alistair23-linux/kernel/sys.c
Linus Torvalds 644473e9c6 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace enhancements from Eric Biederman:
 "This is a course correction for the user namespace, so that we can
  reach an inexpensive, maintainable, and reasonably complete
  implementation.

  Highlights:
   - Config guards make it impossible to enable the user namespace and
     code that has not been converted to be user namespace safe.

   - Use of the new kuid_t type ensures the if you somehow get past the
     config guards the kernel will encounter type errors if you enable
     user namespaces and attempt to compile in code whose permission
     checks have not been updated to be user namespace safe.

   - All uids from child user namespaces are mapped into the initial
     user namespace before they are processed.  Removing the need to add
     an additional check to see if the user namespace of the compared
     uids remains the same.

   - With the user namespaces compiled out the performance is as good or
     better than it is today.

   - For most operations absolutely nothing changes performance or
     operationally with the user namespace enabled.

   - The worst case performance I could come up with was timing 1
     billion cache cold stat operations with the user namespace code
     enabled.  This went from 156s to 164s on my laptop (or 156ns to
     164ns per stat operation).

   - (uid_t)-1 and (gid_t)-1 are reserved as an internal error value.
     Most uid/gid setting system calls treat these value specially
     anyway so attempting to use -1 as a uid would likely cause
     entertaining failures in userspace.

   - If setuid is called with a uid that can not be mapped setuid fails.
     I have looked at sendmail, login, ssh and every other program I
     could think of that would call setuid and they all check for and
     handle the case where setuid fails.

   - If stat or a similar system call is called from a context in which
     we can not map a uid we lie and return overflowuid.  The LFS
     experience suggests not lying and returning an error code might be
     better, but the historical precedent with uids is different and I
     can not think of anything that would break by lying about a uid we
     can't map.

   - Capabilities are localized to the current user namespace making it
     safe to give the initial user in a user namespace all capabilities.

  My git tree covers all of the modifications needed to convert the core
  kernel and enough changes to make a system bootable to runlevel 1."

Fix up trivial conflicts due to nearby independent changes in fs/stat.c

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
  userns:  Silence silly gcc warning.
  cred: use correct cred accessor with regards to rcu read lock
  userns: Convert the move_pages, and migrate_pages permission checks to use uid_eq
  userns: Convert cgroup permission checks to use uid_eq
  userns: Convert tmpfs to use kuid and kgid where appropriate
  userns: Convert sysfs to use kgid/kuid where appropriate
  userns: Convert sysctl permission checks to use kuid and kgids.
  userns: Convert proc to use kuid/kgid where appropriate
  userns: Convert ext4 to user kuid/kgid where appropriate
  userns: Convert ext3 to use kuid/kgid where appropriate
  userns: Convert ext2 to use kuid/kgid where appropriate.
  userns: Convert devpts to use kuid/kgid where appropriate
  userns: Convert binary formats to use kuid/kgid where appropriate
  userns: Add negative depends on entries to avoid building code that is userns unsafe
  userns: signal remove unnecessary map_cred_ns
  userns: Teach inode_capable to understand inodes whose uids map to other namespaces.
  userns: Fail exec for suid and sgid binaries with ids outside our user namespace.
  userns: Convert stat to return values mapped from kuids and kgids
  userns: Convert user specfied uids and gids in chown into kuids and kgid
  userns: Use uid_eq gid_eq helpers when comparing kuids and kgids in the vfs
  ...
2012-05-23 17:42:39 -07:00

