alistair23-linux/crypto/testmgr.c
Eric Biggers 059c2a4d8e crypto: adiantum - add Adiantum support
Add support for the Adiantum encryption mode.  Adiantum was designed by
Paul Crowley and is specified by our paper:

    Adiantum: length-preserving encryption for entry-level processors
    (https://eprint.iacr.org/2018/720.pdf)

See our paper for full details; this patch only provides an overview.

Adiantum is a tweakable, length-preserving encryption mode designed for
fast and secure disk encryption, especially on CPUs without dedicated
crypto instructions.  Adiantum encrypts each sector using the XChaCha12
stream cipher, two passes of an ε-almost-∆-universal (εA∆U) hash
function, and an invocation of the AES-256 block cipher on a single
16-byte block.  On CPUs without AES instructions, Adiantum is much
faster than AES-XTS; for example, on ARM Cortex-A7, on 4096-byte sectors
Adiantum encryption is about 4 times faster than AES-256-XTS encryption,
and decryption about 5 times faster.

Adiantum is a specialization of the more general HBSH construction.  Our
earlier proposal, HPolyC, was also a HBSH specialization, but it used a
different εA∆U hash function, one based on Poly1305 only.  Adiantum's
εA∆U hash function, which is based primarily on the "NH" hash function
like that used in UMAC (RFC4418), is about twice as fast as HPolyC's;
consequently, Adiantum is about 20% faster than HPolyC.

This speed comes with no loss of security: Adiantum is provably just as
secure as HPolyC, in fact slightly *more* secure.  Like HPolyC,
Adiantum's security is reducible to that of XChaCha12 and AES-256,
subject to a security bound.  XChaCha12 itself has a security reduction
to ChaCha12.  Therefore, one need not "trust" Adiantum; one need only
trust ChaCha12 and AES-256.  Note that the εA∆U hash function is only
used for its proven combinatorical properties so cannot be "broken".

Adiantum is also a true wide-block encryption mode, so flipping any
plaintext bit in the sector scrambles the entire ciphertext, and vice
versa.  No other such mode is available in the kernel currently; doing
the same with XTS scrambles only 16 bytes.  Adiantum also supports
arbitrary-length tweaks and naturally supports any length input >= 16
bytes without needing "ciphertext stealing".

For the stream cipher, Adiantum uses XChaCha12 rather than XChaCha20 in
order to make encryption feasible on the widest range of devices.
Although the 20-round variant is quite popular, the best known attacks
on ChaCha are on only 7 rounds, so ChaCha12 still has a substantial
security margin; in fact, larger than AES-256's.  12-round Salsa20 is
also the eSTREAM recommendation.  For the block cipher, Adiantum uses
AES-256, despite it having a lower security margin than XChaCha12 and
needing table lookups, due to AES's extensive adoption and analysis
making it the obvious first choice.  Nevertheless, for flexibility this
patch also permits the "adiantum" template to be instantiated with
XChaCha20 and/or with an alternate block cipher.

We need Adiantum support in the kernel for use in dm-crypt and fscrypt,
where currently the only other suitable options are block cipher modes
such as AES-XTS.  A big problem with this is that many low-end mobile
devices (e.g. Android Go phones sold primarily in developing countries,
as well as some smartwatches) still have CPUs that lack AES
instructions, e.g. ARM Cortex-A7.  Sadly, AES-XTS encryption is much too
slow to be viable on these devices.  We did find that some "lightweight"
block ciphers are fast enough, but these suffer from problems such as
not having much cryptanalysis or being too controversial.

The ChaCha stream cipher has excellent performance but is insecure to
use directly for disk encryption, since each sector's IV is reused each
time it is overwritten.  Even restricting the threat model to offline
attacks only isn't enough, since modern flash storage devices don't
guarantee that "overwrites" are really overwrites, due to wear-leveling.
Adiantum avoids this problem by constructing a
"tweakable super-pseudorandom permutation"; this is the strongest
possible security model for length-preserving encryption.

Of course, storing random nonces along with the ciphertext would be the
ideal solution.  But doing that with existing hardware and filesystems
runs into major practical problems; in most cases it would require data
journaling (like dm-integrity) which severely degrades performance.
Thus, for now length-preserving encryption is still needed.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-20 14:26:56 +08:00

3799 lines
86 KiB
C

/*
* Algorithm testing framework and tests.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) 2007 Nokia Siemens Networks
* Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
*
* Updated RFC4106 AES-GCM testing.
* Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/aead.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/err.h>
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <crypto/rng.h>
#include <crypto/drbg.h>
#include <crypto/akcipher.h>
#include <crypto/kpp.h>
#include <crypto/acompress.h>
#include "internal.h"
static bool notests;
module_param(notests, bool, 0644);
MODULE_PARM_DESC(notests, "disable crypto self-tests");
#ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/* a perfect nop */
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
return 0;
}
#else
#include "testmgr.h"
/*
* Need slab memory for testing (size in number of pages).
*/
#define XBUFSIZE 8
/*
* Indexes into the xbuf to simulate cross-page access.
