alistair23-linux/net/netfilter/nf_conntrack_expect.c
Kees Cook e99e88a9d2 treewide: setup_timer() -> timer_setup()
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.

Casting from unsigned long:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, ptr);

and forced object casts:

    void my_callback(struct something *ptr)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);

become:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

Direct function assignments:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    ptr->my_timer.function = my_callback;

have a temporary cast added, along with converting the args:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;

And finally, callbacks without a data assignment:

    void my_callback(unsigned long data)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, 0);

have their argument renamed to verify they're unused during conversion:

    void my_callback(struct timer_list *unused)
    {
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

The conversion is done with the following Coccinelle script:

spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/timer_setup.cocci

@fix_address_of@
expression e;
@@

 setup_timer(
-&(e)
+&e
 , ...)

// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@

(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)

@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@

(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
 _E->_timer@_stl.function = _callback;
|
 _E->_timer@_stl.function = &_callback;
|
 _E->_timer@_stl.function = (_cast_func)_callback;
|
 _E->_timer@_stl.function = (_cast_func)&_callback;
|
 _E._timer@_stl.function = _callback;
|
 _E._timer@_stl.function = &_callback;
|
 _E._timer@_stl.function = (_cast_func)_callback;
|
 _E._timer@_stl.function = (_cast_func)&_callback;
)

// callback(unsigned long arg)
@change_callback_handle_cast
 depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
(
	... when != _origarg
	_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
)
 }

// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
 depends on change_timer_function_usage &&
                     !change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
+	_handletype *_origarg = from_timer(_origarg, t, _timer);
+
	... when != _origarg
-	(_handletype *)_origarg
+	_origarg
	... when != _origarg
 }

// Avoid already converted callbacks.
@match_callback_converted
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
	    !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@

 void _callback(struct timer_list *t)
 { ... }

// callback(struct something *handle)
@change_callback_handle_arg
 depends on change_timer_function_usage &&
	    !match_callback_converted &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@

 void _callback(
-_handletype *_handle
+struct timer_list *t
 )
 {
+	_handletype *_handle = from_timer(_handle, t, _timer);
	...
 }

// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
 depends on change_timer_function_usage &&
	    change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@

 void _callback(struct timer_list *t)
 {
-	_handletype *_handle = from_timer(_handle, t, _timer);
 }

// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg &&
	    !change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@

(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)

// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@

(
 _E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
)

// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@

 _callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
 )

// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@

(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)

@change_callback_unused_data
 depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *unused
 )
 {
	... when != _origarg
 }