2150 lines
50 KiB
C

/*
* linux/kernel/sys.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/utsname.h>
#include <linux/mman.h>
#include <linux/reboot.h>
#include <linux/prctl.h>
#include <linux/highuid.h>
#include <linux/fs.h>
#include <linux/kmod.h>
#include <linux/perf_event.h>
#include <linux/resource.h>
#include <linux/kernel.h>
#include <linux/kexec.h>
#include <linux/workqueue.h>
#include <linux/capability.h>
#include <linux/device.h>
#include <linux/key.h>
#include <linux/times.h>
#include <linux/posix-timers.h>
#include <linux/security.h>
#include <linux/dcookies.h>
#include <linux/suspend.h>
#include <linux/tty.h>
#include <linux/signal.h>
#include <linux/cn_proc.h>
#include <linux/getcpu.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/seccomp.h>
#include <linux/cpu.h>
#include <linux/personality.h>
#include <linux/ptrace.h>
#include <linux/fs_struct.h>
#include <linux/gfp.h>
#include <linux/syscore_ops.h>
#include <linux/version.h>
#include <linux/ctype.h>
#include <linux/compat.h>
#include <linux/syscalls.h>
#include <linux/kprobes.h>
#include <linux/user_namespace.h>
#include <linux/kmsg_dump.h>
/* Move somewhere else to avoid recompiling? */
#include <generated/utsrelease.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/unistd.h>
#ifndef SET_UNALIGN_CTL
# define SET_UNALIGN_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_UNALIGN_CTL
# define GET_UNALIGN_CTL(a,b) (-EINVAL)
#endif
#ifndef SET_FPEMU_CTL
# define SET_FPEMU_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_FPEMU_CTL
# define GET_FPEMU_CTL(a,b) (-EINVAL)
#endif
#ifndef SET_FPEXC_CTL
# define SET_FPEXC_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_FPEXC_CTL
# define GET_FPEXC_CTL(a,b) (-EINVAL)
#endif
#ifndef GET_ENDIAN
# define GET_ENDIAN(a,b) (-EINVAL)
#endif
#ifndef SET_ENDIAN
# define SET_ENDIAN(a,b) (-EINVAL)
#endif
#ifndef GET_TSC_CTL
# define GET_TSC_CTL(a) (-EINVAL)
#endif
#ifndef SET_TSC_CTL
# define SET_TSC_CTL(a) (-EINVAL)
#endif
/*
* this is where the system-wide overflow UID and GID are defined, for
* architectures that now have 32-bit UID/GID but didn't in the past
*/
int overflowuid = DEFAULT_OVERFLOWUID;
int overflowgid = DEFAULT_OVERFLOWGID;
EXPORT_SYMBOL(overflowuid);
EXPORT_SYMBOL(overflowgid);
/*
* the same as above, but for filesystems which can only store a 16-bit
* UID and GID. as such, this is needed on all architectures
*/
int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
EXPORT_SYMBOL(fs_overflowuid);
EXPORT_SYMBOL(fs_overflowgid);
/*
* this indicates whether you can reboot with ctrl-alt-del: the default is yes
*/
int C_A_D = 1;
struct pid *cad_pid;
EXPORT_SYMBOL(cad_pid);
/*
* If set, this is used for preparing the system to power off.
*/
void (*pm_power_off_prepare)(void);
/*
* Returns true if current's euid is same as p's uid or euid,
* or has CAP_SYS_NICE to p's user_ns.
*
* Called with rcu_read_lock, creds are safe
*/
static bool set_one_prio_perm(struct task_struct *p)
{
const struct cred *cred = current_cred(), *pcred = __task_cred(p);
if (uid_eq(pcred->uid, cred->euid) ||
uid_eq(pcred->euid, cred->euid))
return true;
if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
return true;
return false;
}
/*
* set the priority of a task
* - the caller must hold the RCU read lock
*/
static int set_one_prio(struct task_struct *p, int niceval, int error)
{
int no_nice;
if (!set_one_prio_perm(p)) {
error = -EPERM;
goto out;
}
if (niceval < task_nice(p) && !can_nice(p, niceval)) {
error = -EACCES;
goto out;
}
no_nice = security_task_setnice(p, niceval);
if (no_nice) {
error = no_nice;
goto out;
}
if (error == -ESRCH)
error = 0;
set_user_nice(p, niceval);
out:
return error;
}
SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
{
struct task_struct *g, *p;
struct user_struct *user;
const struct cred *cred = current_cred();
int error = -EINVAL;
struct pid *pgrp;
kuid_t uid;
if (which > PRIO_USER || which < PRIO_PROCESS)
goto out;
/* normalize: avoid signed division (rounding problems) */
error = -ESRCH;
if (niceval < -20)
niceval = -20;
if (niceval > 19)
niceval = 19;
rcu_read_lock();
read_lock(&tasklist_lock);
switch (which) {
case PRIO_PROCESS:
if (who)
p = find_task_by_vpid(who);
else
p = current;
if (p)
error = set_one_prio(p, niceval, error);
break;
case PRIO_PGRP:
if (who)
pgrp = find_vpid(who);
else
pgrp = task_pgrp(current);
do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
error = set_one_prio(p, niceval, error);
} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
break;
case PRIO_USER:
uid = make_kuid(cred->user_ns, who);
user = cred->user;
if (!who)
uid = cred->uid;
else if (!uid_eq(uid, cred->uid) &&
!(user = find_user(uid)))
goto out_unlock; /* No processes for this user */
do_each_thread(g, p) {
if (uid_eq(task_uid(p), uid))
error = set_one_prio(p, niceval, error);
} while_each_thread(g, p);
if (!uid_eq(uid, cred->uid))
free_uid(user); /* For find_user() */
break;
}
out_unlock:
read_unlock(&tasklist_lock);
rcu_read_unlock();
out:
return error;
}
/*
* Ugh. To avoid negative return values, "getpriority()" will
* not return the normal nice-value, but a negated value that
* has been offset by 20 (ie it returns 40..1 instead of -20..19)
* to stay compatible.
*/
SYSCALL_DEFINE2(getpriority, int, which, int, who)
{
struct task_struct *g, *p;
struct user_struct *user;
const struct cred *cred = current_cred();
long niceval, retval = -ESRCH;
struct pid *pgrp;
kuid_t uid;
if (which > PRIO_USER || which < PRIO_PROCESS)
return -EINVAL;
rcu_read_lock();
read_lock(&tasklist_lock);
switch (which) {
case PRIO_PROCESS:
if (who)
p = find_task_by_vpid(who);
else
p = current;
if (p) {
niceval = 20 - task_nice(p);
if (niceval > retval)
retval = niceval;
}
break;
case PRIO_PGRP:
if (who)
pgrp = find_vpid(who);
else
pgrp = task_pgrp(current);
do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
niceval = 20 - task_nice(p);
if (niceval > retval)
retval = niceval;
} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
break;
case PRIO_USER:
uid = make_kuid(cred->user_ns, who);
user = cred->user;
if (!who)
uid = cred->uid;
else if (!uid_eq(uid, cred->uid) &&
!(user = find_user(uid)))
goto out_unlock; /* No processes for this user */
do_each_thread(g, p) {
if (uid_eq(task_uid(p), uid)) {
niceval = 20 - task_nice(p);
if (niceval > retval)
retval = niceval;
}
} while_each_thread(g, p);
if (!uid_eq(uid, cred->uid))
free_uid(user); /* for find_user() */
break;
}
out_unlock:
read_unlock(&tasklist_lock);
rcu_read_unlock();
return retval;
}
/**
* emergency_restart - reboot the system
*
* Without shutting down any hardware or taking any locks
* reboot the system. This is called when we know we are in