*/
#define IDX1 32
#define IDX2 32400
#define IDX3 1511
#define IDX4 8193
#define IDX5 22222
#define IDX6 17101
#define IDX7 27333
#define IDX8 3000
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
struct aead_test_suite {
struct {
const struct aead_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct cipher_test_suite {
const struct cipher_testvec *vecs;
unsigned int count;
};
struct comp_test_suite {
struct {
const struct comp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct hash_test_suite {
const struct hash_testvec *vecs;
unsigned int count;
};
struct cprng_test_suite {
const struct cprng_testvec *vecs;
unsigned int count;
};
struct drbg_test_suite {
const struct drbg_testvec *vecs;
unsigned int count;
};
struct akcipher_test_suite {
const struct akcipher_testvec *vecs;
unsigned int count;
};
struct kpp_test_suite {
const struct kpp_testvec *vecs;
unsigned int count;
};
struct alg_test_desc {
const char *alg;
int (*test)(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask);
int fips_allowed; /* set if alg is allowed in fips mode */
union {
struct aead_test_suite aead;
struct cipher_test_suite cipher;
struct comp_test_suite comp;
struct hash_test_suite hash;
struct cprng_test_suite cprng;
struct drbg_test_suite drbg;
struct akcipher_test_suite akcipher;
struct kpp_test_suite kpp;
} suite;
};
static const unsigned int IDX[8] = {
IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++) {
buf[i] = (void *)__get_free_page(GFP_KERNEL);
if (!buf[i])
goto err_free_buf;
}
return 0;
err_free_buf:
while (i-- > 0)
free_page((unsigned long)buf[i]);
return -ENOMEM;
}
static void testmgr_free_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++)
free_page((unsigned long)buf[i]);
}
static int ahash_guard_result(char *result, char c, int size)
{
int i;
for (i = 0; i < size; i++) {
if (result[i] != c)
return -EINVAL;
}
return 0;
}
static int ahash_partial_update(struct ahash_request **preq,
struct crypto_ahash *tfm, const struct hash_testvec *template,
void *hash_buff, int k, int temp, struct scatterlist *sg,
const char *algo, char *result, struct crypto_wait *wait)
{
char *state;
struct ahash_request *req;
int statesize, ret = -EINVAL;
static const unsigned char guard[] = { 0x00, 0xba, 0xad, 0x00 };
int digestsize = crypto_ahash_digestsize(tfm);
req = *preq;
statesize = crypto_ahash_statesize(
crypto_ahash_reqtfm(req));
state = kmalloc(statesize + sizeof(guard), GFP_KERNEL);
if (!state) {
pr_err("alg: hash: Failed to alloc state for %s\n", algo);
goto out_nostate;
}
memcpy(state + statesize, guard, sizeof(guard));
memset(result, 1, digestsize);
ret = crypto_ahash_export(req, state);
WARN_ON(memcmp(state + statesize, guard, sizeof(guard)));
if (ret) {
pr_err("alg: hash: Failed to export() for %s\n", algo);
goto out;
}
ret = ahash_guard_result(result, 1, digestsize);
if (ret) {
pr_err("alg: hash: Failed, export used req->result for %s\n",
algo);
goto out;
}
ahash_request_free(req);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: hash: Failed to alloc request for %s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, wait);
memcpy(hash_buff, template->plaintext + temp,
template->tap[k]);
sg_init_one(&sg[0], hash_buff, template->tap[k]);
ahash_request_set_crypt(req, sg, result, template->tap[k]);
ret = crypto_ahash_import(req, state);
if (ret) {
pr_err("alg: hash: Failed to import() for %s\n", algo);
goto out;
}
ret = ahash_guard_result(result, 1, digestsize);
if (ret) {
pr_err("alg: hash: Failed, import used req->result for %s\n",
algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_update(req), wait);
if (ret)
goto out;
*preq = req;
ret = 0;
goto out_noreq;
out:
ahash_request_free(req);
out_noreq:
kfree(state);
out_nostate:
return ret;
}
enum hash_test {
HASH_TEST_DIGEST,
HASH_TEST_FINAL,
HASH_TEST_FINUP
};
static int __test_hash(struct crypto_ahash *tfm,
const struct hash_testvec *template, unsigned int tcount,
enum hash_test test_type, const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
size_t digest_size = crypto_ahash_digestsize(tfm);
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char *result;
char *key;
struct ahash_request *req;
struct crypto_wait wait;
void *hash_buff;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
result = kmalloc(digest_size, GFP_KERNEL);
if (!result)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_nobuf;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
crypto_init_wait(&wait);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: hash: Failed to allocate request for "
"%s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE))
goto out;
j++;
memset(result, 0, digest_size);
hash_buff = xbuf[0];
hash_buff += align_offset;
memcpy(hash_buff, template[i].plaintext, template[i].psize);
sg_init_one(&sg[0], hash_buff, template[i].psize);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey failed on "
"test %d for %s: ret=%d\n", j, algo,
-ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
switch (test_type) {
case HASH_TEST_DIGEST:
ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
if (ret) {
pr_err("alg: hash: digest failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
break;
case HASH_TEST_FINAL:
memset(result, 1, digest_size);
ret = crypto_wait_req(crypto_ahash_init(req), &wait);
if (ret) {
pr_err("alg: hash: init failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = ahash_guard_result(result, 1, digest_size);
if (ret) {
pr_err("alg: hash: init failed on test %d "
"for %s: used req->result\n", j, algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_update(req), &wait);
if (ret) {
pr_err("alg: hash: update failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = ahash_guard_result(result, 1, digest_size);
if (ret) {
pr_err("alg: hash: update failed on test %d "
"for %s: used req->result\n", j, algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_final(req), &wait);
if (ret) {
pr_err("alg: hash: final failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
break;
case HASH_TEST_FINUP:
memset(result, 1, digest_size);
ret = crypto_wait_req(crypto_ahash_init(req), &wait);
if (ret) {
pr_err("alg: hash: init failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = ahash_guard_result(result, 1, digest_size);
if (ret) {
pr_err("alg: hash: init failed on test %d "
"for %s: used req->result\n", j, algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_finup(req), &wait);
if (ret) {
pr_err("alg: hash: final failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
break;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
if (test_type)
goto out;
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
memset(result, 0, digest_size);
temp = 0;
sg_init_table(sg, template[i].np);
