *skb,
const struct macvlan_port *port,
struct net_device *src,
enum macvlan_mode mode)
{
const struct ethhdr *eth = eth_hdr(skb);
const struct macvlan_dev *vlan;
struct sk_buff *nskb;
unsigned int i;
int err;
unsigned int hash;
if (skb->protocol == htons(ETH_P_PAUSE))
return;
for (i = 0; i < MACVLAN_HASH_SIZE; i++) {
hlist_for_each_entry_rcu(vlan, &port->vlan_hash[i], hlist) {
if (vlan->dev == src || !(vlan->mode & mode))
continue;
hash = mc_hash(vlan, eth->h_dest);
if (!test_bit(hash, vlan->mc_filter))
continue;
err = NET_RX_DROP;
nskb = skb_clone(skb, GFP_ATOMIC);
if (likely(nskb))
err = macvlan_broadcast_one(
nskb, vlan, eth,
mode == MACVLAN_MODE_BRIDGE) ?:
netif_rx_ni(nskb);
macvlan_count_rx(vlan, skb->len + ETH_HLEN,
err == NET_RX_SUCCESS, true);
}
}
}
static void macvlan_process_broadcast(struct work_struct *w)
{
struct macvlan_port *port = container_of(w, struct macvlan_port,
bc_work);
struct sk_buff *skb;
struct sk_buff_head list;
__skb_queue_head_init(&list);
spin_lock_bh(&port->bc_queue.lock);
skb_queue_splice_tail_init(&port->bc_queue, &list);
spin_unlock_bh(&port->bc_queue.lock);
while ((skb = __skb_dequeue(&list))) {
const struct macvlan_dev *src = MACVLAN_SKB_CB(skb)->src;
rcu_read_lock();
if (!src)
/* frame comes from an external address */
macvlan_broadcast(skb, port, NULL,
MACVLAN_MODE_PRIVATE |
MACVLAN_MODE_VEPA |
MACVLAN_MODE_PASSTHRU|
MACVLAN_MODE_BRIDGE);
else if (src->mode == MACVLAN_MODE_VEPA)
/* flood to everyone except source */
macvlan_broadcast(skb, port, src->dev,
MACVLAN_MODE_VEPA |
MACVLAN_MODE_BRIDGE);
else
/*
* flood only to VEPA ports, bridge ports
* already saw the frame on the way out.
*/
macvlan_broadcast(skb, port, src->dev,
MACVLAN_MODE_VEPA);
rcu_read_unlock();
kfree_skb(skb);
}
}
static void macvlan_broadcast_enqueue(struct macvlan_port *port,
struct sk_buff *skb)
{
struct sk_buff *nskb;
int err = -ENOMEM;
nskb = skb_clone(skb, GFP_ATOMIC);
if (!nskb)
goto err;
spin_lock(&port->bc_queue.lock);
if (skb_queue_len(&port->bc_queue) < MACVLAN_BC_QUEUE_LEN) {
__skb_queue_tail(&port->bc_queue, nskb);
err = 0;
}
spin_unlock(&port->bc_queue.lock);
if (err)
goto free_nskb;
schedule_work(&port->bc_work);
return;
free_nskb:
kfree_skb(nskb);
err:
atomic_long_inc(&skb->dev->rx_dropped);
}
static void macvlan_flush_sources(struct macvlan_port *port,
struct macvlan_dev *vlan)
{
int i;
for (i = 0; i < MACVLAN_HASH_SIZE; i++) {
struct hlist_node *h, *n;
hlist_for_each_safe(h, n, &port->vlan_source_hash[i]) {
struct macvlan_source_entry *entry;
entry = hlist_entry(h, struct macvlan_source_entry,
hlist);
if (entry->vlan == vlan)
macvlan_hash_del_source(entry);
}
}
vlan->macaddr_count = 0;
}
static void macvlan_forward_source_one(struct sk_buff *skb,
struct macvlan_dev *vlan)
{
struct sk_buff *nskb;
struct net_device *dev;
int len;
int ret;
dev = vlan->dev;
if (unlikely(!(dev->flags & IFF_UP)))
return;
nskb = skb_clone(skb, GFP_ATOMIC);
if (!nskb)
return;
len = nskb->len + ETH_HLEN;
nskb->dev = dev;
nskb->pkt_type = PACKET_HOST;
ret = netif_rx(nskb);
macvlan_count_rx(vlan, len, ret == NET_RX_SUCCESS, false);
}
static void macvlan_forward_source(struct sk_buff *skb,
struct macvlan_port *port,
const unsigned char *addr)
{
struct macvlan_source_entry *entry;
u32 idx = macvlan_eth_hash(addr);
struct hlist_head *h = &port->vlan_source_hash[idx];
hlist_for_each_entry_rcu(entry, h, hlist) {
if (ether_addr_equal_64bits(entry->addr, addr))
if (entry->vlan->dev->flags & IFF_UP)
macvlan_forward_source_one(skb, entry->vlan);
}
}
/* called under rcu_read_lock() from netif_receive_skb */
static rx_handler_result_t macvlan_handle_frame(struct sk_buff **pskb)
{
struct macvlan_port *port;
struct sk_buff *skb = *pskb;
const struct ethhdr *eth = eth_hdr(skb);
const struct macvlan_dev *vlan;
