1
0
Fork 0
alistair23-linux/drivers/gpu/drm/i915/intel_dsi_vbt.c

931 lines
28 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Shobhit Kumar <shobhit.kumar@intel.com>
*
*/
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/i915_drm.h>
#include <linux/gpio/consumer.h>
#include <linux/mfd/intel_soc_pmic.h>
#include <linux/slab.h>
#include <video/mipi_display.h>
#include <asm/intel-mid.h>
#include <asm/unaligned.h>
#include "i915_drv.h"
#include "intel_drv.h"
#include "intel_dsi.h"
#define MIPI_TRANSFER_MODE_SHIFT 0
#define MIPI_VIRTUAL_CHANNEL_SHIFT 1
#define MIPI_PORT_SHIFT 3
#define PREPARE_CNT_MAX 0x3F
#define EXIT_ZERO_CNT_MAX 0x3F
#define CLK_ZERO_CNT_MAX 0xFF
#define TRAIL_CNT_MAX 0x1F
#define NS_KHZ_RATIO 1000000
/* base offsets for gpio pads */
#define VLV_GPIO_NC_0_HV_DDI0_HPD 0x4130
#define VLV_GPIO_NC_1_HV_DDI0_DDC_SDA 0x4120
#define VLV_GPIO_NC_2_HV_DDI0_DDC_SCL 0x4110
#define VLV_GPIO_NC_3_PANEL0_VDDEN 0x4140
#define VLV_GPIO_NC_4_PANEL0_BKLTEN 0x4150
#define VLV_GPIO_NC_5_PANEL0_BKLTCTL 0x4160
#define VLV_GPIO_NC_6_HV_DDI1_HPD 0x4180
#define VLV_GPIO_NC_7_HV_DDI1_DDC_SDA 0x4190
#define VLV_GPIO_NC_8_HV_DDI1_DDC_SCL 0x4170
#define VLV_GPIO_NC_9_PANEL1_VDDEN 0x4100
#define VLV_GPIO_NC_10_PANEL1_BKLTEN 0x40E0
#define VLV_GPIO_NC_11_PANEL1_BKLTCTL 0x40F0
#define VLV_GPIO_PCONF0(base_offset) (base_offset)
#define VLV_GPIO_PAD_VAL(base_offset) ((base_offset) + 8)
struct gpio_map {
u16 base_offset;
bool init;
};
static struct gpio_map vlv_gpio_table[] = {
{ VLV_GPIO_NC_0_HV_DDI0_HPD },
{ VLV_GPIO_NC_1_HV_DDI0_DDC_SDA },
{ VLV_GPIO_NC_2_HV_DDI0_DDC_SCL },
{ VLV_GPIO_NC_3_PANEL0_VDDEN },
{ VLV_GPIO_NC_4_PANEL0_BKLTEN },
{ VLV_GPIO_NC_5_PANEL0_BKLTCTL },
{ VLV_GPIO_NC_6_HV_DDI1_HPD },
{ VLV_GPIO_NC_7_HV_DDI1_DDC_SDA },
{ VLV_GPIO_NC_8_HV_DDI1_DDC_SCL },
{ VLV_GPIO_NC_9_PANEL1_VDDEN },
{ VLV_GPIO_NC_10_PANEL1_BKLTEN },
{ VLV_GPIO_NC_11_PANEL1_BKLTCTL },
};
#define CHV_GPIO_IDX_START_N 0
#define CHV_GPIO_IDX_START_E 73
#define CHV_GPIO_IDX_START_SW 100
#define CHV_GPIO_IDX_START_SE 198
#define CHV_VBT_MAX_PINS_PER_FMLY 15
#define CHV_GPIO_PAD_CFG0(f, i) (0x4400 + (f) * 0x400 + (i) * 8)
#define CHV_GPIO_GPIOEN (1 << 15)
#define CHV_GPIO_GPIOCFG_GPIO (0 << 8)
#define CHV_GPIO_GPIOCFG_GPO (1 << 8)
#define CHV_GPIO_GPIOCFG_GPI (2 << 8)
#define CHV_GPIO_GPIOCFG_HIZ (3 << 8)
#define CHV_GPIO_GPIOTXSTATE(state) ((!!(state)) << 1)
#define CHV_GPIO_PAD_CFG1(f, i) (0x4400 + (f) * 0x400 + (i) * 8 + 4)
#define CHV_GPIO_CFGLOCK (1 << 31)
/* ICL DSI Display GPIO Pins */
#define ICL_GPIO_DDSP_HPD_A 0
#define ICL_GPIO_L_VDDEN_1 1
#define ICL_GPIO_L_BKLTEN_1 2
#define ICL_GPIO_DDPA_CTRLCLK_1 3
#define ICL_GPIO_DDPA_CTRLDATA_1 4
#define ICL_GPIO_DDSP_HPD_B 5
#define ICL_GPIO_L_VDDEN_2 6
#define ICL_GPIO_L_BKLTEN_2 7
#define ICL_GPIO_DDPA_CTRLCLK_2 8
#define ICL_GPIO_DDPA_CTRLDATA_2 9
static inline enum port intel_dsi_seq_port_to_port(u8 port)
{
return port ? PORT_C : PORT_A;
}
static const u8 *mipi_exec_send_packet(struct intel_dsi *intel_dsi,
const u8 *data)
{
struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev);
struct mipi_dsi_device *dsi_device;
u8 type, flags, seq_port;
u16 len;
enum port port;
DRM_DEBUG_KMS("\n");
flags = *data++;
type = *data++;
len = *((u16 *) data);
data += 2;
seq_port = (flags >> MIPI_PORT_SHIFT) & 3;
/* For DSI single link on Port A & C, the seq_port value which is
* parsed from Sequence Block#53 of VBT has been set to 0
* Now, read/write of packets for the DSI single link on Port A and
* Port C will based on the DVO port from VBT block 2.