* trouble so this is our best effort to reboot. This is
* safe to call in interrupt context.
*/
void emergency_restart(void)
{
kmsg_dump(KMSG_DUMP_EMERG);
machine_emergency_restart();
}
EXPORT_SYMBOL_GPL(emergency_restart);
void kernel_restart_prepare(char *cmd)
{
blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
system_state = SYSTEM_RESTART;
usermodehelper_disable();
device_shutdown();
syscore_shutdown();
}
/**
* register_reboot_notifier - Register function to be called at reboot time
* @nb: Info about notifier function to be called
*
* Registers a function with the list of functions
* to be called at reboot time.
*
* Currently always returns zero, as blocking_notifier_chain_register()
* always returns zero.
*/
int register_reboot_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&reboot_notifier_list, nb);
}
EXPORT_SYMBOL(register_reboot_notifier);
/**
* unregister_reboot_notifier - Unregister previously registered reboot notifier
* @nb: Hook to be unregistered
*
* Unregisters a previously registered reboot
* notifier function.
*
* Returns zero on success, or %-ENOENT on failure.
*/
int unregister_reboot_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
}
EXPORT_SYMBOL(unregister_reboot_notifier);
/**
* kernel_restart - reboot the system
* @cmd: pointer to buffer containing command to execute for restart
* or %NULL
*
* Shutdown everything and perform a clean reboot.
* This is not safe to call in interrupt context.
*/
void kernel_restart(char *cmd)
{
kernel_restart_prepare(cmd);
if (!cmd)
printk(KERN_EMERG "Restarting system.\n");
else
printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
kmsg_dump(KMSG_DUMP_RESTART);
machine_restart(cmd);
}
EXPORT_SYMBOL_GPL(kernel_restart);
static void kernel_shutdown_prepare(enum system_states state)
{
blocking_notifier_call_chain(&reboot_notifier_list,
(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
system_state = state;
usermodehelper_disable();
device_shutdown();
}
/**
* kernel_halt - halt the system
*
* Shutdown everything and perform a clean system halt.
*/
void kernel_halt(void)
{
kernel_shutdown_prepare(SYSTEM_HALT);
syscore_shutdown();
printk(KERN_EMERG "System halted.\n");
kmsg_dump(KMSG_DUMP_HALT);
machine_halt();
}
EXPORT_SYMBOL_GPL(kernel_halt);
/**
* kernel_power_off - power_off the system
*
* Shutdown everything and perform a clean system power_off.
*/
void kernel_power_off(void)
{
kernel_shutdown_prepare(SYSTEM_POWER_OFF);
if (pm_power_off_prepare)
pm_power_off_prepare();
disable_nonboot_cpus();
syscore_shutdown();
printk(KERN_EMERG "Power down.\n");
kmsg_dump(KMSG_DUMP_POWEROFF);
machine_power_off();
}
EXPORT_SYMBOL_GPL(kernel_power_off);
static DEFINE_MUTEX(reboot_mutex);
/*
* Reboot system call: for obvious reasons only root may call it,
* and even root needs to set up some magic numbers in the registers
* so that some mistake won't make this reboot the whole machine.
* You can also set the meaning of the ctrl-alt-del-key here.
*
* reboot doesn't sync: do that yourself before calling this.
*/
SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
void __user *, arg)
{
char buffer[256];
int ret = 0;
/* We only trust the superuser with rebooting the system. */
if (!capable(CAP_SYS_BOOT))
return -EPERM;
/* For safety, we require "magic" arguments. */
if (magic1 != LINUX_REBOOT_MAGIC1 ||
(magic2 != LINUX_REBOOT_MAGIC2 &&
magic2 != LINUX_REBOOT_MAGIC2A &&
magic2 != LINUX_REBOOT_MAGIC2B &&
magic2 != LINUX_REBOOT_MAGIC2C))
return -EINVAL;
/*
* If pid namespaces are enabled and the current task is in a child
* pid_namespace, the command is handled by reboot_pid_ns() which will
* call do_exit().
*/
ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
if (ret)
return ret;
/* Instead of trying to make the power_off code look like
* halt when pm_power_off is not set do it the easy way.
*/
if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
cmd = LINUX_REBOOT_CMD_HALT;
mutex_lock(&reboot_mutex);
switch (cmd) {
case LINUX_REBOOT_CMD_RESTART:
kernel_restart(NULL);
break;
case LINUX_REBOOT_CMD_CAD_ON:
C_A_D = 1;
break;
case LINUX_REBOOT_CMD_CAD_OFF:
C_A_D = 0;
break;
case LINUX_REBOOT_CMD_HALT:
kernel_halt();
do_exit(0);
panic("cannot halt");
case LINUX_REBOOT_CMD_POWER_OFF:
kernel_power_off();
do_exit(0);
break;
case LINUX_REBOOT_CMD_RESTART2:
if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
ret = -EFAULT;
break;
}
buffer[sizeof(buffer) - 1] = '\0';
kernel_restart(buffer);
break;
#ifdef CONFIG_KEXEC
case LINUX_REBOOT_CMD_KEXEC:
ret = kernel_kexec();
break;
#endif
#ifdef CONFIG_HIBERNATION
case LINUX_REBOOT_CMD_SW_SUSPEND:
ret = hibernate();
break;
#endif
default:
ret = -EINVAL;
break;
}
mutex_unlock(&reboot_mutex);
return ret;
}
static void deferred_cad(struct work_struct *dummy)
{
kernel_restart(NULL);
}
/*
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
* As it's called within an interrupt, it may NOT sync: the only choice
* is whether to reboot at once, or just ignore the ctrl-alt-del.
*/
void ctrl_alt_del(void)
{
static DECLARE_WORK(cad_work, deferred_cad);
if (C_A_D)
schedule_work(&cad_work);
else
kill_cad_pid(SIGINT, 1);
}
/*
* Unprivileged users may change the real gid to the effective gid
* or vice versa. (BSD-style)
*
* If you set the real gid at all, or set the effective gid to a value not
* equal to the real gid, then the saved gid is set to the new effective gid.
*
* This makes it possible for a setgid program to completely drop its
* privileges, which is often a useful assertion to make when you are doing
* a security audit over a program.
*
* The general idea is that a program which uses just setregid() will be
* 100% compatible with BSD. A program which uses just setgid() will be
* 100% compatible with POSIX with saved IDs.
*
* SMP: There are not races, the GIDs are checked only by filesystem
* operations (as far as semantic preservation is concerned).
*/
SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kgid_t krgid, kegid;
krgid = make_kgid(ns, rgid);
kegid = make_kgid(ns, egid);
if ((rgid != (gid_t) -1) && !gid_valid(krgid))
return -EINVAL;
if ((egid != (gid_t) -1) && !gid_valid(kegid))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
retval = -EPERM;
if (rgid != (gid_t) -1) {
if (gid_eq(old->gid, krgid) ||
gid_eq(old->egid, krgid) ||
nsown_capable(CAP_SETGID))
new->gid = krgid;
else
goto error;
}
if (egid != (gid_t) -1) {
if (gid_eq(old->gid, kegid) ||
gid_eq(old->egid, kegid) ||
gid_eq(old->sgid, kegid) ||
nsown_capable(CAP_SETGID))
new->egid = kegid;
else
goto error;
}
if (rgid != (gid_t) -1 ||
(egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
new->sgid = new->egid;
new->fsgid = new->egid;