const struct macvlan_dev *src;
struct net_device *dev;
unsigned int len = 0;
int ret;
rx_handler_result_t handle_res;
port = macvlan_port_get_rcu(skb->dev);
if (is_multicast_ether_addr(eth->h_dest)) {
skb = ip_check_defrag(dev_net(skb->dev), skb, IP_DEFRAG_MACVLAN);
if (!skb)
return RX_HANDLER_CONSUMED;
*pskb = skb;
eth = eth_hdr(skb);
macvlan_forward_source(skb, port, eth->h_source);
src = macvlan_hash_lookup(port, eth->h_source);
if (src && src->mode != MACVLAN_MODE_VEPA &&
src->mode != MACVLAN_MODE_BRIDGE) {
/* forward to original port. */
vlan = src;
ret = macvlan_broadcast_one(skb, vlan, eth, 0) ?:
netif_rx(skb);
handle_res = RX_HANDLER_CONSUMED;
goto out;
}
MACVLAN_SKB_CB(skb)->src = src;
macvlan_broadcast_enqueue(port, skb);
return RX_HANDLER_PASS;
}
macvlan_forward_source(skb, port, eth->h_source);
if (port->passthru)
vlan = list_first_or_null_rcu(&port->vlans,
struct macvlan_dev, list);
else
vlan = macvlan_hash_lookup(port, eth->h_dest);
if (vlan == NULL)
return RX_HANDLER_PASS;
dev = vlan->dev;
if (unlikely(!(dev->flags & IFF_UP))) {
kfree_skb(skb);
return RX_HANDLER_CONSUMED;
}
len = skb->len + ETH_HLEN;
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb) {
ret = NET_RX_DROP;
handle_res = RX_HANDLER_CONSUMED;
goto out;
}
*pskb = skb;
skb->dev = dev;
skb->pkt_type = PACKET_HOST;
ret = NET_RX_SUCCESS;
handle_res = RX_HANDLER_ANOTHER;
out:
macvlan_count_rx(vlan, len, ret == NET_RX_SUCCESS, false);
return handle_res;
}
static int macvlan_queue_xmit(struct sk_buff *skb, struct net_device *dev)
{
const struct macvlan_dev *vlan = netdev_priv(dev);
const struct macvlan_port *port = vlan->port;
const struct macvlan_dev *dest;
if (vlan->mode == MACVLAN_MODE_BRIDGE) {
const struct ethhdr *eth = (void *)skb->data;
/* send to other bridge ports directly */
if (is_multicast_ether_addr(eth->h_dest)) {
macvlan_broadcast(skb, port, dev, MACVLAN_MODE_BRIDGE);
goto xmit_world;
}
dest = macvlan_hash_lookup(port, eth->h_dest);
if (dest && dest->mode == MACVLAN_MODE_BRIDGE) {
/* send to lowerdev first for its network taps */
dev_forward_skb(vlan->lowerdev, skb);
return NET_XMIT_SUCCESS;
}
}
xmit_world:
skb->dev = vlan->lowerdev;
return dev_queue_xmit(skb);
}
static inline netdev_tx_t macvlan_netpoll_send_skb(struct macvlan_dev *vlan, struct sk_buff *skb)
{
#ifdef CONFIG_NET_POLL_CONTROLLER
if (vlan->netpoll)
netpoll_send_skb(vlan->netpoll, skb);
#else
BUG();
#endif
return NETDEV_TX_OK;
}
static netdev_tx_t macvlan_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
unsigned int len = skb->len;
int ret;
struct macvlan_dev *vlan = netdev_priv(dev);
if (unlikely(netpoll_tx_running(dev)))
return macvlan_netpoll_send_skb(vlan, skb);
if (vlan->fwd_priv) {
skb->dev = vlan->lowerdev;
ret = dev_queue_xmit_accel(skb, vlan->fwd_priv);
} else {
ret = macvlan_queue_xmit(skb, dev);
}
if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
struct vlan_pcpu_stats *pcpu_stats;
pcpu_stats = this_cpu_ptr(vlan->pcpu_stats);
u64_stats_update_begin(&pcpu_stats->syncp);
pcpu_stats->tx_packets++;
pcpu_stats->tx_bytes += len;
u64_stats_update_end(&pcpu_stats->syncp);
} else {
this_cpu_inc(vlan->pcpu_stats->tx_dropped);
}
return ret;
}
static int macvlan_hard_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len)
{
const struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
return dev_hard_header(skb, lowerdev, type, daddr,
saddr ? : dev->dev_addr, len);
}
static const struct header_ops macvlan_hard_header_ops = {
.create = macvlan_hard_header,
.parse = eth_header_parse,
.cache = eth_header_cache,
.cache_update = eth_header_cache_update,
};
static struct rtnl_link_ops macvlan_link_ops;
static int macvlan_open(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
int err;
if (vlan->port->passthru) {
if (!(vlan->flags & MACVLAN_FLAG_NOPROMISC)) {