*/
if (intel_dsi->ports == (1 << PORT_C))
port = PORT_C;
else
port = intel_dsi_seq_port_to_port(seq_port);
dsi_device = intel_dsi->dsi_hosts[port]->device;
if (!dsi_device) {
DRM_DEBUG_KMS("no dsi device for port %c\n", port_name(port));
goto out;
}
if ((flags >> MIPI_TRANSFER_MODE_SHIFT) & 1)
dsi_device->mode_flags &= ~MIPI_DSI_MODE_LPM;
else
dsi_device->mode_flags |= MIPI_DSI_MODE_LPM;
dsi_device->channel = (flags >> MIPI_VIRTUAL_CHANNEL_SHIFT) & 3;
switch (type) {
case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM:
mipi_dsi_generic_write(dsi_device, NULL, 0);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM:
mipi_dsi_generic_write(dsi_device, data, 1);
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM:
mipi_dsi_generic_write(dsi_device, data, 2);
break;
case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM:
case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM:
case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM:
DRM_DEBUG_DRIVER("Generic Read not yet implemented or used\n");
break;
case MIPI_DSI_GENERIC_LONG_WRITE:
mipi_dsi_generic_write(dsi_device, data, len);
break;
case MIPI_DSI_DCS_SHORT_WRITE:
mipi_dsi_dcs_write_buffer(dsi_device, data, 1);
break;
case MIPI_DSI_DCS_SHORT_WRITE_PARAM:
mipi_dsi_dcs_write_buffer(dsi_device, data, 2);
break;
case MIPI_DSI_DCS_READ:
DRM_DEBUG_DRIVER("DCS Read not yet implemented or used\n");
break;
case MIPI_DSI_DCS_LONG_WRITE:
mipi_dsi_dcs_write_buffer(dsi_device, data, len);
break;
}
if (INTEL_GEN(dev_priv) < 11)
vlv_dsi_wait_for_fifo_empty(intel_dsi, port);
out:
data += len;
return data;
}
static const u8 *mipi_exec_delay(struct intel_dsi *intel_dsi, const u8 *data)
{
u32 delay = *((const u32 *) data);
DRM_DEBUG_KMS("\n");
usleep_range(delay, delay + 10);
data += 4;
return data;
}
static void vlv_exec_gpio(struct drm_i915_private *dev_priv,
u8 gpio_source, u8 gpio_index, bool value)
{
struct gpio_map *map;
u16 pconf0, padval;
u32 tmp;
u8 port;
if (gpio_index >= ARRAY_SIZE(vlv_gpio_table)) {
DRM_DEBUG_KMS("unknown gpio index %u\n", gpio_index);
return;
}
map = &vlv_gpio_table[gpio_index];
if (dev_priv->vbt.dsi.seq_version >= 3) {
/* XXX: this assumes vlv_gpio_table only has NC GPIOs. */
port = IOSF_PORT_GPIO_NC;
} else {
if (gpio_source == 0) {
port = IOSF_PORT_GPIO_NC;
} else if (gpio_source == 1) {
DRM_DEBUG_KMS("SC gpio not supported\n");
return;
} else {
DRM_DEBUG_KMS("unknown gpio source %u\n", gpio_source);
return;
}
}
pconf0 = VLV_GPIO_PCONF0(map->base_offset);
padval = VLV_GPIO_PAD_VAL(map->base_offset);
mutex_lock(&dev_priv->sb_lock);
if (!map->init) {
/* FIXME: remove constant below */
vlv_iosf_sb_write(dev_priv, port, pconf0, 0x2000CC00);
map->init = true;
}
tmp = 0x4 | value;
vlv_iosf_sb_write(dev_priv, port, padval, tmp);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_exec_gpio(struct drm_i915_private *dev_priv,
u8 gpio_source, u8 gpio_index, bool value)
{
u16 cfg0, cfg1;
u16 family_num;
u8 port;
if (dev_priv->vbt.dsi.seq_version >= 3) {
if (gpio_index >= CHV_GPIO_IDX_START_SE) {
/* XXX: it's unclear whether 255->57 is part of SE. */
gpio_index -= CHV_GPIO_IDX_START_SE;
port = CHV_IOSF_PORT_GPIO_SE;
} else if (gpio_index >= CHV_GPIO_IDX_START_SW) {