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].plaintext + temp,
template[i].tap[k]),
template[i].tap[k]);
temp += template[i].tap[k];
}
if (template[i].ksize) {
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
crypto_ahash_clear_flags(tfm, ~0);
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey "
"failed on chunking test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
if (ret) {
pr_err("alg: hash: digest failed on chunking test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Chunking test %d "
"failed for %s\n", j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
/* partial update exercise */
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (template[i].np < 2)
continue;
j++;
memset(result, 0, digest_size);
ret = -EINVAL;
hash_buff = xbuf[0];
memcpy(hash_buff, template[i].plaintext,
template[i].tap[0]);
sg_init_one(&sg[0], hash_buff, template[i].tap[0]);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
pr_err("alg: hash: setkey failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].tap[0]);
ret = crypto_wait_req(crypto_ahash_init(req), &wait);
if (ret) {
pr_err("alg: hash: init failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
ret = crypto_wait_req(crypto_ahash_update(req), &wait);
if (ret) {
pr_err("alg: hash: update failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
temp = template[i].tap[0];
for (k = 1; k < template[i].np; k++) {
ret = ahash_partial_update(&req, tfm, &template[i],
hash_buff, k, temp, &sg[0], algo, result,
&wait);
if (ret) {
pr_err("alg: hash: partial update failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out_noreq;
}
temp += template[i].tap[k];
}
ret = crypto_wait_req(crypto_ahash_final(req), &wait);
if (ret) {
pr_err("alg: hash: final failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
pr_err("alg: hash: Partial Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
ahash_request_free(req);
out_noreq:
testmgr_free_buf(xbuf);
out_nobuf:
kfree(key);
kfree(result);
return ret;
}
static int test_hash(struct crypto_ahash *tfm,
const struct hash_testvec *template,
unsigned int tcount, enum hash_test test_type)
{
unsigned int alignmask;
int ret;
ret = __test_hash(tfm, template, tcount, test_type, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_hash(tfm, template, tcount, test_type, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_hash(tfm, template, tcount, test_type,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int __test_aead(struct crypto_aead *tfm, int enc,
const struct aead_testvec *template, unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
unsigned int i, j, k, n, temp;
int ret = -ENOMEM;
char *q;
char *key;
struct aead_request *req;
struct scatterlist *sg;
struct scatterlist *sgout;
const char *e, *d;
struct crypto_wait wait;
unsigned int authsize, iv_len;
void *input;
void *output;
void *assoc;
char *iv;
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
char *axbuf[XBUFSIZE];
iv = kzalloc(MAX_IVLEN, GFP_KERNEL);
if (!iv)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_noxbuf;
if (testmgr_alloc_buf(xbuf))
goto out_noxbuf;
if (testmgr_alloc_buf(axbuf))
goto out_noaxbuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
/* avoid "the frame size is larger than 1024 bytes" compiler warning */
sg = kmalloc(array3_size(sizeof(*sg), 8, (diff_dst ? 4 : 2)),
GFP_KERNEL);
if (!sg)
goto out_nosg;
sgout = &sg[16];
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
crypto_init_wait(&wait);
req = aead_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: aead%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
iv_len = crypto_aead_ivsize(tfm);
for (i = 0, j = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
/* some templates have no input data but they will
* touch input
*/
input = xbuf[0];
input += align_offset;
assoc = axbuf[0];
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].ilen >
PAGE_SIZE || template[i].alen > PAGE_SIZE))
goto out;
memcpy(input, template[i].input, template[i].ilen);
memcpy(assoc, template[i].assoc, template[i].alen);
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, iv_len);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen,
MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n",
d, authsize, j, algo);
goto out;
}
k = !!template[i].alen;
sg_init_table(sg, k + 1);
sg_set_buf(&sg[0], assoc, template[i].alen);
sg_set_buf(&sg[k], input,
template[i].ilen + (enc ? authsize : 0));
output = input;
if (diff_dst) {
sg_init_table(sgout, k + 1);
sg_set_buf(&sgout[0], assoc, template[i].alen);
output = xoutbuf[0];
output += align_offset;
sg_set_buf(&sgout[k], output,
template[i].rlen + (enc ? 0 : authsize));
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
aead_request_set_ad(req, template[i].alen);
ret = crypto_wait_req(enc ? crypto_aead_encrypt(req)
: crypto_aead_decrypt(req), &wait);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = output;
if (memcmp(q, template[i].result, template[i].rlen)) {
pr_err("alg: aead%s: Test %d failed on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0, j = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, MAX_IVLEN);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = -EINVAL;
sg_init_table(sg, template[i].anp + template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].anp + template[i].np);
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].anp; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].atap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].assoc + temp,
template[i].atap[k]),
template[i].atap[k]);
if (diff_dst)
sg_set_buf(&sgout[k],
axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].atap[k]);
temp += template[i].atap[k];
}
for (k = 0, temp = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp, template[i].tap[k]);
sg_set_buf(&sg[template[i].anp + k],
q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
memset(q, 0, template[i].tap[k]);
sg_set_buf(&sgout[template[i].anp + k],
q, template[i].tap[k]);
}
n = template[i].tap[k];
if (k == template[i].np - 1 && enc)
n += authsize;
if (offset_in_page(q) + n < PAGE_SIZE)
q[n] = 0;
temp += template[i].tap[k];
}
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n",
d, authsize, j, algo);
goto out;
}
if (enc) {
if (WARN_ON(sg[template[i].anp + k - 1].offset +
sg[template[i].anp + k - 1].length +
authsize > PAGE_SIZE)) {
ret = -EINVAL;
goto out;
}
if (diff_dst)
sgout[template[i].anp + k - 1].length +=
authsize;
sg[template[i].anp + k - 1].length += authsize;
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen,
iv);
aead_request_set_ad(req, template[i].alen);
ret = crypto_wait_req(enc ? crypto_aead_encrypt(req)
: crypto_aead_decrypt(req), &wait);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
n = template[i].tap[k];
if (k == template[i].np - 1)