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:07 -08:00

729 lines
19 KiB
C

/* Expectation handling for nf_conntrack. */
/* (C) 1999-2001 Paul `Rusty' Russell
* (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
* (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
* (c) 2005-2012 Patrick McHardy <kaber@trash.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/netfilter.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/percpu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/moduleparam.h>
#include <linux/export.h>
#include <net/net_namespace.h>
#include <net/netns/hash.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_expect.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_tuple.h>
#include <net/netfilter/nf_conntrack_zones.h>
unsigned int nf_ct_expect_hsize __read_mostly;
EXPORT_SYMBOL_GPL(nf_ct_expect_hsize);
struct hlist_head *nf_ct_expect_hash __read_mostly;
EXPORT_SYMBOL_GPL(nf_ct_expect_hash);
unsigned int nf_ct_expect_max __read_mostly;
static struct kmem_cache *nf_ct_expect_cachep __read_mostly;
static unsigned int nf_ct_expect_hashrnd __read_mostly;
/* nf_conntrack_expect helper functions */
void nf_ct_unlink_expect_report(struct nf_conntrack_expect *exp,
u32 portid, int report)
{
struct nf_conn_help *master_help = nfct_help(exp->master);
struct net *net = nf_ct_exp_net(exp);
WARN_ON(!master_help);
WARN_ON(timer_pending(&exp->timeout));
hlist_del_rcu(&exp->hnode);
net->ct.expect_count--;
hlist_del_rcu(&exp->lnode);
master_help->expecting[exp->class]--;
nf_ct_expect_event_report(IPEXP_DESTROY, exp, portid, report);
nf_ct_expect_put(exp);
NF_CT_STAT_INC(net, expect_delete);
}
EXPORT_SYMBOL_GPL(nf_ct_unlink_expect_report);
static void nf_ct_expectation_timed_out(struct timer_list *t)
{
struct nf_conntrack_expect *exp = from_timer(exp, t, timeout);
spin_lock_bh(&nf_conntrack_expect_lock);
nf_ct_unlink_expect(exp);
spin_unlock_bh(&nf_conntrack_expect_lock);
nf_ct_expect_put(exp);
}
static unsigned int nf_ct_expect_dst_hash(const struct net *n, const struct nf_conntrack_tuple *tuple)
{
unsigned int hash, seed;
get_random_once(&nf_ct_expect_hashrnd, sizeof(nf_ct_expect_hashrnd));
seed = nf_ct_expect_hashrnd ^ net_hash_mix(n);
hash = jhash2(tuple->dst.u3.all, ARRAY_SIZE(tuple->dst.u3.all),
(((tuple->dst.protonum ^ tuple->src.l3num) << 16) |
(__force __u16)tuple->dst.u.all) ^ seed);
return reciprocal_scale(hash, nf_ct_expect_hsize);
}
static bool
nf_ct_exp_equal(const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_expect *i,
const struct nf_conntrack_zone *zone,
const struct net *net)
{
return nf_ct_tuple_mask_cmp(tuple, &i->tuple, &i->mask) &&
net_eq(net, nf_ct_net(i->master)) &&
nf_ct_zone_equal_any(i->master, zone);
}
bool nf_ct_remove_expect(struct nf_conntrack_expect *exp)
{
if (del_timer(&exp->timeout)) {
nf_ct_unlink_expect(exp);
nf_ct_expect_put(exp);
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(nf_ct_remove_expect);
struct nf_conntrack_expect *
__nf_ct_expect_find(struct net *net,
const struct nf_conntrack_zone *zone,
const struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_expect *i;
unsigned int h;
if (!net->ct.expect_count)
return NULL;
h = nf_ct_expect_dst_hash(net, tuple);
hlist_for_each_entry_rcu(i, &nf_ct_expect_hash[h], hnode) {
if (nf_ct_exp_equal(tuple, i, zone, net))
return i;
}
return NULL;
}
EXPORT_SYMBOL_GPL(__nf_ct_expect_find);
/* Just find a expectation corresponding to a tuple. */
struct nf_conntrack_expect *
nf_ct_expect_find_get(struct net *net,
const struct nf_conntrack_zone *zone,
const struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_expect *i;
rcu_read_lock();
i = __nf_ct_expect_find(net, zone, tuple);