gpio_index -= CHV_GPIO_IDX_START_SW;
port = CHV_IOSF_PORT_GPIO_SW;
} else if (gpio_index >= CHV_GPIO_IDX_START_E) {
gpio_index -= CHV_GPIO_IDX_START_E;
port = CHV_IOSF_PORT_GPIO_E;
} else {
port = CHV_IOSF_PORT_GPIO_N;
}
} else {
/* XXX: The spec is unclear about CHV GPIO on seq v2 */
if (gpio_source != 0) {
DRM_DEBUG_KMS("unknown gpio source %u\n", gpio_source);
return;
}
if (gpio_index >= CHV_GPIO_IDX_START_E) {
DRM_DEBUG_KMS("invalid gpio index %u for GPIO N\n",
gpio_index);
return;
}
port = CHV_IOSF_PORT_GPIO_N;
}
family_num = gpio_index / CHV_VBT_MAX_PINS_PER_FMLY;
gpio_index = gpio_index % CHV_VBT_MAX_PINS_PER_FMLY;
cfg0 = CHV_GPIO_PAD_CFG0(family_num, gpio_index);
cfg1 = CHV_GPIO_PAD_CFG1(family_num, gpio_index);
mutex_lock(&dev_priv->sb_lock);
vlv_iosf_sb_write(dev_priv, port, cfg1, 0);
vlv_iosf_sb_write(dev_priv, port, cfg0,
CHV_GPIO_GPIOEN | CHV_GPIO_GPIOCFG_GPO |
CHV_GPIO_GPIOTXSTATE(value));
mutex_unlock(&dev_priv->sb_lock);
}
static void bxt_exec_gpio(struct drm_i915_private *dev_priv,
u8 gpio_source, u8 gpio_index, bool value)
{
/* XXX: this table is a quick ugly hack. */
static struct gpio_desc *bxt_gpio_table[U8_MAX + 1];
struct gpio_desc *gpio_desc = bxt_gpio_table[gpio_index];
if (!gpio_desc) {
gpio_desc = devm_gpiod_get_index(dev_priv->drm.dev,
NULL, gpio_index,
value ? GPIOD_OUT_LOW :
GPIOD_OUT_HIGH);
if (IS_ERR_OR_NULL(gpio_desc)) {
DRM_ERROR("GPIO index %u request failed (%ld)\n",
gpio_index, PTR_ERR(gpio_desc));
return;
}
bxt_gpio_table[gpio_index] = gpio_desc;
}
gpiod_set_value(gpio_desc, value);
}
static void icl_exec_gpio(struct drm_i915_private *dev_priv,
u8 gpio_source, u8 gpio_index, bool value)
{
DRM_DEBUG_KMS("Skipping ICL GPIO element execution\n");
}
static const u8 *mipi_exec_gpio(struct intel_dsi *intel_dsi, const u8 *data)
{
struct drm_device *dev = intel_dsi->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u8 gpio_source, gpio_index = 0, gpio_number;
bool value;
DRM_DEBUG_KMS("\n");
if (dev_priv->vbt.dsi.seq_version >= 3)
gpio_index = *data++;
gpio_number = *data++;
/* gpio source in sequence v2 only */
if (dev_priv->vbt.dsi.seq_version == 2)
gpio_source = (*data >> 1) & 3;
else
gpio_source = 0;
/* pull up/down */
value = *data++ & 1;
if (INTEL_GEN(dev_priv) >= 11)
icl_exec_gpio(dev_priv, gpio_source, gpio_index, value);
else if (IS_VALLEYVIEW(dev_priv))
vlv_exec_gpio(dev_priv, gpio_source, gpio_number, value);
else if (IS_CHERRYVIEW(dev_priv))
chv_exec_gpio(dev_priv, gpio_source, gpio_number, value);
else
bxt_exec_gpio(dev_priv, gpio_source, gpio_index, value);
return data;
}
static const u8 *mipi_exec_i2c(struct intel_dsi *intel_dsi, const u8 *data)
{
DRM_DEBUG_KMS("Skipping I2C element execution\n");
return data + *(data + 6) + 7;
}
static const u8 *mipi_exec_spi(struct intel_dsi *intel_dsi, const u8 *data)
{
DRM_DEBUG_KMS("Skipping SPI element execution\n");
return data + *(data + 5) + 6;
}
static const u8 *mipi_exec_pmic(struct intel_dsi *intel_dsi, const u8 *data)
{
#ifdef CONFIG_PMIC_OPREGION
u32 value, mask, reg_address;
u16 i2c_address;
int ret;
/* byte 0 aka PMIC Flag is reserved */
i2c_address = get_unaligned_le16(data + 1);
reg_address = get_unaligned_le32(data + 3);