return commit_creds(new);
error:
abort_creds(new);
return retval;
}
/*
* setgid() is implemented like SysV w/ SAVED_IDS
*
* SMP: Same implicit races as above.
*/
SYSCALL_DEFINE1(setgid, gid_t, gid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kgid_t kgid;
kgid = make_kgid(ns, gid);
if (!gid_valid(kgid))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
retval = -EPERM;
if (nsown_capable(CAP_SETGID))
new->gid = new->egid = new->sgid = new->fsgid = kgid;
else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
new->egid = new->fsgid = kgid;
else
goto error;
return commit_creds(new);
error:
abort_creds(new);
return retval;
}
/*
* change the user struct in a credentials set to match the new UID
*/
static int set_user(struct cred *new)
{
struct user_struct *new_user;
new_user = alloc_uid(new->uid);
if (!new_user)
return -EAGAIN;
/*
* We don't fail in case of NPROC limit excess here because too many
* poorly written programs don't check set*uid() return code, assuming
* it never fails if called by root. We may still enforce NPROC limit
* for programs doing set*uid()+execve() by harmlessly deferring the
* failure to the execve() stage.
*/
if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
new_user != INIT_USER)
current->flags |= PF_NPROC_EXCEEDED;
else
current->flags &= ~PF_NPROC_EXCEEDED;
free_uid(new->user);
new->user = new_user;
return 0;
}
/*
* Unprivileged users may change the real uid to the effective uid
* or vice versa. (BSD-style)
*
* If you set the real uid at all, or set the effective uid to a value not
* equal to the real uid, then the saved uid is set to the new effective uid.
*
* This makes it possible for a setuid program to completely drop its
* privileges, which is often a useful assertion to make when you are doing
* a security audit over a program.
*
* The general idea is that a program which uses just setreuid() will be
* 100% compatible with BSD. A program which uses just setuid() will be
* 100% compatible with POSIX with saved IDs.
*/
SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kuid_t kruid, keuid;
kruid = make_kuid(ns, ruid);
keuid = make_kuid(ns, euid);
if ((ruid != (uid_t) -1) && !uid_valid(kruid))
return -EINVAL;
if ((euid != (uid_t) -1) && !uid_valid(keuid))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
retval = -EPERM;
if (ruid != (uid_t) -1) {
new->uid = kruid;
if (!uid_eq(old->uid, kruid) &&
!uid_eq(old->euid, kruid) &&
!nsown_capable(CAP_SETUID))
goto error;
}
if (euid != (uid_t) -1) {
new->euid = keuid;
if (!uid_eq(old->uid, keuid) &&
!uid_eq(old->euid, keuid) &&
!uid_eq(old->suid, keuid) &&
!nsown_capable(CAP_SETUID))
goto error;
}
if (!uid_eq(new->uid, old->uid)) {
retval = set_user(new);
if (retval < 0)
goto error;
}
if (ruid != (uid_t) -1 ||
(euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
new->suid = new->euid;
new->fsuid = new->euid;
retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
if (retval < 0)
goto error;
return commit_creds(new);
error:
abort_creds(new);
return retval;
}
/*
* setuid() is implemented like SysV with SAVED_IDS
*
* Note that SAVED_ID's is deficient in that a setuid root program
* like sendmail, for example, cannot set its uid to be a normal
* user and then switch back, because if you're root, setuid() sets
* the saved uid too. If you don't like this, blame the bright people
* in the POSIX committee and/or USG. Note that the BSD-style setreuid()
* will allow a root program to temporarily drop privileges and be able to
* regain them by swapping the real and effective uid.
*/
SYSCALL_DEFINE1(setuid, uid_t, uid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kuid_t kuid;
kuid = make_kuid(ns, uid);
if (!uid_valid(kuid))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
retval = -EPERM;
if (nsown_capable(CAP_SETUID)) {
new->suid = new->uid = kuid;
if (!uid_eq(kuid, old->uid)) {
retval = set_user(new);
if (retval < 0)
goto error;
}
} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
goto error;
}
new->fsuid = new->euid = kuid;
retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
if (retval < 0)
goto error;
return commit_creds(new);
error:
abort_creds(new);
return retval;
}
/*
* This function implements a generic ability to update ruid, euid,
* and suid. This allows you to implement the 4.4 compatible seteuid().
*/
SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kuid_t kruid, keuid, ksuid;
kruid = make_kuid(ns, ruid);
keuid = make_kuid(ns, euid);
ksuid = make_kuid(ns, suid);
if ((ruid != (uid_t) -1) && !uid_valid(kruid))
return -EINVAL;
if ((euid != (uid_t) -1) && !uid_valid(keuid))
return -EINVAL;
if ((suid != (uid_t) -1) && !uid_valid(ksuid))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
retval = -EPERM;
if (!nsown_capable(CAP_SETUID)) {
if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
!uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
goto error;
if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
!uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
goto error;
if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
!uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
goto error;
}
if (ruid != (uid_t) -1) {
new->uid = kruid;
if (!uid_eq(kruid, old->uid)) {
retval = set_user(new);
if (retval < 0)
goto error;
}
}
if (euid != (uid_t) -1)
new->euid = keuid;
if (suid != (uid_t) -1)
new->suid = ksuid;
new->fsuid = new->euid;
retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
if (retval < 0)
goto error;
return commit_creds(new);
error:
abort_creds(new);
return retval;
}
SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
{
const struct cred *cred = current_cred();
int retval;
uid_t ruid, euid, suid;
ruid = from_kuid_munged(cred->user_ns, cred->uid);
euid = from_kuid_munged(cred->user_ns, cred->euid);
suid = from_kuid_munged(cred->user_ns, cred->suid);
if (!(retval = put_user(ruid, ruidp)) &&
!(retval = put_user(euid, euidp)))
retval = put_user(suid, suidp);
return retval;
}
/*
* Same as above, but for rgid, egid, sgid.
*/
SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
{
struct user_namespace *ns = current_user_ns();
const struct cred *old;
struct cred *new;
int retval;
kgid_t krgid, kegid, ksgid;
krgid = make_kgid(ns, rgid);
kegid = make_kgid(ns, egid);
ksgid = make_kgid(ns, sgid);
if ((rgid != (gid_t) -1) && !gid_valid(krgid))
return -EINVAL;
if ((egid != (gid_t) -1) && !gid_valid(kegid))
return -EINVAL;
if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
return -EINVAL;
new = prepare_creds();
if (!new)
return -ENOMEM;
old = current_cred();
retval = -EPERM;
if (!nsown_capable(CAP_SETGID)) {
if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
!gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
goto error;
if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
!gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
goto error;
if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
!gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
goto error;
}
if (rgid != (gid_t) -1)
new->gid = krgid;
if (egid != (gid_t) -1)
new->egid = kegid;
if (sgid != (gid_t) -1)
new->sgid = ksgid;
new->fsgid = new->egid;
return commit_creds(new);
error:
abort_creds(new);
return retval;
}
SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
{
const struct cred *cred = current_cred();
int retval;
gid_t rgid, egid, sgid;
rgid = from_kgid_munged(cred->user_ns, cred->gid);
egid = from_kgid_munged(cred->user_ns, cred->egid);
sgid = from_kgid_munged(cred->user_ns, cred->sgid);
if (!(retval = put_user(rgid, rgidp)) &&
!(retval = put_user(egid, egidp)))
retval = put_user(sgid, sgidp);
return retval;
}
/*
* "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
* is used for "access()" and for the NFS daemon (letting nfsd stay at
* whatever uid it wants to). It normally shadows "euid", except when
* explicitly set by setfsuid() or for access..
*/
SYSCALL_DEFINE1(setfsuid, uid_t, uid)
{
const struct cred *old;
struct cred *new;
uid_t old_fsuid;
kuid_t kuid;
old = current_cred();
old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
kuid = make_kuid(old->user_ns, uid);
if (!uid_valid(kuid))
return old_fsuid;
new = prepare_creds();
if (!new)
return old_fsuid;
if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
nsown_capable(CAP_SETUID)) {
if (!uid_eq(kuid, old->fsuid)) {
new->fsuid = kuid;
if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
goto change_okay;
}
}
abort_creds(new);
return old_fsuid;
change_okay:
commit_creds(new);
return old_fsuid;
}
/*
* Samma på svenska..
*/
SYSCALL_DEFINE1(setfsgid, gid_t, gid)
{
const struct cred *old;
struct cred *new;
gid_t old_fsgid;
kgid_t kgid;
old = current_cred();
old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
kgid = make_kgid(old->user_ns, gid);
if (!gid_valid(kgid))
return old_fsgid;
new = prepare_creds();
if (!new)
return old_fsgid;
if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
nsown_capable(CAP_SETGID)) {
if (!gid_eq(kgid, old->fsgid)) {
new->fsgid = kgid;
goto change_okay;
}
}
abort_creds(new);
return old_fsgid;
change_okay:
commit_creds(new);
return old_fsgid;
}
void do_sys_times(struct tms *tms)
{
cputime_t tgutime, tgstime, cutime, cstime;
spin_lock_irq(&current->sighand->siglock);
thread_group_times(current, &tgutime, &tgstime);
cutime = current->signal->cutime;
cstime = current->signal->cstime;
spin_unlock_irq(&current->sighand->siglock);
tms->tms_utime = cputime_to_clock_t(tgutime);
tms->tms_stime = cputime_to_clock_t(tgstime);
tms->tms_cutime = cputime_to_clock_t(cutime);
tms->tms_cstime = cputime_to_clock_t(cstime);
}
SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
{
if (tbuf) {
struct tms tmp;
do_sys_times(&tmp);
if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
return -EFAULT;
}
force_successful_syscall_return();
return (long) jiffies_64_to_clock_t(get_jiffies_64());
}
/*
* This needs some heavy checking ...
* I just haven't the stomach for it. I also don't fully
* understand sessions/pgrp etc. Let somebody who does explain it.
*
* OK, I think I have the protection semantics right.... this is really
* only important on a multi-user system anyway, to make sure one user
* can't send a signal to a process owned by another. -TYT, 12/12/91
*
* Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
* LBT 04.03.94
*/
SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
{
struct task_struct *p;
struct task_struct *group_leader = current->group_leader;
struct pid *pgrp;
int err;
if (!pid)
pid = task_pid_vnr(group_leader);
if (!pgid)
pgid = pid;
if (pgid < 0)
return -EINVAL;
rcu_read_lock();
/* From this point forward we keep holding onto the tasklist lock
* so that our parent does not change from under us. -DaveM
*/
write_lock_irq(&tasklist_lock);
err = -ESRCH;
p = find_task_by_vpid(pid);
if (!p)
goto out;
err = -EINVAL;
if (!thread_group_leader(p))
goto out;
if (same_thread_group(p->real_parent, group_leader)) {
err = -EPERM;
if (task_session(p) != task_session(group_leader))
goto out;
err = -EACCES;
if (p->did_exec)
goto out;
} else {
err = -ESRCH;
if (p != group_leader)
goto out;
}
err = -EPERM;
if (p->signal->leader)
goto out;
pgrp = task_pid(p);
if (pgid != pid) {
struct task_struct *g;
pgrp = find_vpid(pgid);
g = pid_task(pgrp, PIDTYPE_PGID);
if (!g || task_session(g) != task_session(group_leader))
goto out;
}
err = security_task_setpgid(p, pgid);
if (err)
goto out;
if (task_pgrp(p) != pgrp)
change_pid(p, PIDTYPE_PGID, pgrp);
err = 0;
out:
/* All paths lead to here, thus we are safe. -DaveM */
write_unlock_irq(&tasklist_lock);
rcu_read_unlock();
return err;
}
SYSCALL_DEFINE1(getpgid, pid_t, pid)
{
struct task_struct *p;
struct pid *grp;
int retval;
rcu_read_lock();
if (!pid)
grp = task_pgrp(current);
else {
retval = -ESRCH;
p = find_task_by_vpid(pid);
if (!p)
goto out;
grp = task_pgrp(p);
if (!grp)
goto out;
retval = security_task_getpgid(p);
if (retval)
goto out;
}
retval = pid_vnr(grp);
out:
rcu_read_unlock();
return retval;
}
#ifdef __ARCH_WANT_SYS_GETPGRP
SYSCALL_DEFINE0(getpgrp)
{
return sys_getpgid(0);
}
#endif
SYSCALL_DEFINE1(getsid, pid_t, pid)
{
struct task_struct *p;
struct pid *sid;
int retval;
rcu_read_lock();
if (!pid)
sid = task_session(current);
else {
retval = -ESRCH;
p = find_task_by_vpid(pid);
if (!p)
goto out;
sid = task_session(p);
if (!sid)
goto out;
retval = security_task_getsid(p);
if (retval)
goto out;
}
retval = pid_vnr(sid);
out:
rcu_read_unlock();
return retval;
}
SYSCALL_DEFINE0(setsid)
{
struct task_struct *group_leader = current->group_leader;
struct pid *sid = task_pid(group_leader);
pid_t session = pid_vnr(sid);
int err = -EPERM;
write_lock_irq(&tasklist_lock);
/* Fail if I am already a session leader */
if (group_leader->signal->leader)
goto out;
/* Fail if a process group id already exists that equals the
* proposed session id.
*/
if (pid_task(sid, PIDTYPE_PGID))
goto out;
group_leader->signal->leader = 1;
__set_special_pids(sid);
proc_clear_tty(group_leader);
err = session;
out:
write_unlock_irq(&tasklist_lock);
if (err > 0) {
proc_sid_connector(group_leader);
sched_autogroup_create_attach(group_leader);
}
return err;
}
DECLARE_RWSEM(uts_sem);
#ifdef COMPAT_UTS_MACHINE
#define override_architecture(name) \
(personality(current->personality) == PER_LINUX32 && \
copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
sizeof(COMPAT_UTS_MACHINE)))
#else