err = dev_set_promiscuity(lowerdev, 1);
if (err < 0)
goto out;
}
goto hash_add;
}
if (lowerdev->features & NETIF_F_HW_L2FW_DOFFLOAD &&
dev->rtnl_link_ops == &macvlan_link_ops) {
vlan->fwd_priv =
lowerdev->netdev_ops->ndo_dfwd_add_station(lowerdev, dev);
/* If we get a NULL pointer back, or if we get an error
* then we should just fall through to the non accelerated path
*/
if (IS_ERR_OR_NULL(vlan->fwd_priv)) {
vlan->fwd_priv = NULL;
} else
return 0;
}
err = -EBUSY;
if (macvlan_addr_busy(vlan->port, dev->dev_addr))
goto out;
err = dev_uc_add(lowerdev, dev->dev_addr);
if (err < 0)
goto out;
if (dev->flags & IFF_ALLMULTI) {
err = dev_set_allmulti(lowerdev, 1);
if (err < 0)
goto del_unicast;
}
if (dev->flags & IFF_PROMISC) {
err = dev_set_promiscuity(lowerdev, 1);
if (err < 0)
goto clear_multi;
}
hash_add:
macvlan_hash_add(vlan);
return 0;
clear_multi:
dev_set_allmulti(lowerdev, -1);
del_unicast:
dev_uc_del(lowerdev, dev->dev_addr);
out:
if (vlan->fwd_priv) {
lowerdev->netdev_ops->ndo_dfwd_del_station(lowerdev,
vlan->fwd_priv);
vlan->fwd_priv = NULL;
}
return err;
}
static int macvlan_stop(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
if (vlan->fwd_priv) {
lowerdev->netdev_ops->ndo_dfwd_del_station(lowerdev,
vlan->fwd_priv);
vlan->fwd_priv = NULL;
return 0;
}
dev_uc_unsync(lowerdev, dev);
dev_mc_unsync(lowerdev, dev);
if (vlan->port->passthru) {
if (!(vlan->flags & MACVLAN_FLAG_NOPROMISC))
dev_set_promiscuity(lowerdev, -1);
goto hash_del;
}
if (dev->flags & IFF_ALLMULTI)
dev_set_allmulti(lowerdev, -1);
if (dev->flags & IFF_PROMISC)
dev_set_promiscuity(lowerdev, -1);
dev_uc_del(lowerdev, dev->dev_addr);
hash_del:
macvlan_hash_del(vlan, !dev->dismantle);
return 0;
}
static int macvlan_sync_address(struct net_device *dev, unsigned char *addr)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
int err;
if (!(dev->flags & IFF_UP)) {
/* Just copy in the new address */
ether_addr_copy(dev->dev_addr, addr);
} else {
/* Rehash and update the device filters */
if (macvlan_addr_busy(vlan->port, addr))
return -EBUSY;
if (!vlan->port->passthru) {
err = dev_uc_add(lowerdev, addr);
if (err)
return err;
dev_uc_del(lowerdev, dev->dev_addr);
}
macvlan_hash_change_addr(vlan, addr);
}
return 0;
}
static int macvlan_set_mac_address(struct net_device *dev, void *p)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (vlan->mode == MACVLAN_MODE_PASSTHRU) {
dev_set_mac_address(vlan->lowerdev, addr);
return 0;
}
return macvlan_sync_address(dev, addr->sa_data);
}
static void macvlan_change_rx_flags(struct net_device *dev, int change)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
if (dev->flags & IFF_UP) {
if (change & IFF_ALLMULTI)
dev_set_allmulti(lowerdev, dev->flags & IFF_ALLMULTI ? 1 : -1);
if (change & IFF_PROMISC)
dev_set_promiscuity(lowerdev,
dev->flags & IFF_PROMISC ? 1 : -1);
}
}
static void macvlan_set_mac_lists(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
bitmap_fill(vlan->mc_filter, MACVLAN_MC_FILTER_SZ);
} else {
struct netdev_hw_addr *ha;
DECLARE_BITMAP(filter, MACVLAN_MC_FILTER_SZ);
bitmap_zero(filter, MACVLAN_MC_FILTER_SZ);
netdev_for_each_mc_addr(ha, dev) {
__set_bit(mc_hash(vlan, ha->addr), filter);
}
__set_bit(mc_hash(vlan, dev->broadcast), filter);
bitmap_copy(vlan->mc_filter, filter, MACVLAN_MC_FILTER_SZ);
}
dev_uc_sync(vlan->lowerdev, dev);
dev_mc_sync(vlan->lowerdev, dev);
}
static int macvlan_change_mtu(struct net_device *dev, int new_mtu)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (new_mtu < 68 || vlan->lowerdev->mtu < new_mtu)
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
/*
* macvlan network devices have devices nesting below it and are a special
* "super class" of normal network devices; split their locks off into a
* separate class since they always nest.