n += enc ? authsize : -authsize;
if (memcmp(q, template[i].result + temp, n)) {
pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, n);
goto out;
}
q += n;
if (k == template[i].np - 1 && !enc) {
if (!diff_dst &&
memcmp(q, template[i].input +
temp + n, authsize))
n = authsize;
else
n = 0;
} else {
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
}
if (n) {
pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
aead_request_free(req);
kfree(sg);
out_nosg:
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(axbuf);
out_noaxbuf:
testmgr_free_buf(xbuf);
out_noxbuf:
kfree(key);
kfree(iv);
return ret;
}
static int test_aead(struct crypto_aead *tfm, int enc,
const struct aead_testvec *template, unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_aead(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_aead(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_aead(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_aead(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_cipher(struct crypto_cipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
unsigned int i, j, k;
char *q;
const char *e;
const char *input, *result;
void *data;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
ret = -EINVAL;
if (WARN_ON(template[i].len > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, input, template[i].len);
crypto_cipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_cipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
printk(KERN_ERR "alg: cipher: setkey failed "
"on test %d for %s: flags=%x\n", j,
algo, crypto_cipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
for (k = 0; k < template[i].len;
k += crypto_cipher_blocksize(tfm)) {
if (enc)
crypto_cipher_encrypt_one(tfm, data + k,
data + k);
else
crypto_cipher_decrypt_one(tfm, data + k,
data + k);
}
q = data;
if (memcmp(q, result, template[i].len)) {
printk(KERN_ERR "alg: cipher: Test %d failed "
"on %s for %s\n", j, e, algo);
hexdump(q, template[i].len);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int __test_skcipher(struct crypto_skcipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
unsigned int i, j, k, n, temp;
char *q;
struct skcipher_request *req;
struct scatterlist sg[8];
struct scatterlist sgout[8];
const char *e, *d;
struct crypto_wait wait;
const char *input, *result;
void *data;
char iv[MAX_IVLEN];
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
int ret = -ENOMEM;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
crypto_init_wait(&wait);
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: skcipher%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np && !template[i].also_non_np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
if (template[i].iv && !(template[i].generates_iv && enc))
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].len > PAGE_SIZE))
goto out;
data = xbuf[0];
data += align_offset;
memcpy(data, input, template[i].len);
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
sg_init_one(&sg[0], data, template[i].len);
if (diff_dst) {
data = xoutbuf[0];
data += align_offset;
sg_init_one(&sgout[0], data, template[i].len);
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].len, iv);
ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req), &wait);
if (ret) {
pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = data;
if (memcmp(q, result, template[i].len)) {
pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].len);
ret = -EINVAL;
goto out;
}
if (template[i].generates_iv && enc &&
memcmp(iv, template[i].iv, crypto_skcipher_ivsize(tfm))) {
pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n",
d, j, e, algo);
hexdump(iv, crypto_skcipher_ivsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
if (template[i].iv && !(template[i].generates_iv && enc))
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
temp = 0;
ret = -EINVAL;
sg_init_table(sg, template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].np);
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, input + temp, template[i].tap[k]);
if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
sg_set_buf(&sg[k], q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
sg_set_buf(&sgout[k], q, template[i].tap[k]);
memset(q, 0, template[i].tap[k]);
if (offset_in_page(q) +
template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
}
temp += template[i].tap[k];
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].len, iv);
ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req), &wait);
if (ret) {
pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
temp = 0;
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
if (memcmp(q, result + temp, template[i].tap[k])) {
pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, template[i].tap[k]);
goto out;
}
q += template[i].tap[k];
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
if (n) {
pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
skcipher_request_free(req);
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_skcipher(struct crypto_skcipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_skcipher(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_skcipher(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_skcipher(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_skcipher(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_comp(struct crypto_comp *tfm,
const struct comp_testvec *ctemplate,
const struct comp_testvec *dtemplate,
int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
char *output, *decomp_output;
unsigned int i;
int ret;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!decomp_output) {
kfree(output);
return -ENOMEM;
}
for (i = 0; i < ctcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(output, 0, COMP_BUF_SIZE);
memset(decomp_output, 0, COMP_BUF_SIZE);
ilen = ctemplate[i].inlen;
ret = crypto_comp_compress(tfm, ctemplate[i].input,
ilen, output, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: compression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
ilen = dlen;
dlen = COMP_BUF_SIZE;
ret = crypto_comp_decompress(tfm, output,
ilen, decomp_output, &dlen);
if (ret) {
pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n",
i + 1, algo, -ret);
goto out;
}
if (dlen != ctemplate[i].inlen) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(decomp_output, ctemplate[i].input,
ctemplate[i].inlen)) {
pr_err("alg: comp: compression failed: output differs: on test %d for %s\n",
i + 1, algo);
hexdump(decomp_output, dlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0; i < dtcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(decomp_output, 0, COMP_BUF_SIZE);
ilen = dtemplate[i].inlen;
ret = crypto_comp_decompress(tfm, dtemplate[i].input,
