alistair23-linux/drivers/staging/octeon/ethernet-mem.c
Greg Kroah-Hartman 98a95b9cc9 staging: octeon: remove redundant license text
Now that the SPDX tag is in all drivers/staging/octeon/ files, that
identifies the license in a specific and legally-defined manner.  So the
extra GPL text wording can be removed as it is no longer needed at all.

This is done on a quest to remove the 700+ different ways that files in
the kernel describe the GPL license text.  And there's unneeded stuff
like the address (sometimes incorrect) for the FSF which is never
needed.

No copyright headers or other non-license-description text was removed.

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-15 16:03:45 +01:00

158 lines
3.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This file is based on code from OCTEON SDK by Cavium Networks.
*
* Copyright (c) 2003-2010 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <asm/octeon/octeon.h>
#include "ethernet-mem.h"
#include "ethernet-defines.h"
#include <asm/octeon/cvmx-fpa.h>
/**
* cvm_oct_fill_hw_skbuff - fill the supplied hardware pool with skbuffs
* @pool: Pool to allocate an skbuff for
* @size: Size of the buffer needed for the pool
* @elements: Number of buffers to allocate
*
* Returns the actual number of buffers allocated.
*/
static int cvm_oct_fill_hw_skbuff(int pool, int size, int elements)
{
int freed = elements;
while (freed) {
struct sk_buff *skb = dev_alloc_skb(size + 256);
if (unlikely(!skb))
break;
skb_reserve(skb, 256 - (((unsigned long)skb->data) & 0x7f));
*(struct sk_buff **)(skb->data - sizeof(void *)) = skb;
cvmx_fpa_free(skb->data, pool, size / 128);
freed--;
}
return elements - freed;
}
/**
* cvm_oct_free_hw_skbuff- free hardware pool skbuffs
* @pool: Pool to allocate an skbuff for
* @size: Size of the buffer needed for the pool
* @elements: Number of buffers to allocate
*/
static void cvm_oct_free_hw_skbuff(int pool, int size, int elements)
{
char *memory;
do {
memory = cvmx_fpa_alloc(pool);
if (memory) {
struct sk_buff *skb =
*(struct sk_buff **)(memory - sizeof(void *));
elements--;
dev_kfree_skb(skb);
}
} while (memory);
if (elements < 0)
pr_warn("Freeing of pool %u had too many skbuffs (%d)\n",
pool, elements);
else if (elements > 0)
pr_warn("Freeing of pool %u is missing %d skbuffs\n",
pool, elements);
}
/**
* cvm_oct_fill_hw_memory - fill a hardware pool with memory.
* @pool: Pool to populate
* @size: Size of each buffer in the pool
* @elements: Number of buffers to allocate
*
* Returns the actual number of buffers allocated.
*/
static int cvm_oct_fill_hw_memory(int pool, int size, int elements)
{
char *memory;
char *fpa;
int freed = elements;
while (freed) {
/*
* FPA memory must be 128 byte aligned. Since we are
* aligning we need to save the original pointer so we
* can feed it to kfree when the memory is returned to
* the kernel.
*
* We allocate an extra 256 bytes to allow for
* alignment and space for the original pointer saved
* just before the block.
*/
memory = kmalloc(size + 256, GFP_ATOMIC);
if (unlikely(!memory)) {
pr_warn("Unable to allocate %u bytes for FPA pool %d\n",
elements * size, pool);
break;
}
fpa = (char *)(((unsigned long)memory + 256) & ~0x7fUL);
*((char **)fpa - 1) = memory;
cvmx_fpa_free(fpa, pool, 0);
freed--;
}
return elements - freed;
}
/**
* cvm_oct_free_hw_memory - Free memory allocated by cvm_oct_fill_hw_memory
* @pool: FPA pool to free
* @size: Size of each buffer in the pool
* @elements: Number of buffers that should be in the pool
*/
static void cvm_oct_free_hw_memory(int pool, int size, int elements)
{
char *memory;
char *fpa;
do {
fpa = cvmx_fpa_alloc(pool);
if (fpa) {
elements--;
fpa = (char *)phys_to_virt(cvmx_ptr_to_phys(fpa));
memory = *((char **)fpa - 1);
kfree(memory);
}
} while (fpa);
if (elements < 0)
pr_warn("Freeing of pool %u had too many buffers (%d)\n",
pool, elements);
else if (elements > 0)
pr_warn("Warning: Freeing of pool %u is missing %d buffers\n",
pool, elements);
}
int cvm_oct_mem_fill_fpa(int pool, int size, int elements)
{
int freed;
if (pool == CVMX_FPA_PACKET_POOL)
freed = cvm_oct_fill_hw_skbuff(pool, size, elements);
else
freed = cvm_oct_fill_hw_memory(pool, size, elements);
return freed;
}
void cvm_oct_mem_empty_fpa(int pool, int size, int elements)
{
if (pool == CVMX_FPA_PACKET_POOL)
cvm_oct_free_hw_skbuff(pool, size, elements);
else
cvm_oct_free_hw_memory(pool, size, elements);
}