*/
static struct lock_class_key macvlan_netdev_xmit_lock_key;
static struct lock_class_key macvlan_netdev_addr_lock_key;
#define ALWAYS_ON_FEATURES \
(NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE | NETIF_F_LLTX | \
NETIF_F_GSO_ROBUST)
#define MACVLAN_FEATURES \
(NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | \
NETIF_F_GSO | NETIF_F_TSO | NETIF_F_UFO | NETIF_F_LRO | \
NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GRO | NETIF_F_RXCSUM | \
NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)
#define MACVLAN_STATE_MASK \
((1<<__LINK_STATE_NOCARRIER) | (1<<__LINK_STATE_DORMANT))
static int macvlan_get_nest_level(struct net_device *dev)
{
return ((struct macvlan_dev *)netdev_priv(dev))->nest_level;
}
static void macvlan_set_lockdep_class_one(struct net_device *dev,
struct netdev_queue *txq,
void *_unused)
{
lockdep_set_class(&txq->_xmit_lock,
&macvlan_netdev_xmit_lock_key);
}
static void macvlan_set_lockdep_class(struct net_device *dev)
{
lockdep_set_class_and_subclass(&dev->addr_list_lock,
&macvlan_netdev_addr_lock_key,
macvlan_get_nest_level(dev));
netdev_for_each_tx_queue(dev, macvlan_set_lockdep_class_one, NULL);
}
static int macvlan_init(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
const struct net_device *lowerdev = vlan->lowerdev;
dev->state = (dev->state & ~MACVLAN_STATE_MASK) |
(lowerdev->state & MACVLAN_STATE_MASK);
dev->features = lowerdev->features & MACVLAN_FEATURES;
dev->features |= ALWAYS_ON_FEATURES;
dev->hw_features |= NETIF_F_LRO;
dev->vlan_features = lowerdev->vlan_features & MACVLAN_FEATURES;
dev->gso_max_size = lowerdev->gso_max_size;
dev->hard_header_len = lowerdev->hard_header_len;
macvlan_set_lockdep_class(dev);
vlan->pcpu_stats = netdev_alloc_pcpu_stats(struct vlan_pcpu_stats);
if (!vlan->pcpu_stats)
return -ENOMEM;
return 0;
}
static void macvlan_uninit(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct macvlan_port *port = vlan->port;
free_percpu(vlan->pcpu_stats);
macvlan_flush_sources(port, vlan);
port->count -= 1;
if (!port->count)
macvlan_port_destroy(port->dev);
}
static struct rtnl_link_stats64 *macvlan_dev_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (vlan->pcpu_stats) {
struct vlan_pcpu_stats *p;
u64 rx_packets, rx_bytes, rx_multicast, tx_packets, tx_bytes;
u32 rx_errors = 0, tx_dropped = 0;
unsigned int start;
int i;
for_each_possible_cpu(i) {
p = per_cpu_ptr(vlan->pcpu_stats, i);
do {
start = u64_stats_fetch_begin_irq(&p->syncp);
rx_packets = p->rx_packets;
rx_bytes = p->rx_bytes;
rx_multicast = p->rx_multicast;
tx_packets = p->tx_packets;
tx_bytes = p->tx_bytes;
} while (u64_stats_fetch_retry_irq(&p->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->multicast += rx_multicast;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
/* rx_errors & tx_dropped are u32, updated
* without syncp protection.
*/
rx_errors += p->rx_errors;
tx_dropped += p->tx_dropped;
}
stats->rx_errors = rx_errors;
stats->rx_dropped = rx_errors;
stats->tx_dropped = tx_dropped;
}
return stats;
}
static int macvlan_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
return vlan_vid_add(lowerdev, proto, vid);
}
static int macvlan_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *lowerdev = vlan->lowerdev;
vlan_vid_del(lowerdev, proto, vid);
return 0;
}
static int macvlan_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags)
{
struct macvlan_dev *vlan = netdev_priv(dev);
int err = -EINVAL;
/* Support unicast filter only on passthru devices.
* Multicast filter should be allowed on all devices.
*/
if (!vlan->port->passthru && is_unicast_ether_addr(addr))
return -EOPNOTSUPP;
if (flags & NLM_F_REPLACE)
return -EOPNOTSUPP;
if (is_unicast_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
return err;
}
static int macvlan_fdb_del(struct ndmsg *ndm, struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid)
{
struct macvlan_dev *vlan = netdev_priv(dev);
int err = -EINVAL;
/* Support unicast filter only on passthru devices.
* Multicast filter should be allowed on all devices.