ilen, decomp_output, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: decompression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != dtemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(decomp_output, dtemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s\n", i + 1, algo);
hexdump(decomp_output, dlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
kfree(decomp_output);
kfree(output);
return ret;
}
static int test_acomp(struct crypto_acomp *tfm,
const struct comp_testvec *ctemplate,
const struct comp_testvec *dtemplate,
int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm));
unsigned int i;
char *output, *decomp_out;
int ret;
struct scatterlist src, dst;
struct acomp_req *req;
struct crypto_wait wait;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!decomp_out) {
kfree(output);
return -ENOMEM;
}
for (i = 0; i < ctcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = ctemplate[i].inlen;
void *input_vec;
input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL);
if (!input_vec) {
ret = -ENOMEM;
goto out;
}
memset(output, 0, dlen);
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
kfree(input_vec);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_acomp_compress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
ilen = req->dlen;
dlen = COMP_BUF_SIZE;
sg_init_one(&src, output, ilen);
sg_init_one(&dst, decomp_out, dlen);
crypto_init_wait(&wait);
acomp_request_set_params(req, &src, &dst, ilen, dlen);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (req->dlen != ctemplate[i].inlen) {
pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (memcmp(input_vec, decomp_out, req->dlen)) {
pr_err("alg: acomp: Compression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
kfree(input_vec);
acomp_request_free(req);
}
for (i = 0; i < dtcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = dtemplate[i].inlen;
void *input_vec;
input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL);
if (!input_vec) {
ret = -ENOMEM;
goto out;
}
memset(output, 0, dlen);
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
kfree(input_vec);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (req->dlen != dtemplate[i].outlen) {
pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (memcmp(output, dtemplate[i].output, req->dlen)) {
pr_err("alg: acomp: Decompression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
kfree(input_vec);
acomp_request_free(req);
}
ret = 0;
out:
kfree(decomp_out);
kfree(output);
return ret;
}
static int test_cprng(struct crypto_rng *tfm,
const struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
seedsize = crypto_rng_seedsize(tfm);
seed = kmalloc(seedsize, GFP_KERNEL);
if (!seed) {
printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
"for %s\n", algo);
return -ENOMEM;
}
for (i = 0; i < tcount; i++) {
memset(result, 0, 32);
memcpy(seed, template[i].v, template[i].vlen);
memcpy(seed + template[i].vlen, template[i].key,
template[i].klen);
memcpy(seed + template[i].vlen + template[i].klen,
template[i].dt, template[i].dtlen);
err = crypto_rng_reset(tfm, seed, seedsize);
if (err) {
printk(KERN_ERR "alg: cprng: Failed to reset rng "
"for %s\n", algo);
goto out;
}
for (j = 0; j < template[i].loops; j++) {
err = crypto_rng_get_bytes(tfm, result,
template[i].rlen);
if (err < 0) {
printk(KERN_ERR "alg: cprng: Failed to obtain "
"the correct amount of random data for "
"%s (requested %d)\n", algo,
template[i].rlen);
goto out;
}
}
err = memcmp(result, template[i].result,
template[i].rlen);
if (err) {
printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
i, algo);
hexdump(result, template[i].rlen);
err = -EINVAL;
goto out;
}
}
out:
kfree(seed);
return err;
}
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_aead *tfm;
int err = 0;
tfm = crypto_alloc_aead(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: aead: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.aead.enc.vecs) {
err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs,
desc->suite.aead.enc.count);
if (err)
goto out;
}
if (!err && desc->suite.aead.dec.vecs)
err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs,
desc->suite.aead.dec.count);
out:
crypto_free_aead(tfm);
return err;
}
static int alg_test_cipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
const struct cipher_test_suite *suite = &desc->suite.cipher;
struct crypto_cipher *tfm;
int err;
tfm = crypto_alloc_cipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: cipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count);
if (!err)
err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count);
crypto_free_cipher(tfm);
return err;
}
static int alg_test_skcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
const struct cipher_test_suite *suite = &desc->suite.cipher;
struct crypto_skcipher *tfm;
int err;
tfm = crypto_alloc_skcipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: skcipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_skcipher(tfm, ENCRYPT, suite->vecs, suite->count);
if (!err)
err = test_skcipher(tfm, DECRYPT, suite->vecs, suite->count);
crypto_free_skcipher(tfm);
return err;
}
static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_comp *comp;
struct crypto_acomp *acomp;
int err;
u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK;
if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) {
acomp = crypto_alloc_acomp(driver, type, mask);
if (IS_ERR(acomp)) {
pr_err("alg: acomp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(acomp));
return PTR_ERR(acomp);
}
err = test_acomp(acomp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_acomp(acomp);
} else {
comp = crypto_alloc_comp(driver, type, mask);
if (IS_ERR(comp)) {
pr_err("alg: comp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(comp));
return PTR_ERR(comp);
}
err = test_comp(comp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_comp(comp);
}
return err;
}
static int __alg_test_hash(const struct hash_testvec *template,
unsigned int tcount, const char *driver,
u32 type, u32 mask)
{
struct crypto_ahash *tfm;
int err;
tfm = crypto_alloc_ahash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: hash: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_hash(tfm, template, tcount, HASH_TEST_DIGEST);
if (!err)
err = test_hash(tfm, template, tcount, HASH_TEST_FINAL);
if (!err)
err = test_hash(tfm, template, tcount, HASH_TEST_FINUP);
crypto_free_ahash(tfm);
return err;
}
static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
const struct hash_testvec *template = desc->suite.hash.vecs;
unsigned int tcount = desc->suite.hash.count;
unsigned int nr_unkeyed, nr_keyed;
int err;
/*
* For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests
* first, before setting a key on the tfm. To make this easier, we
* require that the unkeyed test vectors (if any) are listed first.