value = get_unaligned_le32(data + 7);
mask = get_unaligned_le32(data + 11);
ret = intel_soc_pmic_exec_mipi_pmic_seq_element(i2c_address,
reg_address,
value, mask);
if (ret)
DRM_ERROR("%s failed, error: %d\n", __func__, ret);
#else
DRM_ERROR("Your hardware requires CONFIG_PMIC_OPREGION and it is not set\n");
#endif
return data + 15;
}
typedef const u8 * (*fn_mipi_elem_exec)(struct intel_dsi *intel_dsi,
const u8 *data);
static const fn_mipi_elem_exec exec_elem[] = {
[MIPI_SEQ_ELEM_SEND_PKT] = mipi_exec_send_packet,
[MIPI_SEQ_ELEM_DELAY] = mipi_exec_delay,
[MIPI_SEQ_ELEM_GPIO] = mipi_exec_gpio,
[MIPI_SEQ_ELEM_I2C] = mipi_exec_i2c,
[MIPI_SEQ_ELEM_SPI] = mipi_exec_spi,
[MIPI_SEQ_ELEM_PMIC] = mipi_exec_pmic,
};
/*
* MIPI Sequence from VBT #53 parsing logic
* We have already separated each seqence during bios parsing
* Following is generic execution function for any sequence
*/
static const char * const seq_name[] = {
[MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET",
[MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP",
[MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON",
[MIPI_SEQ_DISPLAY_OFF] = "MIPI_SEQ_DISPLAY_OFF",
[MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET",
[MIPI_SEQ_BACKLIGHT_ON] = "MIPI_SEQ_BACKLIGHT_ON",
[MIPI_SEQ_BACKLIGHT_OFF] = "MIPI_SEQ_BACKLIGHT_OFF",
[MIPI_SEQ_TEAR_ON] = "MIPI_SEQ_TEAR_ON",
[MIPI_SEQ_TEAR_OFF] = "MIPI_SEQ_TEAR_OFF",
[MIPI_SEQ_POWER_ON] = "MIPI_SEQ_POWER_ON",
[MIPI_SEQ_POWER_OFF] = "MIPI_SEQ_POWER_OFF",
};
static const char *sequence_name(enum mipi_seq seq_id)
{
if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id])
return seq_name[seq_id];
else
return "(unknown)";
}
void intel_dsi_vbt_exec_sequence(struct intel_dsi *intel_dsi,
enum mipi_seq seq_id)
{
struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev);
const u8 *data;
fn_mipi_elem_exec mipi_elem_exec;
if (WARN_ON(seq_id >= ARRAY_SIZE(dev_priv->vbt.dsi.sequence)))
return;
data = dev_priv->vbt.dsi.sequence[seq_id];
if (!data)
return;
WARN_ON(*data != seq_id);
DRM_DEBUG_KMS("Starting MIPI sequence %d - %s\n",
seq_id, sequence_name(seq_id));
/* Skip Sequence Byte. */
data++;
/* Skip Size of Sequence. */
if (dev_priv->vbt.dsi.seq_version >= 3)
data += 4;
while (1) {
u8 operation_byte = *data++;
u8 operation_size = 0;
if (operation_byte == MIPI_SEQ_ELEM_END)
break;
if (operation_byte < ARRAY_SIZE(exec_elem))
mipi_elem_exec = exec_elem[operation_byte];
else
mipi_elem_exec = NULL;
/* Size of Operation. */
if (dev_priv->vbt.dsi.seq_version >= 3)
operation_size = *data++;
if (mipi_elem_exec) {
const u8 *next = data + operation_size;
data = mipi_elem_exec(intel_dsi, data);
/* Consistency check if we have size. */
if (operation_size && data != next) {
DRM_ERROR("Inconsistent operation size\n");
return;
}
} else if (operation_size) {
/* We have size, skip. */
DRM_DEBUG_KMS("Unsupported MIPI operation byte %u\n",
operation_byte);
data += operation_size;
} else {
/* No size, can't skip without parsing. */
DRM_ERROR("Unsupported MIPI operation byte %u\n",
operation_byte);
return;
}
}
}
void intel_dsi_msleep(struct intel_dsi *intel_dsi, int msec)
{
struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev);