if (i && !refcount_inc_not_zero(&i->use))
i = NULL;
rcu_read_unlock();
return i;
}
EXPORT_SYMBOL_GPL(nf_ct_expect_find_get);
/* If an expectation for this connection is found, it gets delete from
* global list then returned. */
struct nf_conntrack_expect *
nf_ct_find_expectation(struct net *net,
const struct nf_conntrack_zone *zone,
const struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_expect *i, *exp = NULL;
unsigned int h;
if (!net->ct.expect_count)
return NULL;
h = nf_ct_expect_dst_hash(net, tuple);
hlist_for_each_entry(i, &nf_ct_expect_hash[h], hnode) {
if (!(i->flags & NF_CT_EXPECT_INACTIVE) &&
nf_ct_exp_equal(tuple, i, zone, net)) {
exp = i;
break;
}
}
if (!exp)
return NULL;
/* If master is not in hash table yet (ie. packet hasn't left
this machine yet), how can other end know about expected?
Hence these are not the droids you are looking for (if
master ct never got confirmed, we'd hold a reference to it
and weird things would happen to future packets). */
if (!nf_ct_is_confirmed(exp->master))
return NULL;
/* Avoid race with other CPUs, that for exp->master ct, is
* about to invoke ->destroy(), or nf_ct_delete() via timeout
* or early_drop().
*
* The atomic_inc_not_zero() check tells: If that fails, we
* know that the ct is being destroyed. If it succeeds, we
* can be sure the ct cannot disappear underneath.
*/
if (unlikely(nf_ct_is_dying(exp->master) ||
!atomic_inc_not_zero(&exp->master->ct_general.use)))
return NULL;
if (exp->flags & NF_CT_EXPECT_PERMANENT) {
refcount_inc(&exp->use);
return exp;
} else if (del_timer(&exp->timeout)) {
nf_ct_unlink_expect(exp);
return exp;
}
/* Undo exp->master refcnt increase, if del_timer() failed */
nf_ct_put(exp->master);
return NULL;
}
/* delete all expectations for this conntrack */
void nf_ct_remove_expectations(struct nf_conn *ct)
{
struct nf_conn_help *help = nfct_help(ct);
struct nf_conntrack_expect *exp;
struct hlist_node *next;
/* Optimization: most connection never expect any others. */
if (!help)
return;
spin_lock_bh(&nf_conntrack_expect_lock);
hlist_for_each_entry_safe(exp, next, &help->expectations, lnode) {
nf_ct_remove_expect(exp);
}
spin_unlock_bh(&nf_conntrack_expect_lock);
}
EXPORT_SYMBOL_GPL(nf_ct_remove_expectations);
/* Would two expected things clash? */
static inline int expect_clash(const struct nf_conntrack_expect *a,
const struct nf_conntrack_expect *b)
{
/* Part covered by intersection of masks must be unequal,
otherwise they clash */
struct nf_conntrack_tuple_mask intersect_mask;
int count;
intersect_mask.src.u.all = a->mask.src.u.all & b->mask.src.u.all;
for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++){
intersect_mask.src.u3.all[count] =
a->mask.src.u3.all[count] & b->mask.src.u3.all[count];
}
return nf_ct_tuple_mask_cmp(&a->tuple, &b->tuple, &intersect_mask) &&
net_eq(nf_ct_net(a->master), nf_ct_net(b->master)) &&
nf_ct_zone_equal_any(a->master, nf_ct_zone(b->master));
}
static inline int expect_matches(const struct nf_conntrack_expect *a,
const struct nf_conntrack_expect *b)
{
return a->master == b->master && a->class == b->class &&
nf_ct_tuple_equal(&a->tuple, &b->tuple) &&
nf_ct_tuple_mask_equal(&a->mask, &b->mask) &&
net_eq(nf_ct_net(a->master), nf_ct_net(b->master)) &&
nf_ct_zone_equal_any(a->master, nf_ct_zone(b->master));
}
/* Generally a bad idea to call this: could have matched already. */
void nf_ct_unexpect_related(struct nf_conntrack_expect *exp)
{
spin_lock_bh(&nf_conntrack_expect_lock);
nf_ct_remove_expect(exp);
spin_unlock_bh(&nf_conntrack_expect_lock);
}
EXPORT_SYMBOL_GPL(nf_ct_unexpect_related);
/* We don't increase the master conntrack refcount for non-fulfilled