#define override_architecture(name) 0
#endif
/*
* Work around broken programs that cannot handle "Linux 3.0".
* Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
*/
static int override_release(char __user *release, int len)
{
int ret = 0;
char buf[65];
if (current->personality & UNAME26) {
char *rest = UTS_RELEASE;
int ndots = 0;
unsigned v;
while (*rest) {
if (*rest == '.' && ++ndots >= 3)
break;
if (!isdigit(*rest) && *rest != '.')
break;
rest++;
}
v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
snprintf(buf, len, "2.6.%u%s", v, rest);
ret = copy_to_user(release, buf, len);
}
return ret;
}
SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
{
int errno = 0;
down_read(&uts_sem);
if (copy_to_user(name, utsname(), sizeof *name))
errno = -EFAULT;
up_read(&uts_sem);
if (!errno && override_release(name->release, sizeof(name->release)))
errno = -EFAULT;
if (!errno && override_architecture(name))
errno = -EFAULT;
return errno;
}
#ifdef __ARCH_WANT_SYS_OLD_UNAME
/*
* Old cruft
*/
SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
{
int error = 0;
if (!name)
return -EFAULT;
down_read(&uts_sem);
if (copy_to_user(name, utsname(), sizeof(*name)))
error = -EFAULT;
up_read(&uts_sem);
if (!error && override_release(name->release, sizeof(name->release)))
error = -EFAULT;
if (!error && override_architecture(name))
error = -EFAULT;
return error;
}
SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
{
int error;
if (!name)
return -EFAULT;
if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
return -EFAULT;
down_read(&uts_sem);
error = __copy_to_user(&name->sysname, &utsname()->sysname,
__OLD_UTS_LEN);
error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
error |= __copy_to_user(&name->nodename, &utsname()->nodename,
__OLD_UTS_LEN);
error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
error |= __copy_to_user(&name->release, &utsname()->release,
__OLD_UTS_LEN);
error |= __put_user(0, name->release + __OLD_UTS_LEN);
error |= __copy_to_user(&name->version, &utsname()->version,
__OLD_UTS_LEN);
error |= __put_user(0, name->version + __OLD_UTS_LEN);
error |= __copy_to_user(&name->machine, &utsname()->machine,
__OLD_UTS_LEN);
error |= __put_user(0, name->machine + __OLD_UTS_LEN);
up_read(&uts_sem);
if (!error && override_architecture(name))
error = -EFAULT;
if (!error && override_release(name->release, sizeof(name->release)))
error = -EFAULT;
return error ? -EFAULT : 0;
}
#endif
SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
{
int errno;
char tmp[__NEW_UTS_LEN];
if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
return -EPERM;
if (len < 0 || len > __NEW_UTS_LEN)
return -EINVAL;
down_write(&uts_sem);
errno = -EFAULT;
if (!copy_from_user(tmp, name, len)) {
struct new_utsname *u = utsname();
memcpy(u->nodename, tmp, len);
memset(u->nodename + len, 0, sizeof(u->nodename) - len);
errno = 0;
}
uts_proc_notify(UTS_PROC_HOSTNAME);
up_write(&uts_sem);
return errno;
}
#ifdef __ARCH_WANT_SYS_GETHOSTNAME
SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
{
int i, errno;
struct new_utsname *u;
if (len < 0)
return -EINVAL;
down_read(&uts_sem);
u = utsname();
i = 1 + strlen(u->nodename);
if (i > len)
i = len;
errno = 0;
if (copy_to_user(name, u->nodename, i))
errno = -EFAULT;
up_read(&uts_sem);
return errno;
}
#endif
/*
* Only setdomainname; getdomainname can be implemented by calling
* uname()
*/
SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
{
int errno;
char tmp[__NEW_UTS_LEN];
if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
return -EPERM;
if (len < 0 || len > __NEW_UTS_LEN)
return -EINVAL;
down_write(&uts_sem);
errno = -EFAULT;
if (!copy_from_user(tmp, name, len)) {
struct new_utsname *u = utsname();
memcpy(u->domainname, tmp, len);
memset(u->domainname + len, 0, sizeof(u->domainname) - len);
errno = 0;
}
uts_proc_notify(UTS_PROC_DOMAINNAME);
up_write(&uts_sem);
return errno;
}
SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
{
struct rlimit value;
int ret;
ret = do_prlimit(current, resource, NULL, &value);
if (!ret)
ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
return ret;
}
#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
/*
* Back compatibility for getrlimit. Needed for some apps.
*/
SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
struct rlimit __user *, rlim)
{
struct rlimit x;
if (resource >= RLIM_NLIMITS)
return -EINVAL;
task_lock(current->group_leader);
x = current->signal->rlim[resource];
task_unlock(current->group_leader);
if (x.rlim_cur > 0x7FFFFFFF)
x.rlim_cur = 0x7FFFFFFF;
if (x.rlim_max > 0x7FFFFFFF)
x.rlim_max = 0x7FFFFFFF;
return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
}
#endif
static inline bool rlim64_is_infinity(__u64 rlim64)
{
#if BITS_PER_LONG < 64
return rlim64 >= ULONG_MAX;
#else
return rlim64 == RLIM64_INFINITY;
#endif
}
static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
{
if (rlim->rlim_cur == RLIM_INFINITY)
rlim64->rlim_cur = RLIM64_INFINITY;
else
rlim64->rlim_cur = rlim->rlim_cur;
if (rlim->rlim_max == RLIM_INFINITY)
rlim64->rlim_max = RLIM64_INFINITY;
else
rlim64->rlim_max = rlim->rlim_max;
}
static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
{
if (rlim64_is_infinity(rlim64->rlim_cur))
rlim->rlim_cur = RLIM_INFINITY;
else
rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
if (rlim64_is_infinity(rlim64->rlim_max))
rlim->rlim_max = RLIM_INFINITY;
else
rlim->rlim_max = (unsigned long)rlim64->rlim_max;
}
/* make sure you are allowed to change @tsk limits before calling this */
int do_prlimit(struct task_struct *tsk, unsigned int resource,
struct rlimit *new_rlim, struct rlimit *old_rlim)
{
struct rlimit *rlim;
int retval = 0;
if (resource >= RLIM_NLIMITS)
return -EINVAL;
if (new_rlim) {
if (new_rlim->rlim_cur > new_rlim->rlim_max)
return -EINVAL;
if (resource == RLIMIT_NOFILE &&
new_rlim->rlim_max > sysctl_nr_open)
return -EPERM;
}
/* protect tsk->signal and tsk->sighand from disappearing */
read_lock(&tasklist_lock);
if (!tsk->sighand) {
retval = -ESRCH;
goto out;
}
rlim = tsk->signal->rlim + resource;
task_lock(tsk->group_leader);
if (new_rlim) {
/* Keep the capable check against init_user_ns until
cgroups can contain all limits */
if (new_rlim->rlim_max > rlim->rlim_max &&
!capable(CAP_SYS_RESOURCE))
retval = -EPERM;
if (!retval)
retval = security_task_setrlimit(tsk->group_leader,
resource, new_rlim);
if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
/*
* The caller is asking for an immediate RLIMIT_CPU
* expiry. But we use the zero value to mean "it was
* never set". So let's cheat and make it one second
* instead
*/
new_rlim->rlim_cur = 1;
}
}
if (!retval) {
if (old_rlim)
*old_rlim = *rlim;
if (new_rlim)