/* For v3 VBTs in vid-mode the delays are part of the VBT sequences */
if (is_vid_mode(intel_dsi) && dev_priv->vbt.dsi.seq_version >= 3)
return;
msleep(msec);
}
#define ICL_PREPARE_CNT_MAX 0x7
#define ICL_CLK_ZERO_CNT_MAX 0xf
#define ICL_TRAIL_CNT_MAX 0x7
#define ICL_TCLK_PRE_CNT_MAX 0x3
#define ICL_TCLK_POST_CNT_MAX 0x7
#define ICL_HS_ZERO_CNT_MAX 0xf
#define ICL_EXIT_ZERO_CNT_MAX 0x7
static void icl_dphy_param_init(struct intel_dsi *intel_dsi)
{
struct drm_device *dev = intel_dsi->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct mipi_config *mipi_config = dev_priv->vbt.dsi.config;
u32 tlpx_ns;
u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt;
u32 ths_prepare_ns, tclk_trail_ns;
u32 hs_zero_cnt;
u32 tclk_pre_cnt, tclk_post_cnt;
tlpx_ns = intel_dsi_tlpx_ns(intel_dsi);
tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail);
ths_prepare_ns = max(mipi_config->ths_prepare,
mipi_config->tclk_prepare);
/*
* prepare cnt in escape clocks
* this field represents a hexadecimal value with a precision
* of 1.2 i.e. the most significant bit is the integer
* and the least significant 2 bits are fraction bits.
* so, the field can represent a range of 0.25 to 1.75
*/
prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * 4, tlpx_ns);
if (prepare_cnt > ICL_PREPARE_CNT_MAX) {
DRM_DEBUG_KMS("prepare_cnt out of range (%d)\n", prepare_cnt);
prepare_cnt = ICL_PREPARE_CNT_MAX;
}
/* clk zero count in escape clocks */
clk_zero_cnt = DIV_ROUND_UP(mipi_config->tclk_prepare_clkzero -
ths_prepare_ns, tlpx_ns);
if (clk_zero_cnt > ICL_CLK_ZERO_CNT_MAX) {
DRM_DEBUG_KMS("clk_zero_cnt out of range (%d)\n", clk_zero_cnt);
clk_zero_cnt = ICL_CLK_ZERO_CNT_MAX;
}
/* trail cnt in escape clocks*/
trail_cnt = DIV_ROUND_UP(tclk_trail_ns, tlpx_ns);
if (trail_cnt > ICL_TRAIL_CNT_MAX) {
DRM_DEBUG_KMS("trail_cnt out of range (%d)\n", trail_cnt);
trail_cnt = ICL_TRAIL_CNT_MAX;
}
/* tclk pre count in escape clocks */
tclk_pre_cnt = DIV_ROUND_UP(mipi_config->tclk_pre, tlpx_ns);
if (tclk_pre_cnt > ICL_TCLK_PRE_CNT_MAX) {
DRM_DEBUG_KMS("tclk_pre_cnt out of range (%d)\n", tclk_pre_cnt);
tclk_pre_cnt = ICL_TCLK_PRE_CNT_MAX;
}
/* tclk post count in escape clocks */
tclk_post_cnt = DIV_ROUND_UP(mipi_config->tclk_post, tlpx_ns);
if (tclk_post_cnt > ICL_TCLK_POST_CNT_MAX) {
DRM_DEBUG_KMS("tclk_post_cnt out of range (%d)\n", tclk_post_cnt);
tclk_post_cnt = ICL_TCLK_POST_CNT_MAX;
}
/* hs zero cnt in escape clocks */
hs_zero_cnt = DIV_ROUND_UP(mipi_config->ths_prepare_hszero -
ths_prepare_ns, tlpx_ns);
if (hs_zero_cnt > ICL_HS_ZERO_CNT_MAX) {
DRM_DEBUG_KMS("hs_zero_cnt out of range (%d)\n", hs_zero_cnt);
hs_zero_cnt = ICL_HS_ZERO_CNT_MAX;
}
/* hs exit zero cnt in escape clocks */
exit_zero_cnt = DIV_ROUND_UP(mipi_config->ths_exit, tlpx_ns);
if (exit_zero_cnt > ICL_EXIT_ZERO_CNT_MAX) {
DRM_DEBUG_KMS("exit_zero_cnt out of range (%d)\n", exit_zero_cnt);
exit_zero_cnt = ICL_EXIT_ZERO_CNT_MAX;
}
/* clock lane dphy timings */
intel_dsi->dphy_reg = (CLK_PREPARE_OVERRIDE |
CLK_PREPARE(prepare_cnt) |
CLK_ZERO_OVERRIDE |
CLK_ZERO(clk_zero_cnt) |
CLK_PRE_OVERRIDE |
CLK_PRE(tclk_pre_cnt) |
CLK_POST_OVERRIDE |
CLK_POST(tclk_post_cnt) |
CLK_TRAIL_OVERRIDE |
CLK_TRAIL(trail_cnt));
/* data lanes dphy timings */