* conntracks. During the conntrack destruction, the expectations are
* always killed before the conntrack itself */
struct nf_conntrack_expect *nf_ct_expect_alloc(struct nf_conn *me)
{
struct nf_conntrack_expect *new;
new = kmem_cache_alloc(nf_ct_expect_cachep, GFP_ATOMIC);
if (!new)
return NULL;
new->master = me;
refcount_set(&new->use, 1);
return new;
}
EXPORT_SYMBOL_GPL(nf_ct_expect_alloc);
void nf_ct_expect_init(struct nf_conntrack_expect *exp, unsigned int class,
u_int8_t family,
const union nf_inet_addr *saddr,
const union nf_inet_addr *daddr,
u_int8_t proto, const __be16 *src, const __be16 *dst)
{
int len;
if (family == AF_INET)
len = 4;
else
len = 16;
exp->flags = 0;
exp->class = class;
exp->expectfn = NULL;
exp->helper = NULL;
exp->tuple.src.l3num = family;
exp->tuple.dst.protonum = proto;
if (saddr) {
memcpy(&exp->tuple.src.u3, saddr, len);
if (sizeof(exp->tuple.src.u3) > len)
/* address needs to be cleared for nf_ct_tuple_equal */
memset((void *)&exp->tuple.src.u3 + len, 0x00,
sizeof(exp->tuple.src.u3) - len);
memset(&exp->mask.src.u3, 0xFF, len);
if (sizeof(exp->mask.src.u3) > len)
memset((void *)&exp->mask.src.u3 + len, 0x00,
sizeof(exp->mask.src.u3) - len);
} else {
memset(&exp->tuple.src.u3, 0x00, sizeof(exp->tuple.src.u3));
memset(&exp->mask.src.u3, 0x00, sizeof(exp->mask.src.u3));
}
if (src) {
exp->tuple.src.u.all = *src;
exp->mask.src.u.all = htons(0xFFFF);
} else {
exp->tuple.src.u.all = 0;
exp->mask.src.u.all = 0;
}
memcpy(&exp->tuple.dst.u3, daddr, len);
if (sizeof(exp->tuple.dst.u3) > len)
/* address needs to be cleared for nf_ct_tuple_equal */
memset((void *)&exp->tuple.dst.u3 + len, 0x00,
sizeof(exp->tuple.dst.u3) - len);
exp->tuple.dst.u.all = *dst;
#ifdef CONFIG_NF_NAT_NEEDED
memset(&exp->saved_addr, 0, sizeof(exp->saved_addr));
memset(&exp->saved_proto, 0, sizeof(exp->saved_proto));
#endif
}
EXPORT_SYMBOL_GPL(nf_ct_expect_init);
static void nf_ct_expect_free_rcu(struct rcu_head *head)
{
struct nf_conntrack_expect *exp;
exp = container_of(head, struct nf_conntrack_expect, rcu);
kmem_cache_free(nf_ct_expect_cachep, exp);
}
void nf_ct_expect_put(struct nf_conntrack_expect *exp)
{
if (refcount_dec_and_test(&exp->use))
call_rcu(&exp->rcu, nf_ct_expect_free_rcu);
}
EXPORT_SYMBOL_GPL(nf_ct_expect_put);
static void nf_ct_expect_insert(struct nf_conntrack_expect *exp)
{
struct nf_conn_help *master_help = nfct_help(exp->master);
struct nf_conntrack_helper *helper;
struct net *net = nf_ct_exp_net(exp);
unsigned int h = nf_ct_expect_dst_hash(net, &exp->tuple);
/* two references : one for hash insert, one for the timer */
refcount_add(2, &exp->use);
timer_setup(&exp->timeout, nf_ct_expectation_timed_out, 0);
helper = rcu_dereference_protected(master_help->helper,
lockdep_is_held(&nf_conntrack_expect_lock));
if (helper) {
exp->timeout.expires = jiffies +
helper->expect_policy[exp->class].timeout * HZ;
}
add_timer(&exp->timeout);
hlist_add_head_rcu(&exp->lnode, &master_help->expectations);
master_help->expecting[exp->class]++;
hlist_add_head_rcu(&exp->hnode, &nf_ct_expect_hash[h]);
net->ct.expect_count++;
NF_CT_STAT_INC(net, expect_create);
}
/* Race with expectations being used means we could have none to find; OK. */
static void evict_oldest_expect(struct nf_conn *master,
struct nf_conntrack_expect *new)
{
struct nf_conn_help *master_help = nfct_help(master);
struct nf_conntrack_expect *exp, *last = NULL;
hlist_for_each_entry(exp, &master_help->expectations, lnode) {
if (exp->class == new->class)
last = exp;
}
if (last)
nf_ct_remove_expect(last);
}
static inline int __nf_ct_expect_check(struct nf_conntrack_expect *expect)
{
const struct nf_conntrack_expect_policy *p;
struct nf_conntrack_expect *i;