*/
if (!vlan->port->passthru && is_unicast_ether_addr(addr))
return -EOPNOTSUPP;
if (is_unicast_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
return err;
}
static void macvlan_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, "macvlan", sizeof(drvinfo->driver));
strlcpy(drvinfo->version, "0.1", sizeof(drvinfo->version));
}
static int macvlan_ethtool_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
const struct macvlan_dev *vlan = netdev_priv(dev);
return __ethtool_get_settings(vlan->lowerdev, cmd);
}
static netdev_features_t macvlan_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct macvlan_dev *vlan = netdev_priv(dev);
netdev_features_t lowerdev_features = vlan->lowerdev->features;
netdev_features_t mask;
features |= NETIF_F_ALL_FOR_ALL;
features &= (vlan->set_features | ~MACVLAN_FEATURES);
mask = features;
lowerdev_features &= (features | ~NETIF_F_LRO);
features = netdev_increment_features(lowerdev_features, features, mask);
features |= ALWAYS_ON_FEATURES;
features &= ~NETIF_F_NETNS_LOCAL;
return features;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void macvlan_dev_poll_controller(struct net_device *dev)
{
return;
}
static int macvlan_dev_netpoll_setup(struct net_device *dev, struct netpoll_info *npinfo)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct net_device *real_dev = vlan->lowerdev;
struct netpoll *netpoll;
int err = 0;
netpoll = kzalloc(sizeof(*netpoll), GFP_KERNEL);
err = -ENOMEM;
if (!netpoll)
goto out;
err = __netpoll_setup(netpoll, real_dev);
if (err) {
kfree(netpoll);
goto out;
}
vlan->netpoll = netpoll;
out:
return err;
}
static void macvlan_dev_netpoll_cleanup(struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct netpoll *netpoll = vlan->netpoll;
if (!netpoll)
return;
vlan->netpoll = NULL;
__netpoll_free_async(netpoll);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int macvlan_dev_get_iflink(const struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
return vlan->lowerdev->ifindex;
}
static const struct ethtool_ops macvlan_ethtool_ops = {
.get_link = ethtool_op_get_link,
.get_settings = macvlan_ethtool_get_settings,
.get_drvinfo = macvlan_ethtool_get_drvinfo,
};
static const struct net_device_ops macvlan_netdev_ops = {
.ndo_init = macvlan_init,
.ndo_uninit = macvlan_uninit,
.ndo_open = macvlan_open,
.ndo_stop = macvlan_stop,
.ndo_start_xmit = macvlan_start_xmit,
.ndo_change_mtu = macvlan_change_mtu,
.ndo_fix_features = macvlan_fix_features,
.ndo_change_rx_flags = macvlan_change_rx_flags,
.ndo_set_mac_address = macvlan_set_mac_address,
.ndo_set_rx_mode = macvlan_set_mac_lists,
.ndo_get_stats64 = macvlan_dev_get_stats64,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = macvlan_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = macvlan_vlan_rx_kill_vid,
.ndo_fdb_add = macvlan_fdb_add,
.ndo_fdb_del = macvlan_fdb_del,
.ndo_fdb_dump = ndo_dflt_fdb_dump,
.ndo_get_lock_subclass = macvlan_get_nest_level,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = macvlan_dev_poll_controller,
.ndo_netpoll_setup = macvlan_dev_netpoll_setup,
.ndo_netpoll_cleanup = macvlan_dev_netpoll_cleanup,
#endif
.ndo_get_iflink = macvlan_dev_get_iflink,
.ndo_features_check = passthru_features_check,
};
void macvlan_common_setup(struct net_device *dev)
{
ether_setup(dev);
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
netif_keep_dst(dev);
dev->priv_flags |= IFF_UNICAST_FLT;
dev->netdev_ops = &macvlan_netdev_ops;
dev->destructor = free_netdev;
dev->header_ops = &macvlan_hard_header_ops;
dev->ethtool_ops = &macvlan_ethtool_ops;
}
EXPORT_SYMBOL_GPL(macvlan_common_setup);
static void macvlan_setup(struct net_device *dev)
{
macvlan_common_setup(dev);
dev->tx_queue_len = 0;
}
static int macvlan_port_create(struct net_device *dev)
{
struct macvlan_port *port;
unsigned int i;
int err;
if (dev->type != ARPHRD_ETHER || dev->flags & IFF_LOOPBACK)
return -EINVAL;
if (netif_is_ipvlan_port(dev))
return -EBUSY;
port = kzalloc(sizeof(*port), GFP_KERNEL);
if (port == NULL)
return -ENOMEM;
port->passthru = false;
port->dev = dev;
INIT_LIST_HEAD(&port->vlans);
for (i = 0; i < MACVLAN_HASH_SIZE; i++)
INIT_HLIST_HEAD(&port->vlan_hash[i]);
for (i = 0; i < MACVLAN_HASH_SIZE; i++)
INIT_HLIST_HEAD(&port->vlan_source_hash[i]);
skb_queue_head_init(&port->bc_queue);
INIT_WORK(&port->bc_work, macvlan_process_broadcast);
err = netdev_rx_handler_register(dev, macvlan_handle_frame, port);
if (err)
kfree(port);
else
dev->priv_flags |= IFF_MACVLAN_PORT;
return err;
}
static void macvlan_port_destroy(struct net_device *dev)
{
struct macvlan_port *port = macvlan_port_get_rtnl(dev);
dev->priv_flags &= ~IFF_MACVLAN_PORT;
netdev_rx_handler_unregister(dev);
/* After this point, no packet can schedule bc_work anymore,
* but we need to cancel it and purge left skbs if any.