intel_dsi->dphy_data_lane_reg = (HS_PREPARE_OVERRIDE |
HS_PREPARE(prepare_cnt) |
HS_ZERO_OVERRIDE |
HS_ZERO(hs_zero_cnt) |
HS_TRAIL_OVERRIDE |
HS_TRAIL(trail_cnt) |
HS_EXIT_OVERRIDE |
HS_EXIT(exit_zero_cnt));
}
static void vlv_dphy_param_init(struct intel_dsi *intel_dsi)
{
struct drm_device *dev = intel_dsi->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct mipi_config *mipi_config = dev_priv->vbt.dsi.config;
u32 tlpx_ns, extra_byte_count, tlpx_ui;
u32 ui_num, ui_den;
u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt;
u32 ths_prepare_ns, tclk_trail_ns;
u32 tclk_prepare_clkzero, ths_prepare_hszero;
u32 lp_to_hs_switch, hs_to_lp_switch;
u32 mul;
tlpx_ns = intel_dsi_tlpx_ns(intel_dsi);
switch (intel_dsi->lane_count) {
case 1:
case 2:
extra_byte_count = 2;
break;
case 3:
extra_byte_count = 4;
break;
case 4:
default:
extra_byte_count = 3;
break;
}
/* in Kbps */
ui_num = NS_KHZ_RATIO;
ui_den = intel_dsi_bitrate(intel_dsi);
tclk_prepare_clkzero = mipi_config->tclk_prepare_clkzero;
ths_prepare_hszero = mipi_config->ths_prepare_hszero;
/*
* B060
* LP byte clock = TLPX/ (8UI)
*/
intel_dsi->lp_byte_clk = DIV_ROUND_UP(tlpx_ns * ui_den, 8 * ui_num);
/* DDR clock period = 2 * UI
* UI(sec) = 1/(bitrate * 10^3) (bitrate is in KHZ)
* UI(nsec) = 10^6 / bitrate
* DDR clock period (nsec) = 2 * UI = (2 * 10^6)/ bitrate
* DDR clock count = ns_value / DDR clock period
*
* For GEMINILAKE dphy_param_reg will be programmed in terms of
* HS byte clock count for other platform in HS ddr clock count
*/
mul = IS_GEMINILAKE(dev_priv) ? 8 : 2;
ths_prepare_ns = max(mipi_config->ths_prepare,
mipi_config->tclk_prepare);
/* prepare count */
prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * ui_den, ui_num * mul);
if (prepare_cnt > PREPARE_CNT_MAX) {
DRM_DEBUG_KMS("prepare count too high %u\n", prepare_cnt);
prepare_cnt = PREPARE_CNT_MAX;
}
/* exit zero count */
exit_zero_cnt = DIV_ROUND_UP(
(ths_prepare_hszero - ths_prepare_ns) * ui_den,
ui_num * mul
);
/*
* Exit zero is unified val ths_zero and ths_exit
* minimum value for ths_exit = 110ns
* min (exit_zero_cnt * 2) = 110/UI
* exit_zero_cnt = 55/UI
*/
if (exit_zero_cnt < (55 * ui_den / ui_num) && (55 * ui_den) % ui_num)
exit_zero_cnt += 1;
if (exit_zero_cnt > EXIT_ZERO_CNT_MAX) {
DRM_DEBUG_KMS("exit zero count too high %u\n", exit_zero_cnt);
exit_zero_cnt = EXIT_ZERO_CNT_MAX;
}
/* clk zero count */
clk_zero_cnt = DIV_ROUND_UP(
(tclk_prepare_clkzero - ths_prepare_ns)
* ui_den, ui_num * mul);
if (clk_zero_cnt > CLK_ZERO_CNT_MAX) {
DRM_DEBUG_KMS("clock zero count too high %u\n", clk_zero_cnt);
clk_zero_cnt = CLK_ZERO_CNT_MAX;
}
/* trail count */
tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail);
trail_cnt = DIV_ROUND_UP(tclk_trail_ns * ui_den, ui_num * mul);
if (trail_cnt > TRAIL_CNT_MAX) {
DRM_DEBUG_KMS("trail count too high %u\n", trail_cnt);
trail_cnt = TRAIL_CNT_MAX;
}
/* B080 */
intel_dsi->dphy_reg = exit_zero_cnt << 24 | trail_cnt << 16 |
clk_zero_cnt << 8 | prepare_cnt;
/*
* LP to HS switch count = 4TLPX + PREP_COUNT * mul + EXIT_ZERO_COUNT *
* mul + 10UI + Extra Byte Count
*
* HS to LP switch count = THS-TRAIL + 2TLPX + Extra Byte Count
* Extra Byte Count is calculated according to number of lanes.