struct nf_conn *master = expect->master;
struct nf_conn_help *master_help = nfct_help(master);
struct nf_conntrack_helper *helper;
struct net *net = nf_ct_exp_net(expect);
struct hlist_node *next;
unsigned int h;
int ret = 0;
if (!master_help) {
ret = -ESHUTDOWN;
goto out;
}
h = nf_ct_expect_dst_hash(net, &expect->tuple);
hlist_for_each_entry_safe(i, next, &nf_ct_expect_hash[h], hnode) {
if (expect_matches(i, expect)) {
if (nf_ct_remove_expect(i))
break;
} else if (expect_clash(i, expect)) {
ret = -EBUSY;
goto out;
}
}
/* Will be over limit? */
helper = rcu_dereference_protected(master_help->helper,
lockdep_is_held(&nf_conntrack_expect_lock));
if (helper) {
p = &helper->expect_policy[expect->class];
if (p->max_expected &&
master_help->expecting[expect->class] >= p->max_expected) {
evict_oldest_expect(master, expect);
if (master_help->expecting[expect->class]
>= p->max_expected) {
ret = -EMFILE;
goto out;
}
}
}
if (net->ct.expect_count >= nf_ct_expect_max) {
net_warn_ratelimited("nf_conntrack: expectation table full\n");
ret = -EMFILE;
}
out:
return ret;
}
int nf_ct_expect_related_report(struct nf_conntrack_expect *expect,
u32 portid, int report)
{
int ret;
spin_lock_bh(&nf_conntrack_expect_lock);
ret = __nf_ct_expect_check(expect);
if (ret < 0)
goto out;
nf_ct_expect_insert(expect);
spin_unlock_bh(&nf_conntrack_expect_lock);
nf_ct_expect_event_report(IPEXP_NEW, expect, portid, report);
return 0;
out:
spin_unlock_bh(&nf_conntrack_expect_lock);
return ret;
}
EXPORT_SYMBOL_GPL(nf_ct_expect_related_report);
void nf_ct_expect_iterate_destroy(bool (*iter)(struct nf_conntrack_expect *e, void *data),
void *data)
{
struct nf_conntrack_expect *exp;
const struct hlist_node *next;
unsigned int i;
spin_lock_bh(&nf_conntrack_expect_lock);
for (i = 0; i < nf_ct_expect_hsize; i++) {
hlist_for_each_entry_safe(exp, next,
&nf_ct_expect_hash[i],
hnode) {
if (iter(exp, data) && del_timer(&exp->timeout)) {
nf_ct_unlink_expect(exp);
nf_ct_expect_put(exp);
}
}
}
spin_unlock_bh(&nf_conntrack_expect_lock);
}
EXPORT_SYMBOL_GPL(nf_ct_expect_iterate_destroy);
void nf_ct_expect_iterate_net(struct net *net,
bool (*iter)(struct nf_conntrack_expect *e, void *data),
void *data,
u32 portid, int report)
{
struct nf_conntrack_expect *exp;
const struct hlist_node *next;
unsigned int i;
spin_lock_bh(&nf_conntrack_expect_lock);
for (i = 0; i < nf_ct_expect_hsize; i++) {
hlist_for_each_entry_safe(exp, next,
&nf_ct_expect_hash[i],
hnode) {
if (!net_eq(nf_ct_exp_net(exp), net))
continue;
if (iter(exp, data) && del_timer(&exp->timeout)) {
nf_ct_unlink_expect_report(exp, portid, report);
nf_ct_expect_put(exp);
}
}
}
spin_unlock_bh(&nf_conntrack_expect_lock);
}
EXPORT_SYMBOL_GPL(nf_ct_expect_iterate_net);
#ifdef CONFIG_NF_CONNTRACK_PROCFS
struct ct_expect_iter_state {
struct seq_net_private p;
unsigned int bucket;
};
static struct hlist_node *ct_expect_get_first(struct seq_file *seq)
{
struct ct_expect_iter_state *st = seq->private;
struct hlist_node *n;
for (st->bucket = 0; st->bucket < nf_ct_expect_hsize; st->bucket++) {
n = rcu_dereference(hlist_first_rcu(&nf_ct_expect_hash[st->bucket]));
if (n)
return n;
}
return NULL;
}
static struct hlist_node *ct_expect_get_next(struct seq_file *seq,
struct hlist_node *head)
{
struct ct_expect_iter_state *st = seq->private;
head = rcu_dereference(hlist_next_rcu(head));
while (head == NULL) {
if (++st->bucket >= nf_ct_expect_hsize)
return NULL;
head = rcu_dereference(hlist_first_rcu(&nf_ct_expect_hash[st->bucket]));
}
return head;
}
static struct hlist_node *ct_expect_get_idx(struct seq_file *seq, loff_t pos)
{
struct hlist_node *head = ct_expect_get_first(seq);
if (head)
while (pos && (head = ct_expect_get_next(seq, head)))