*/
cancel_work_sync(&port->bc_work);
__skb_queue_purge(&port->bc_queue);
kfree_rcu(port, rcu);
}
static int macvlan_validate(struct nlattr *tb[], struct nlattr *data[])
{
if (tb[IFLA_ADDRESS]) {
if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
return -EADDRNOTAVAIL;
}
if (data && data[IFLA_MACVLAN_FLAGS] &&
nla_get_u16(data[IFLA_MACVLAN_FLAGS]) & ~MACVLAN_FLAG_NOPROMISC)
return -EINVAL;
if (data && data[IFLA_MACVLAN_MODE]) {
switch (nla_get_u32(data[IFLA_MACVLAN_MODE])) {
case MACVLAN_MODE_PRIVATE:
case MACVLAN_MODE_VEPA:
case MACVLAN_MODE_BRIDGE:
case MACVLAN_MODE_PASSTHRU:
case MACVLAN_MODE_SOURCE:
break;
default:
return -EINVAL;
}
}
if (data && data[IFLA_MACVLAN_MACADDR_MODE]) {
switch (nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE])) {
case MACVLAN_MACADDR_ADD:
case MACVLAN_MACADDR_DEL:
case MACVLAN_MACADDR_FLUSH:
case MACVLAN_MACADDR_SET:
break;
default:
return -EINVAL;
}
}
if (data && data[IFLA_MACVLAN_MACADDR]) {
if (nla_len(data[IFLA_MACVLAN_MACADDR]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(data[IFLA_MACVLAN_MACADDR])))
return -EADDRNOTAVAIL;
}
if (data && data[IFLA_MACVLAN_MACADDR_COUNT])
return -EINVAL;
return 0;
}
/**
* reconfigure list of remote source mac address
* (only for macvlan devices in source mode)
* Note regarding alignment: all netlink data is aligned to 4 Byte, which
* suffices for both ether_addr_copy and ether_addr_equal_64bits usage.
*/
static int macvlan_changelink_sources(struct macvlan_dev *vlan, u32 mode,
struct nlattr *data[])
{
char *addr = NULL;
int ret, rem, len;
struct nlattr *nla, *head;
struct macvlan_source_entry *entry;
if (data[IFLA_MACVLAN_MACADDR])
addr = nla_data(data[IFLA_MACVLAN_MACADDR]);
if (mode == MACVLAN_MACADDR_ADD) {
if (!addr)
return -EINVAL;
return macvlan_hash_add_source(vlan, addr);
} else if (mode == MACVLAN_MACADDR_DEL) {
if (!addr)
return -EINVAL;
entry = macvlan_hash_lookup_source(vlan, addr);
if (entry) {
macvlan_hash_del_source(entry);
vlan->macaddr_count--;
}
} else if (mode == MACVLAN_MACADDR_FLUSH) {
macvlan_flush_sources(vlan->port, vlan);
} else if (mode == MACVLAN_MACADDR_SET) {
macvlan_flush_sources(vlan->port, vlan);
if (addr) {
ret = macvlan_hash_add_source(vlan, addr);
if (ret)
return ret;
}
if (!data || !data[IFLA_MACVLAN_MACADDR_DATA])
return 0;
head = nla_data(data[IFLA_MACVLAN_MACADDR_DATA]);
len = nla_len(data[IFLA_MACVLAN_MACADDR_DATA]);
nla_for_each_attr(nla, head, len, rem) {
if (nla_type(nla) != IFLA_MACVLAN_MACADDR ||
nla_len(nla) != ETH_ALEN)
continue;
addr = nla_data(nla);
ret = macvlan_hash_add_source(vlan, addr);
if (ret)
return ret;
}
} else {
return -EINVAL;
}
return 0;
}
int macvlan_common_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[])
{
struct macvlan_dev *vlan = netdev_priv(dev);
struct macvlan_port *port;
struct net_device *lowerdev;
int err;
int macmode;
if (!tb[IFLA_LINK])
return -EINVAL;
lowerdev = __dev_get_by_index(src_net, nla_get_u32(tb[IFLA_LINK]));
if (lowerdev == NULL)
return -ENODEV;
/* When creating macvlans or macvtaps on top of other macvlans - use
* the real device as the lowerdev.