* High Low Switch Count is the Max of LP to HS and
* HS to LP switch count
*
*/
tlpx_ui = DIV_ROUND_UP(tlpx_ns * ui_den, ui_num);
/* B044 */
/* FIXME:
* The comment above does not match with the code */
lp_to_hs_switch = DIV_ROUND_UP(4 * tlpx_ui + prepare_cnt * mul +
exit_zero_cnt * mul + 10, 8);
hs_to_lp_switch = DIV_ROUND_UP(mipi_config->ths_trail + 2 * tlpx_ui, 8);
intel_dsi->hs_to_lp_count = max(lp_to_hs_switch, hs_to_lp_switch);
intel_dsi->hs_to_lp_count += extra_byte_count;
/* B088 */
/* LP -> HS for clock lanes
* LP clk sync + LP11 + LP01 + tclk_prepare + tclk_zero +
* extra byte count
* 2TPLX + 1TLPX + 1 TPLX(in ns) + prepare_cnt * 2 + clk_zero_cnt *
* 2(in UI) + extra byte count
* In byteclks = (4TLPX + prepare_cnt * 2 + clk_zero_cnt *2 (in UI)) /
* 8 + extra byte count
*/
intel_dsi->clk_lp_to_hs_count =
DIV_ROUND_UP(
4 * tlpx_ui + prepare_cnt * 2 +
clk_zero_cnt * 2,
8);
intel_dsi->clk_lp_to_hs_count += extra_byte_count;
/* HS->LP for Clock Lanes
* Low Power clock synchronisations + 1Tx byteclk + tclk_trail +
* Extra byte count
* 2TLPX + 8UI + (trail_count*2)(in UI) + Extra byte count
* In byteclks = (2*TLpx(in UI) + trail_count*2 +8)(in UI)/8 +
* Extra byte count
*/
intel_dsi->clk_hs_to_lp_count =
DIV_ROUND_UP(2 * tlpx_ui + trail_cnt * 2 + 8,
8);
intel_dsi->clk_hs_to_lp_count += extra_byte_count;
}
bool intel_dsi_vbt_init(struct intel_dsi *intel_dsi, u16 panel_id)
{
struct drm_device *dev = intel_dsi->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct mipi_config *mipi_config = dev_priv->vbt.dsi.config;
struct mipi_pps_data *pps = dev_priv->vbt.dsi.pps;
struct drm_display_mode *mode = dev_priv->vbt.lfp_lvds_vbt_mode;
u16 burst_mode_ratio;
enum port port;
DRM_DEBUG_KMS("\n");
intel_dsi->eotp_pkt = mipi_config->eot_pkt_disabled ? 0 : 1;
intel_dsi->clock_stop = mipi_config->enable_clk_stop ? 1 : 0;
intel_dsi->lane_count = mipi_config->lane_cnt + 1;
intel_dsi->pixel_format =
pixel_format_from_register_bits(
mipi_config->videomode_color_format << 7);
intel_dsi->dual_link = mipi_config->dual_link;
intel_dsi->pixel_overlap = mipi_config->pixel_overlap;
intel_dsi->operation_mode = mipi_config->is_cmd_mode;
intel_dsi->video_mode_format = mipi_config->video_transfer_mode;
intel_dsi->escape_clk_div = mipi_config->byte_clk_sel;
intel_dsi->lp_rx_timeout = mipi_config->lp_rx_timeout;
intel_dsi->hs_tx_timeout = mipi_config->hs_tx_timeout;
intel_dsi->turn_arnd_val = mipi_config->turn_around_timeout;
intel_dsi->rst_timer_val = mipi_config->device_reset_timer;
intel_dsi->init_count = mipi_config->master_init_timer;
intel_dsi->bw_timer = mipi_config->dbi_bw_timer;
intel_dsi->video_frmt_cfg_bits =
mipi_config->bta_enabled ? DISABLE_VIDEO_BTA : 0;
intel_dsi->bgr_enabled = mipi_config->rgb_flip;
/* Starting point, adjusted depending on dual link and burst mode */
intel_dsi->pclk = mode->clock;
/* In dual link mode each port needs half of pixel clock */
if (intel_dsi->dual_link) {
intel_dsi->pclk /= 2;
/* we can enable pixel_overlap if needed by panel. In this
* case we need to increase the pixelclock for extra pixels
*/
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) {
intel_dsi->pclk += DIV_ROUND_UP(mode->vtotal * intel_dsi->pixel_overlap * 60, 1000);
}
}
/* Burst Mode Ratio
* Target ddr frequency from VBT / non burst ddr freq