pos--;
return pos ? NULL : head;
}
static void *exp_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU)
{
rcu_read_lock();
return ct_expect_get_idx(seq, *pos);
}
static void *exp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
(*pos)++;
return ct_expect_get_next(seq, v);
}
static void exp_seq_stop(struct seq_file *seq, void *v)
__releases(RCU)
{
rcu_read_unlock();
}
static int exp_seq_show(struct seq_file *s, void *v)
{
struct nf_conntrack_expect *expect;
struct nf_conntrack_helper *helper;
struct hlist_node *n = v;
char *delim = "";
expect = hlist_entry(n, struct nf_conntrack_expect, hnode);
if (expect->timeout.function)
seq_printf(s, "%ld ", timer_pending(&expect->timeout)
? (long)(expect->timeout.expires - jiffies)/HZ : 0);
else
seq_puts(s, "- ");
seq_printf(s, "l3proto = %u proto=%u ",
expect->tuple.src.l3num,
expect->tuple.dst.protonum);
print_tuple(s, &expect->tuple,
__nf_ct_l3proto_find(expect->tuple.src.l3num),
__nf_ct_l4proto_find(expect->tuple.src.l3num,
expect->tuple.dst.protonum));
if (expect->flags & NF_CT_EXPECT_PERMANENT) {
seq_puts(s, "PERMANENT");
delim = ",";
}
if (expect->flags & NF_CT_EXPECT_INACTIVE) {
seq_printf(s, "%sINACTIVE", delim);
delim = ",";
}
if (expect->flags & NF_CT_EXPECT_USERSPACE)
seq_printf(s, "%sUSERSPACE", delim);
helper = rcu_dereference(nfct_help(expect->master)->helper);
if (helper) {
seq_printf(s, "%s%s", expect->flags ? " " : "", helper->name);
if (helper->expect_policy[expect->class].name[0])
seq_printf(s, "/%s",
helper->expect_policy[expect->class].name);
}
seq_putc(s, '\n');
return 0;
}
static const struct seq_operations exp_seq_ops = {
.start = exp_seq_start,
.next = exp_seq_next,
.stop = exp_seq_stop,
.show = exp_seq_show
};
static int exp_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &exp_seq_ops,
sizeof(struct ct_expect_iter_state));
}
static const struct file_operations exp_file_ops = {
.owner = THIS_MODULE,
.open = exp_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
#endif /* CONFIG_NF_CONNTRACK_PROCFS */
static int exp_proc_init(struct net *net)
{
#ifdef CONFIG_NF_CONNTRACK_PROCFS
struct proc_dir_entry *proc;
kuid_t root_uid;
kgid_t root_gid;
proc = proc_create("nf_conntrack_expect", 0440, net->proc_net,
&exp_file_ops);
if (!proc)
return -ENOMEM;
root_uid = make_kuid(net->user_ns, 0);
root_gid = make_kgid(net->user_ns, 0);
if (uid_valid(root_uid) && gid_valid(root_gid))
proc_set_user(proc, root_uid, root_gid);
#endif /* CONFIG_NF_CONNTRACK_PROCFS */
return 0;
}
static void exp_proc_remove(struct net *net)
{
#ifdef CONFIG_NF_CONNTRACK_PROCFS
remove_proc_entry("nf_conntrack_expect", net->proc_net);
#endif /* CONFIG_NF_CONNTRACK_PROCFS */
}
module_param_named(expect_hashsize, nf_ct_expect_hsize, uint, 0400);
int nf_conntrack_expect_pernet_init(struct net *net)
{
net->ct.expect_count = 0;
return exp_proc_init(net);
}
void nf_conntrack_expect_pernet_fini(struct net *net)
{
exp_proc_remove(net);
}
int nf_conntrack_expect_init(void)
{
if (!nf_ct_expect_hsize) {
nf_ct_expect_hsize = nf_conntrack_htable_size / 256;
if (!nf_ct_expect_hsize)
nf_ct_expect_hsize = 1;
}
nf_ct_expect_max = nf_ct_expect_hsize * 4;
nf_ct_expect_cachep = kmem_cache_create("nf_conntrack_expect",
sizeof(struct nf_conntrack_expect),
0, 0, NULL);
if (!nf_ct_expect_cachep)
return -ENOMEM;
nf_ct_expect_hash = nf_ct_alloc_hashtable(&nf_ct_expect_hsize, 0);
if (!nf_ct_expect_hash) {
kmem_cache_destroy(nf_ct_expect_cachep);
return -ENOMEM;
}
return 0;
}
void nf_conntrack_expect_fini(void)
{
rcu_barrier(); /* Wait for call_rcu() before destroy */
kmem_cache_destroy(nf_ct_expect_cachep);
nf_ct_free_hashtable(nf_ct_expect_hash, nf_ct_expect_hsize);
}