*/
if (netif_is_macvlan(lowerdev))
lowerdev = macvlan_dev_real_dev(lowerdev);
if (!tb[IFLA_MTU])
dev->mtu = lowerdev->mtu;
else if (dev->mtu > lowerdev->mtu)
return -EINVAL;
if (!tb[IFLA_ADDRESS])
eth_hw_addr_random(dev);
if (!macvlan_port_exists(lowerdev)) {
err = macvlan_port_create(lowerdev);
if (err < 0)
return err;
}
port = macvlan_port_get_rtnl(lowerdev);
/* Only 1 macvlan device can be created in passthru mode */
if (port->passthru)
return -EINVAL;
vlan->lowerdev = lowerdev;
vlan->dev = dev;
vlan->port = port;
vlan->set_features = MACVLAN_FEATURES;
vlan->nest_level = dev_get_nest_level(lowerdev, netif_is_macvlan) + 1;
vlan->mode = MACVLAN_MODE_VEPA;
if (data && data[IFLA_MACVLAN_MODE])
vlan->mode = nla_get_u32(data[IFLA_MACVLAN_MODE]);
if (data && data[IFLA_MACVLAN_FLAGS])
vlan->flags = nla_get_u16(data[IFLA_MACVLAN_FLAGS]);
if (vlan->mode == MACVLAN_MODE_PASSTHRU) {
if (port->count)
return -EINVAL;
port->passthru = true;
eth_hw_addr_inherit(dev, lowerdev);
}
if (data && data[IFLA_MACVLAN_MACADDR_MODE]) {
if (vlan->mode != MACVLAN_MODE_SOURCE)
return -EINVAL;
macmode = nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE]);
err = macvlan_changelink_sources(vlan, macmode, data);
if (err)
return err;
}
port->count += 1;
err = register_netdevice(dev);
if (err < 0)
goto destroy_port;
dev->priv_flags |= IFF_MACVLAN;
err = netdev_upper_dev_link(lowerdev, dev);
if (err)
goto unregister_netdev;
list_add_tail_rcu(&vlan->list, &port->vlans);
netif_stacked_transfer_operstate(lowerdev, dev);
linkwatch_fire_event(dev);
return 0;
unregister_netdev:
unregister_netdevice(dev);
destroy_port:
port->count -= 1;
if (!port->count)
macvlan_port_destroy(lowerdev);
return err;
}
EXPORT_SYMBOL_GPL(macvlan_common_newlink);
static int macvlan_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[])
{
return macvlan_common_newlink(src_net, dev, tb, data);
}
void macvlan_dellink(struct net_device *dev, struct list_head *head)
{
struct macvlan_dev *vlan = netdev_priv(dev);
if (vlan->mode == MACVLAN_MODE_SOURCE)
macvlan_flush_sources(vlan->port, vlan);
list_del_rcu(&vlan->list);
unregister_netdevice_queue(dev, head);
netdev_upper_dev_unlink(vlan->lowerdev, dev);
}
EXPORT_SYMBOL_GPL(macvlan_dellink);
static int macvlan_changelink(struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[])
{
struct macvlan_dev *vlan = netdev_priv(dev);
enum macvlan_mode mode;
bool set_mode = false;
enum macvlan_macaddr_mode macmode;
int ret;
/* Validate mode, but don't set yet: setting flags may fail. */
if (data && data[IFLA_MACVLAN_MODE]) {
set_mode = true;
mode = nla_get_u32(data[IFLA_MACVLAN_MODE]);
/* Passthrough mode can't be set or cleared dynamically */
if ((mode == MACVLAN_MODE_PASSTHRU) !=
(vlan->mode == MACVLAN_MODE_PASSTHRU))
return -EINVAL;
if (vlan->mode == MACVLAN_MODE_SOURCE &&
vlan->mode != mode)
macvlan_flush_sources(vlan->port, vlan);
}
if (data && data[IFLA_MACVLAN_FLAGS]) {
__u16 flags = nla_get_u16(data[IFLA_MACVLAN_FLAGS]);
bool promisc = (flags ^ vlan->flags) & MACVLAN_FLAG_NOPROMISC;
if (vlan->port->passthru && promisc) {
int err;
if (flags & MACVLAN_FLAG_NOPROMISC)
err = dev_set_promiscuity(vlan->lowerdev, -1);
else
err = dev_set_promiscuity(vlan->lowerdev, 1);
if (err < 0)
return err;
}
vlan->flags = flags;
}
if (set_mode)
vlan->mode = mode;
if (data && data[IFLA_MACVLAN_MACADDR_MODE]) {
if (vlan->mode != MACVLAN_MODE_SOURCE)
return -EINVAL;
macmode = nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE]);
ret = macvlan_changelink_sources(vlan, macmode, data);
if (ret)
return ret;
}
return 0;
}
static size_t macvlan_get_size_mac(const struct macvlan_dev *vlan)
{
if (vlan->macaddr_count == 0)
return 0;
return nla_total_size(0) /* IFLA_MACVLAN_MACADDR_DATA */
+ vlan->macaddr_count * nla_total_size(sizeof(u8) * ETH_ALEN);
}
static size_t macvlan_get_size(const struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
return (0
+ nla_total_size(4) /* IFLA_MACVLAN_MODE */
+ nla_total_size(2) /* IFLA_MACVLAN_FLAGS */
+ nla_total_size(4) /* IFLA_MACVLAN_MACADDR_COUNT */
+ macvlan_get_size_mac(vlan) /* IFLA_MACVLAN_MACADDR */
);
}
static int macvlan_fill_info_macaddr(struct sk_buff *skb,
const struct macvlan_dev *vlan,
const int i)
{
struct hlist_head *h = &vlan->port->vlan_source_hash[i];