*rlim = *new_rlim;
}
task_unlock(tsk->group_leader);
/*
* RLIMIT_CPU handling. Note that the kernel fails to return an error
* code if it rejected the user's attempt to set RLIMIT_CPU. This is a
* very long-standing error, and fixing it now risks breakage of
* applications, so we live with it
*/
if (!retval && new_rlim && resource == RLIMIT_CPU &&
new_rlim->rlim_cur != RLIM_INFINITY)
update_rlimit_cpu(tsk, new_rlim->rlim_cur);
out:
read_unlock(&tasklist_lock);
return retval;
}
/* rcu lock must be held */
static int check_prlimit_permission(struct task_struct *task)
{
const struct cred *cred = current_cred(), *tcred;
if (current == task)
return 0;
tcred = __task_cred(task);
if (uid_eq(cred->uid, tcred->euid) &&
uid_eq(cred->uid, tcred->suid) &&
uid_eq(cred->uid, tcred->uid) &&
gid_eq(cred->gid, tcred->egid) &&
gid_eq(cred->gid, tcred->sgid) &&
gid_eq(cred->gid, tcred->gid))
return 0;
if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
return 0;
return -EPERM;
}
SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
const struct rlimit64 __user *, new_rlim,
struct rlimit64 __user *, old_rlim)
{
struct rlimit64 old64, new64;
struct rlimit old, new;
struct task_struct *tsk;
int ret;
if (new_rlim) {
if (copy_from_user(&new64, new_rlim, sizeof(new64)))
return -EFAULT;
rlim64_to_rlim(&new64, &new);
}
rcu_read_lock();
tsk = pid ? find_task_by_vpid(pid) : current;
if (!tsk) {
rcu_read_unlock();
return -ESRCH;
}
ret = check_prlimit_permission(tsk);
if (ret) {
rcu_read_unlock();
return ret;
}
get_task_struct(tsk);
rcu_read_unlock();
ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
old_rlim ? &old : NULL);
if (!ret && old_rlim) {
rlim_to_rlim64(&old, &old64);
if (copy_to_user(old_rlim, &old64, sizeof(old64)))
ret = -EFAULT;
}
put_task_struct(tsk);
return ret;
}
SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
{
struct rlimit new_rlim;
if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
return -EFAULT;
return do_prlimit(current, resource, &new_rlim, NULL);
}
/*
* It would make sense to put struct rusage in the task_struct,
* except that would make the task_struct be *really big*. After
* task_struct gets moved into malloc'ed memory, it would
* make sense to do this. It will make moving the rest of the information
* a lot simpler! (Which we're not doing right now because we're not
* measuring them yet).
*
* When sampling multiple threads for RUSAGE_SELF, under SMP we might have
* races with threads incrementing their own counters. But since word
* reads are atomic, we either get new values or old values and we don't
* care which for the sums. We always take the siglock to protect reading
* the c* fields from p->signal from races with exit.c updating those
* fields when reaping, so a sample either gets all the additions of a
* given child after it's reaped, or none so this sample is before reaping.
*
* Locking:
* We need to take the siglock for CHILDEREN, SELF and BOTH
* for the cases current multithreaded, non-current single threaded
* non-current multithreaded. Thread traversal is now safe with
* the siglock held.
* Strictly speaking, we donot need to take the siglock if we are current and
* single threaded, as no one else can take our signal_struct away, no one
* else can reap the children to update signal->c* counters, and no one else
* can race with the signal-> fields. If we do not take any lock, the
* signal-> fields could be read out of order while another thread was just
* exiting. So we should place a read memory barrier when we avoid the lock.
* On the writer side, write memory barrier is implied in __exit_signal
* as __exit_signal releases the siglock spinlock after updating the signal->
* fields. But we don't do this yet to keep things simple.
*
*/
static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
{
r->ru_nvcsw += t->nvcsw;
r->ru_nivcsw += t->nivcsw;
r->ru_minflt += t->min_flt;
r->ru_majflt += t->maj_flt;
r->ru_inblock += task_io_get_inblock(t);
r->ru_oublock += task_io_get_oublock(t);
}
static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
{
struct task_struct *t;
unsigned long flags;
cputime_t tgutime, tgstime, utime, stime;
unsigned long maxrss = 0;
memset((char *) r, 0, sizeof *r);
utime = stime = 0;
if (who == RUSAGE_THREAD) {
task_times(current, &utime, &stime);
accumulate_thread_rusage(p, r);
maxrss = p->signal->maxrss;
goto out;
}
if (!lock_task_sighand(p, &flags))
return;
switch (who) {
case RUSAGE_BOTH:
case RUSAGE_CHILDREN:
utime = p->signal->cutime;
stime = p->signal->cstime;
r->ru_nvcsw = p->signal->cnvcsw;
r->ru_nivcsw = p->signal->cnivcsw;
r->ru_minflt = p->signal->cmin_flt;
r->ru_majflt = p->signal->cmaj_flt;
r->ru_inblock = p->signal->cinblock;
r->ru_oublock = p->signal->coublock;
maxrss = p->signal->cmaxrss;
if (who == RUSAGE_CHILDREN)
break;
case RUSAGE_SELF:
thread_group_times(p, &tgutime, &tgstime);
utime += tgutime;
stime += tgstime;
r->ru_nvcsw += p->signal->nvcsw;
r->ru_nivcsw += p->signal->nivcsw;
r->ru_minflt += p->signal->min_flt;
r->ru_majflt += p->signal->maj_flt;
r->ru_inblock += p->signal->inblock;
r->ru_oublock += p->signal->oublock;
if (maxrss < p->signal->maxrss)
maxrss = p->signal->maxrss;
t = p;
do {
accumulate_thread_rusage(t, r);
t = next_thread(t);
} while (t != p);
break;
default:
BUG();
}
unlock_task_sighand(p, &flags);
out:
cputime_to_timeval(utime, &r->ru_utime);
cputime_to_timeval(stime, &r->ru_stime);
if (who != RUSAGE_CHILDREN) {
struct mm_struct *mm = get_task_mm(p);
if (mm) {
setmax_mm_hiwater_rss(&maxrss, mm);
mmput(mm);
}
}
r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
}
int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
{
struct rusage r;
k_getrusage(p, who, &r);
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
}
SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
{
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
who != RUSAGE_THREAD)
return -EINVAL;
return getrusage(current, who, ru);
}
SYSCALL_DEFINE1(umask, int, mask)
{
mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
return mask;
}
#ifdef CONFIG_CHECKPOINT_RESTORE
static int prctl_set_mm(int opt, unsigned long addr,
unsigned long arg4, unsigned long arg5)
{
unsigned long rlim = rlimit(RLIMIT_DATA);
unsigned long vm_req_flags;
unsigned long vm_bad_flags;
struct vm_area_struct *vma;
int error = 0;
struct mm_struct *mm = current->mm;
if (arg4 | arg5)
return -EINVAL;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
if (addr >= TASK_SIZE)
return -EINVAL;
down_read(&mm->mmap_sem);
vma = find_vma(mm, addr);
if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
/* It must be existing VMA */
if (!vma || vma->vm_start > addr)
goto out;
}