*/
for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) {
if (template[nr_unkeyed].ksize)
break;
}
for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) {
if (!template[nr_unkeyed + nr_keyed].ksize) {
pr_err("alg: hash: test vectors for %s out of order, "
"unkeyed ones must come first\n", desc->alg);
return -EINVAL;
}
}
err = 0;
if (nr_unkeyed) {
err = __alg_test_hash(template, nr_unkeyed, driver, type, mask);
template += nr_unkeyed;
}
if (!err && nr_keyed)
err = __alg_test_hash(template, nr_keyed, driver, type, mask);
return err;
}
static int alg_test_crc32c(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_shash *tfm;
u32 val;
int err;
err = alg_test_hash(desc, driver, type, mask);
if (err)
goto out;
tfm = crypto_alloc_shash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
err = PTR_ERR(tfm);
goto out;
}
do {
SHASH_DESC_ON_STACK(shash, tfm);
u32 *ctx = (u32 *)shash_desc_ctx(shash);
shash->tfm = tfm;
shash->flags = 0;
*ctx = le32_to_cpu(420553207);
err = crypto_shash_final(shash, (u8 *)&val);
if (err) {
printk(KERN_ERR "alg: crc32c: Operation failed for "
"%s: %d\n", driver, err);
break;
}
if (val != ~420553207) {
printk(KERN_ERR "alg: crc32c: Test failed for %s: "
"%d\n", driver, val);
err = -EINVAL;
}
} while (0);
crypto_free_shash(tfm);
out:
return err;
}
static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_rng *rng;
int err;
rng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(rng)) {
printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(rng));
return PTR_ERR(rng);
}
err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
crypto_free_rng(rng);
return err;
}
static int drbg_cavs_test(const struct drbg_testvec *test, int pr,
const char *driver, u32 type, u32 mask)
{
int ret = -EAGAIN;
struct crypto_rng *drng;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL);
if (!buf)
return -ENOMEM;
drng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(drng)) {
printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for "
"%s\n", driver);
kzfree(buf);
return -ENOMEM;
}
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, test->entropy, test->entropylen);
drbg_string_fill(&pers, test->pers, test->perslen);
ret = crypto_drbg_reset_test(drng, &pers, &test_data);
if (ret) {
printk(KERN_ERR "alg: drbg: Failed to reset rng\n");
goto outbuf;
}
drbg_string_fill(&addtl, test->addtla, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entpra, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
drbg_string_fill(&addtl, test->addtlb, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entprb, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
ret = memcmp(test->expected, buf, test->expectedlen);
outbuf:
crypto_free_rng(drng);
kzfree(buf);
return ret;
}
static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
int err = 0;
int pr = 0;
int i = 0;
const struct drbg_testvec *template = desc->suite.drbg.vecs;
unsigned int tcount = desc->suite.drbg.count;
if (0 == memcmp(driver, "drbg_pr_", 8))
pr = 1;
for (i = 0; i < tcount; i++) {
err = drbg_cavs_test(&template[i], pr, driver, type, mask);
if (err) {
printk(KERN_ERR "alg: drbg: Test %d failed for %s\n",
i, driver);
err = -EINVAL;
break;
}
}
return err;
}
static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec,
const char *alg)
{
struct kpp_request *req;
void *input_buf = NULL;
void *output_buf = NULL;
void *a_public = NULL;
void *a_ss = NULL;
void *shared_secret = NULL;
struct crypto_wait wait;
unsigned int out_len_max;
int err = -ENOMEM;
struct scatterlist src, dst;
req = kpp_request_alloc(tfm, GFP_KERNEL);
if (!req)
return err;
crypto_init_wait(&wait);
err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size);
if (err < 0)
goto free_req;
out_len_max = crypto_kpp_maxsize(tfm);
output_buf = kzalloc(out_len_max, GFP_KERNEL);
if (!output_buf) {
err = -ENOMEM;
goto free_req;
}
/* Use appropriate parameter as base */
kpp_request_set_input(req, NULL, 0);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
/* Compute party A's public key */
err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
if (err) {
pr_err("alg: %s: Party A: generate public key test failed. err %d\n",
alg, err);
goto free_output;
}
if (vec->genkey) {
/* Save party A's public key */
a_public = kzalloc(out_len_max, GFP_KERNEL);
if (!a_public) {
err = -ENOMEM;
goto free_output;
}
memcpy(a_public, sg_virt(req->dst), out_len_max);
} else {
/* Verify calculated public key */
if (memcmp(vec->expected_a_public, sg_virt(req->dst),
vec->expected_a_public_size)) {
pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n",
alg);
err = -EINVAL;
goto free_output;
}
}
/* Calculate shared secret key by using counter part (b) public key. */
input_buf = kzalloc(vec->b_public_size, GFP_KERNEL);
if (!input_buf) {
err = -ENOMEM;
goto free_output;
}
memcpy(input_buf, vec->b_public, vec->b_public_size);
sg_init_one(&src, input_buf, vec->b_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->b_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
if (err) {
pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n",
alg, err);
goto free_all;
}
if (vec->genkey) {
/* Save the shared secret obtained by party A */
a_ss = kzalloc(vec->expected_ss_size, GFP_KERNEL);
if (!a_ss) {
err = -ENOMEM;
goto free_all;
}
memcpy(a_ss, sg_virt(req->dst), vec->expected_ss_size);
/*
* Calculate party B's shared secret by using party A's
* public key.