struct macvlan_source_entry *entry;
hlist_for_each_entry_rcu(entry, h, hlist) {
if (entry->vlan != vlan)
continue;
if (nla_put(skb, IFLA_MACVLAN_MACADDR, ETH_ALEN, entry->addr))
return 1;
}
return 0;
}
static int macvlan_fill_info(struct sk_buff *skb,
const struct net_device *dev)
{
struct macvlan_dev *vlan = netdev_priv(dev);
int i;
struct nlattr *nest;
if (nla_put_u32(skb, IFLA_MACVLAN_MODE, vlan->mode))
goto nla_put_failure;
if (nla_put_u16(skb, IFLA_MACVLAN_FLAGS, vlan->flags))
goto nla_put_failure;
if (nla_put_u32(skb, IFLA_MACVLAN_MACADDR_COUNT, vlan->macaddr_count))
goto nla_put_failure;
if (vlan->macaddr_count > 0) {
nest = nla_nest_start(skb, IFLA_MACVLAN_MACADDR_DATA);
if (nest == NULL)
goto nla_put_failure;
for (i = 0; i < MACVLAN_HASH_SIZE; i++) {
if (macvlan_fill_info_macaddr(skb, vlan, i))
goto nla_put_failure;
}
nla_nest_end(skb, nest);
}
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static const struct nla_policy macvlan_policy[IFLA_MACVLAN_MAX + 1] = {
[IFLA_MACVLAN_MODE] = { .type = NLA_U32 },
[IFLA_MACVLAN_FLAGS] = { .type = NLA_U16 },
[IFLA_MACVLAN_MACADDR_MODE] = { .type = NLA_U32 },
[IFLA_MACVLAN_MACADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_MACVLAN_MACADDR_DATA] = { .type = NLA_NESTED },
[IFLA_MACVLAN_MACADDR_COUNT] = { .type = NLA_U32 },
};
int macvlan_link_register(struct rtnl_link_ops *ops)
{
/* common fields */
ops->priv_size = sizeof(struct macvlan_dev);
ops->validate = macvlan_validate;
ops->maxtype = IFLA_MACVLAN_MAX;
ops->policy = macvlan_policy;
ops->changelink = macvlan_changelink;
ops->get_size = macvlan_get_size;
ops->fill_info = macvlan_fill_info;
return rtnl_link_register(ops);
};
EXPORT_SYMBOL_GPL(macvlan_link_register);
static struct net *macvlan_get_link_net(const struct net_device *dev)
{
return dev_net(macvlan_dev_real_dev(dev));
}
static struct rtnl_link_ops macvlan_link_ops = {
.kind = "macvlan",
.setup = macvlan_setup,
.newlink = macvlan_newlink,
.dellink = macvlan_dellink,
.get_link_net = macvlan_get_link_net,
};
static int macvlan_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct macvlan_dev *vlan, *next;
struct macvlan_port *port;
LIST_HEAD(list_kill);
if (!macvlan_port_exists(dev))
return NOTIFY_DONE;
port = macvlan_port_get_rtnl(dev);
switch (event) {
case NETDEV_UP:
case NETDEV_CHANGE:
list_for_each_entry(vlan, &port->vlans, list)
netif_stacked_transfer_operstate(vlan->lowerdev,
vlan->dev);
break;
case NETDEV_FEAT_CHANGE:
list_for_each_entry(vlan, &port->vlans, list) {
vlan->dev->gso_max_size = dev->gso_max_size;
netdev_update_features(vlan->dev);
}
break;
case NETDEV_CHANGEMTU:
list_for_each_entry(vlan, &port->vlans, list) {
if (vlan->dev->mtu <= dev->mtu)
continue;
dev_set_mtu(vlan->dev, dev->mtu);
}
break;
case NETDEV_CHANGEADDR:
if (!port->passthru)
return NOTIFY_DONE;
vlan = list_first_entry_or_null(&port->vlans,
struct macvlan_dev,
list);
if (macvlan_sync_address(vlan->dev, dev->dev_addr))
return NOTIFY_BAD;
break;
case NETDEV_UNREGISTER:
/* twiddle thumbs on netns device moves */
if (dev->reg_state != NETREG_UNREGISTERING)
break;
list_for_each_entry_safe(vlan, next, &port->vlans, list)
vlan->dev->rtnl_link_ops->dellink(vlan->dev, &list_kill);
unregister_netdevice_many(&list_kill);
break;
case NETDEV_PRE_TYPE_CHANGE:
/* Forbid underlaying device to change its type. */
return NOTIFY_BAD;
case NETDEV_NOTIFY_PEERS:
case NETDEV_BONDING_FAILOVER:
case NETDEV_RESEND_IGMP:
/* Propagate to all vlans */
list_for_each_entry(vlan, &port->vlans, list)
call_netdevice_notifiers(event, vlan->dev);
}
return NOTIFY_DONE;
}
static struct notifier_block macvlan_notifier_block __read_mostly = {
.notifier_call = macvlan_device_event,
};
static int __init macvlan_init_module(void)
{
int err;
register_netdevice_notifier(&macvlan_notifier_block);
err = macvlan_link_register(&macvlan_link_ops);
if (err < 0)
goto err1;
return 0;
err1:
unregister_netdevice_notifier(&macvlan_notifier_block);
return err;
}
static void __exit macvlan_cleanup_module(void)
{
rtnl_link_unregister(&macvlan_link_ops);
unregister_netdevice_notifier(&macvlan_notifier_block);
}
module_init(macvlan_init_module);
module_exit(macvlan_cleanup_module);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("Driver for MAC address based VLANs");
MODULE_ALIAS_RTNL_LINK("macvlan");