error = -EINVAL;
switch (opt) {
case PR_SET_MM_START_CODE:
case PR_SET_MM_END_CODE:
vm_req_flags = VM_READ | VM_EXEC;
vm_bad_flags = VM_WRITE | VM_MAYSHARE;
if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
(vma->vm_flags & vm_bad_flags))
goto out;
if (opt == PR_SET_MM_START_CODE)
mm->start_code = addr;
else
mm->end_code = addr;
break;
case PR_SET_MM_START_DATA:
case PR_SET_MM_END_DATA:
vm_req_flags = VM_READ | VM_WRITE;
vm_bad_flags = VM_EXEC | VM_MAYSHARE;
if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
(vma->vm_flags & vm_bad_flags))
goto out;
if (opt == PR_SET_MM_START_DATA)
mm->start_data = addr;
else
mm->end_data = addr;
break;
case PR_SET_MM_START_STACK:
#ifdef CONFIG_STACK_GROWSUP
vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
#else
vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
#endif
if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
goto out;
mm->start_stack = addr;
break;
case PR_SET_MM_START_BRK:
if (addr <= mm->end_data)
goto out;
if (rlim < RLIM_INFINITY &&
(mm->brk - addr) +
(mm->end_data - mm->start_data) > rlim)
goto out;
mm->start_brk = addr;
break;
case PR_SET_MM_BRK:
if (addr <= mm->end_data)
goto out;
if (rlim < RLIM_INFINITY &&
(addr - mm->start_brk) +
(mm->end_data - mm->start_data) > rlim)
goto out;
mm->brk = addr;
break;
default:
error = -EINVAL;
goto out;
}
error = 0;
out:
up_read(&mm->mmap_sem);
return error;
}
#else /* CONFIG_CHECKPOINT_RESTORE */
static int prctl_set_mm(int opt, unsigned long addr,
unsigned long arg4, unsigned long arg5)
{
return -EINVAL;
}
#endif
SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
unsigned long, arg4, unsigned long, arg5)
{
struct task_struct *me = current;
unsigned char comm[sizeof(me->comm)];
long error;
error = security_task_prctl(option, arg2, arg3, arg4, arg5);
if (error != -ENOSYS)
return error;
error = 0;
switch (option) {
case PR_SET_PDEATHSIG:
if (!valid_signal(arg2)) {
error = -EINVAL;
break;
}
me->pdeath_signal = arg2;
error = 0;
break;
case PR_GET_PDEATHSIG:
error = put_user(me->pdeath_signal, (int __user *)arg2);
break;
case PR_GET_DUMPABLE:
error = get_dumpable(me->mm);
break;
case PR_SET_DUMPABLE:
if (arg2 < 0 || arg2 > 1) {
error = -EINVAL;
break;
}
set_dumpable(me->mm, arg2);
error = 0;
break;
case PR_SET_UNALIGN:
error = SET_UNALIGN_CTL(me, arg2);
break;
case PR_GET_UNALIGN:
error = GET_UNALIGN_CTL(me, arg2);
break;
case PR_SET_FPEMU:
error = SET_FPEMU_CTL(me, arg2);
break;
case PR_GET_FPEMU:
error = GET_FPEMU_CTL(me, arg2);
break;
case PR_SET_FPEXC:
error = SET_FPEXC_CTL(me, arg2);
break;
case PR_GET_FPEXC:
error = GET_FPEXC_CTL(me, arg2);
break;
case PR_GET_TIMING:
error = PR_TIMING_STATISTICAL;
break;
case PR_SET_TIMING:
if (arg2 != PR_TIMING_STATISTICAL)
error = -EINVAL;
else
error = 0;
break;
case PR_SET_NAME:
comm[sizeof(me->comm)-1] = 0;
if (strncpy_from_user(comm, (char __user *)arg2,
sizeof(me->comm) - 1) < 0)
return -EFAULT;
set_task_comm(me, comm);
proc_comm_connector(me);
return 0;
case PR_GET_NAME:
get_task_comm(comm, me);
if (copy_to_user((char __user *)arg2, comm,
sizeof(comm)))
return -EFAULT;
return 0;
case PR_GET_ENDIAN:
error = GET_ENDIAN(me, arg2);
break;
case PR_SET_ENDIAN:
error = SET_ENDIAN(me, arg2);
break;
case PR_GET_SECCOMP:
error = prctl_get_seccomp();
break;
case PR_SET_SECCOMP:
error = prctl_set_seccomp(arg2, (char __user *)arg3);
break;
case PR_GET_TSC:
error = GET_TSC_CTL(arg2);
break;
case PR_SET_TSC:
error = SET_TSC_CTL(arg2);
break;
case PR_TASK_PERF_EVENTS_DISABLE:
error = perf_event_task_disable();
break;
case PR_TASK_PERF_EVENTS_ENABLE:
error = perf_event_task_enable();
break;
case PR_GET_TIMERSLACK:
error = current->timer_slack_ns;
break;
case PR_SET_TIMERSLACK:
if (arg2 <= 0)
current->timer_slack_ns =
current->default_timer_slack_ns;
else
current->timer_slack_ns = arg2;
error = 0;
break;
case PR_MCE_KILL:
if (arg4 | arg5)
return -EINVAL;
switch (arg2) {
case PR_MCE_KILL_CLEAR:
if (arg3 != 0)
return -EINVAL;
current->flags &= ~PF_MCE_PROCESS;
break;
case PR_MCE_KILL_SET:
current->flags |= PF_MCE_PROCESS;
if (arg3 == PR_MCE_KILL_EARLY)
current->flags |= PF_MCE_EARLY;
else if (arg3 == PR_MCE_KILL_LATE)
current->flags &= ~PF_MCE_EARLY;
else if (arg3 == PR_MCE_KILL_DEFAULT)
current->flags &=
~(PF_MCE_EARLY|PF_MCE_PROCESS);
else
return -EINVAL;
break;
default:
return -EINVAL;
}
error = 0;
break;
case PR_MCE_KILL_GET:
if (arg2 | arg3 | arg4 | arg5)
return -EINVAL;
if (current->flags & PF_MCE_PROCESS)
error = (current->flags & PF_MCE_EARLY) ?
PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
else
error = PR_MCE_KILL_DEFAULT;
break;
case PR_SET_MM:
error = prctl_set_mm(arg2, arg3, arg4, arg5);
break;
case PR_SET_CHILD_SUBREAPER:
me->signal->is_child_subreaper = !!arg2;
error = 0;
break;
case PR_GET_CHILD_SUBREAPER:
error = put_user(me->signal->is_child_subreaper,
(int __user *) arg2);
break;
case PR_SET_NO_NEW_PRIVS:
if (arg2 != 1 || arg3 || arg4 || arg5)
return -EINVAL;
current->no_new_privs = 1;
break;
case PR_GET_NO_NEW_PRIVS:
if (arg2 || arg3 || arg4 || arg5)
return -EINVAL;
return current->no_new_privs ? 1 : 0;
default:
error = -EINVAL;
break;
}
return error;
}
SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
struct getcpu_cache __user *, unused)
{
int err = 0;
int cpu = raw_smp_processor_id();
if (cpup)
err |= put_user(cpu, cpup);
if (nodep)
err |= put_user(cpu_to_node(cpu), nodep);
return err ? -EFAULT : 0;
}
char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
static void argv_cleanup(struct subprocess_info *info)
{
argv_free(info->argv);
}
/**
* orderly_poweroff - Trigger an orderly system poweroff
* @force: force poweroff if command execution fails
*
* This may be called from any context to trigger a system shutdown.
* If the orderly shutdown fails, it will force an immediate shutdown.
*/
int orderly_poweroff(bool force)
{
int argc;
char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
static char *envp[] = {
"HOME=/",
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
NULL
};
int ret = -ENOMEM;
struct subprocess_info *info;
if (argv == NULL) {
printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
__func__, poweroff_cmd);
goto out;
}
info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
if (info == NULL) {
argv_free(argv);
goto out;
}
call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
out:
if (ret && force) {
printk(KERN_WARNING "Failed to start orderly shutdown: "
"forcing the issue\n");
/* I guess this should try to kick off some daemon to
sync and poweroff asap. Or not even bother syncing
if we're doing an emergency shutdown? */
emergency_sync();
kernel_power_off();
}
return ret;
}
EXPORT_SYMBOL_GPL(orderly_poweroff);