*/
err = crypto_kpp_set_secret(tfm, vec->b_secret,
vec->b_secret_size);
if (err < 0)
goto free_all;
sg_init_one(&src, a_public, vec->expected_a_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->expected_a_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(crypto_kpp_compute_shared_secret(req),
&wait);
if (err) {
pr_err("alg: %s: Party B: compute shared secret failed. err %d\n",
alg, err);
goto free_all;
}
shared_secret = a_ss;
} else {
shared_secret = (void *)vec->expected_ss;
}
/*
* verify shared secret from which the user will derive
* secret key by executing whatever hash it has chosen
*/
if (memcmp(shared_secret, sg_virt(req->dst),
vec->expected_ss_size)) {
pr_err("alg: %s: compute shared secret test failed. Invalid output\n",
alg);
err = -EINVAL;
}
free_all:
kfree(a_ss);
kfree(input_buf);
free_output:
kfree(a_public);
kfree(output_buf);
free_req:
kpp_request_free(req);
return err;
}
static int test_kpp(struct crypto_kpp *tfm, const char *alg,
const struct kpp_testvec *vecs, unsigned int tcount)
{
int ret, i;
for (i = 0; i < tcount; i++) {
ret = do_test_kpp(tfm, vecs++, alg);
if (ret) {
pr_err("alg: %s: test failed on vector %d, err=%d\n",
alg, i + 1, ret);
return ret;
}
}
return 0;
}
static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_kpp *tfm;
int err = 0;
tfm = crypto_alloc_kpp(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: kpp: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.kpp.vecs)
err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs,
desc->suite.kpp.count);
crypto_free_kpp(tfm);
return err;
}
static int test_akcipher_one(struct crypto_akcipher *tfm,
const struct akcipher_testvec *vecs)
{
char *xbuf[XBUFSIZE];
struct akcipher_request *req;
void *outbuf_enc = NULL;
void *outbuf_dec = NULL;
struct crypto_wait wait;
unsigned int out_len_max, out_len = 0;
int err = -ENOMEM;
struct scatterlist src, dst, src_tab[2];
if (testmgr_alloc_buf(xbuf))
return err;
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
goto free_xbuf;
crypto_init_wait(&wait);
if (vecs->public_key_vec)
err = crypto_akcipher_set_pub_key(tfm, vecs->key,
vecs->key_len);
else
err = crypto_akcipher_set_priv_key(tfm, vecs->key,
vecs->key_len);
if (err)
goto free_req;
err = -ENOMEM;
out_len_max = crypto_akcipher_maxsize(tfm);
outbuf_enc = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_enc)
goto free_req;
if (WARN_ON(vecs->m_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], vecs->m, vecs->m_size);
sg_init_table(src_tab, 2);
sg_set_buf(&src_tab[0], xbuf[0], 8);
sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8);
sg_init_one(&dst, outbuf_enc, out_len_max);
akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size,
out_len_max);
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(vecs->siggen_sigver_test ?
/* Run asymmetric signature generation */
crypto_akcipher_sign(req) :
/* Run asymmetric encrypt */
crypto_akcipher_encrypt(req), &wait);
if (err) {
pr_err("alg: akcipher: encrypt test failed. err %d\n", err);
goto free_all;
}
if (req->dst_len != vecs->c_size) {
pr_err("alg: akcipher: encrypt test failed. Invalid output len\n");
err = -EINVAL;
goto free_all;
}
/* verify that encrypted message is equal to expected */
if (memcmp(vecs->c, outbuf_enc, vecs->c_size)) {
pr_err("alg: akcipher: encrypt test failed. Invalid output\n");
hexdump(outbuf_enc, vecs->c_size);
err = -EINVAL;
goto free_all;
}
/* Don't invoke decrypt for vectors with public key */
if (vecs->public_key_vec) {
err = 0;
goto free_all;
}
outbuf_dec = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_dec) {
err = -ENOMEM;
goto free_all;
}
if (WARN_ON(vecs->c_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], vecs->c, vecs->c_size);
sg_init_one(&src, xbuf[0], vecs->c_size);
sg_init_one(&dst, outbuf_dec, out_len_max);
crypto_init_wait(&wait);
akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max);
err = crypto_wait_req(vecs->siggen_sigver_test ?