* multiply by 100 to preserve remainder
*/
if (intel_dsi->video_mode_format == VIDEO_MODE_BURST) {
if (mipi_config->target_burst_mode_freq) {
u32 bitrate = intel_dsi_bitrate(intel_dsi);
if (mipi_config->target_burst_mode_freq < bitrate) {
DRM_ERROR("Burst mode freq is less than computed\n");
return false;
}
burst_mode_ratio = DIV_ROUND_UP(
mipi_config->target_burst_mode_freq * 100,
bitrate);
intel_dsi->pclk = DIV_ROUND_UP(intel_dsi->pclk * burst_mode_ratio, 100);
} else {
DRM_ERROR("Burst mode target is not set\n");
return false;
}
} else
burst_mode_ratio = 100;
intel_dsi->burst_mode_ratio = burst_mode_ratio;
if (INTEL_GEN(dev_priv) >= 11)
icl_dphy_param_init(intel_dsi);
else
vlv_dphy_param_init(intel_dsi);
DRM_DEBUG_KMS("Pclk %d\n", intel_dsi->pclk);
DRM_DEBUG_KMS("Pixel overlap %d\n", intel_dsi->pixel_overlap);
DRM_DEBUG_KMS("Lane count %d\n", intel_dsi->lane_count);
DRM_DEBUG_KMS("DPHY param reg 0x%x\n", intel_dsi->dphy_reg);
DRM_DEBUG_KMS("Video mode format %s\n",
intel_dsi->video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE ?
"non-burst with sync pulse" :
intel_dsi->video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_EVENTS ?
"non-burst with sync events" :
intel_dsi->video_mode_format == VIDEO_MODE_BURST ?
"burst" : "<unknown>");
DRM_DEBUG_KMS("Burst mode ratio %d\n", intel_dsi->burst_mode_ratio);
DRM_DEBUG_KMS("Reset timer %d\n", intel_dsi->rst_timer_val);
DRM_DEBUG_KMS("Eot %s\n", enableddisabled(intel_dsi->eotp_pkt));
DRM_DEBUG_KMS("Clockstop %s\n", enableddisabled(!intel_dsi->clock_stop));
DRM_DEBUG_KMS("Mode %s\n", intel_dsi->operation_mode ? "command" : "video");
if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK)
DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_FRONT_BACK\n");
else if (intel_dsi->dual_link == DSI_DUAL_LINK_PIXEL_ALT)
DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_PIXEL_ALT\n");
else
DRM_DEBUG_KMS("Dual link: NONE\n");
DRM_DEBUG_KMS("Pixel Format %d\n", intel_dsi->pixel_format);
DRM_DEBUG_KMS("TLPX %d\n", intel_dsi->escape_clk_div);
DRM_DEBUG_KMS("LP RX Timeout 0x%x\n", intel_dsi->lp_rx_timeout);
DRM_DEBUG_KMS("Turnaround Timeout 0x%x\n", intel_dsi->turn_arnd_val);
DRM_DEBUG_KMS("Init Count 0x%x\n", intel_dsi->init_count);
DRM_DEBUG_KMS("HS to LP Count 0x%x\n", intel_dsi->hs_to_lp_count);
DRM_DEBUG_KMS("LP Byte Clock %d\n", intel_dsi->lp_byte_clk);
DRM_DEBUG_KMS("DBI BW Timer 0x%x\n", intel_dsi->bw_timer);
DRM_DEBUG_KMS("LP to HS Clock Count 0x%x\n", intel_dsi->clk_lp_to_hs_count);
DRM_DEBUG_KMS("HS to LP Clock Count 0x%x\n", intel_dsi->clk_hs_to_lp_count);
DRM_DEBUG_KMS("BTA %s\n",
enableddisabled(!(intel_dsi->video_frmt_cfg_bits & DISABLE_VIDEO_BTA)));
/* delays in VBT are in unit of 100us, so need to convert
* here in ms
* Delay (100us) * 100 /1000 = Delay / 10 (ms) */
intel_dsi->backlight_off_delay = pps->bl_disable_delay / 10;
intel_dsi->backlight_on_delay = pps->bl_enable_delay / 10;
intel_dsi->panel_on_delay = pps->panel_on_delay / 10;
intel_dsi->panel_off_delay = pps->panel_off_delay / 10;
intel_dsi->panel_pwr_cycle_delay = pps->panel_power_cycle_delay / 10;
/* a regular driver would get the device in probe */
for_each_dsi_port(port, intel_dsi->ports) {
mipi_dsi_attach(intel_dsi->dsi_hosts[port]->device);
}
return true;
}