/* Run asymmetric signature verification */
crypto_akcipher_verify(req) :
/* Run asymmetric decrypt */
crypto_akcipher_decrypt(req), &wait);
if (err) {
pr_err("alg: akcipher: decrypt test failed. err %d\n", err);
goto free_all;
}
out_len = req->dst_len;
if (out_len < vecs->m_size) {
pr_err("alg: akcipher: decrypt test failed. "
"Invalid output len %u\n", out_len);
err = -EINVAL;
goto free_all;
}
/* verify that decrypted message is equal to the original msg */
if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) ||
memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size,
vecs->m_size)) {
pr_err("alg: akcipher: decrypt test failed. Invalid output\n");
hexdump(outbuf_dec, out_len);
err = -EINVAL;
}
free_all:
kfree(outbuf_dec);
kfree(outbuf_enc);
free_req:
akcipher_request_free(req);
free_xbuf:
testmgr_free_buf(xbuf);
return err;
}
static int test_akcipher(struct crypto_akcipher *tfm, const char *alg,
const struct akcipher_testvec *vecs,
unsigned int tcount)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm));
int ret, i;
for (i = 0; i < tcount; i++) {
ret = test_akcipher_one(tfm, vecs++);
if (!ret)
continue;
pr_err("alg: akcipher: test %d failed for %s, err=%d\n",
i + 1, algo, ret);
return ret;
}
return 0;
}
static int alg_test_akcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_akcipher *tfm;
int err = 0;
tfm = crypto_alloc_akcipher(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.akcipher.vecs)
err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs,
desc->suite.akcipher.count);
crypto_free_akcipher(tfm);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
return 0;
}
#define __VECS(tv) { .vecs = tv, .count = ARRAY_SIZE(tv) }
/* Please keep this list sorted by algorithm name. */
static const struct alg_test_desc alg_test_descs[] = {
{
.alg = "adiantum(xchacha12,aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(adiantum_xchacha12_aes_tv_template)
},
}, {
.alg = "adiantum(xchacha20,aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(adiantum_xchacha20_aes_tv_template)
},
}, {
.alg = "aegis128",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aegis128_enc_tv_template),
.dec = __VECS(aegis128_dec_tv_template),
}
}
}, {
.alg = "aegis128l",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aegis128l_enc_tv_template),
.dec = __VECS(aegis128l_dec_tv_template),
}
}
}, {
.alg = "aegis256",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aegis256_enc_tv_template),
.dec = __VECS(aegis256_dec_tv_template),
}
}
}, {
.alg = "ansi_cprng",
.test = alg_test_cprng,
.suite = {
.cprng = __VECS(ansi_cprng_aes_tv_template)
}
}, {
.alg = "authenc(hmac(md5),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_md5_ecb_cipher_null_enc_tv_template),
.dec = __VECS(hmac_md5_ecb_cipher_null_dec_tv_template)
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_aes_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha1),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_ecb_cipher_null_enc_tv_temp),
.dec = __VECS(hmac_sha1_ecb_cipher_null_dec_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha224),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha224_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha224),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha224_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha256_aes_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha256_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha256_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha384_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha384),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha384_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha384),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),cbc(aes))",
.fips_allowed = 1,
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha512_aes_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha512_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha512_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha512),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cbc(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_cbc_tv_template)
},
}, {
.alg = "cbc(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(anubis_cbc_tv_template)
},
}, {
.alg = "cbc(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_cbc_tv_template)
},
}, {
.alg = "cbc(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_cbc_tv_template)
},
}, {
.alg = "cbc(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_cbc_tv_template)
},
}, {
.alg = "cbc(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_cbc_tv_template)
},
}, {
.alg = "cbc(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_cbc_tv_template)
},
}, {
.alg = "cbc(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(des3_ede_cbc_tv_template)
},
}, {
/* Same as cbc(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "cbc(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cbc(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_cbc_tv_template)
},
}, {
.alg = "cbc(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_cbc_tv_template)
}
}, {
.alg = "cbc(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_cbc_tv_template)
},
}, {
.alg = "cbcmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_cbcmac_tv_template)
}
}, {
.alg = "ccm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_ccm_enc_tv_template),
.dec = __VECS(aes_ccm_dec_tv_template)
}
}
}, {
.alg = "cfb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_cfb_tv_template)
},
}, {
.alg = "chacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(chacha20_tv_template)
},
}, {
.alg = "cmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_cmac128_tv_template)
}
}, {
.alg = "cmac(des3_ede)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(des3_ede_cmac64_tv_template)
}
}, {
.alg = "compress_null",
.test = alg_test_null,
}, {
.alg = "crc32",
.test = alg_test_hash,
.suite = {
.hash = __VECS(crc32_tv_template)
}
}, {
.alg = "crc32c",
.test = alg_test_crc32c,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crc32c_tv_template)
}
}, {
.alg = "crct10dif",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crct10dif_tv_template)
}
}, {
.alg = "ctr(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ctr_tv_template)
}
}, {
.alg = "ctr(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_ctr_tv_template)
}
}, {
.alg = "ctr(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_ctr_tv_template)
}
}, {
.alg = "ctr(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_ctr_tv_template)
}
}, {
.alg = "ctr(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_ctr_tv_template)
}
}, {
.alg = "ctr(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_ctr_tv_template)
}
}, {
.alg = "ctr(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(des3_ede_ctr_tv_template)
}
}, {
/* Same as ctr(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ctr(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ctr(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_ctr_tv_template)
}
}, {
.alg = "ctr(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_ctr_tv_template)
}
}, {
.alg = "ctr(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_ctr_tv_template)
}
}, {
.alg = "cts(cbc(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(cts_mode_tv_template)
}
}, {
.alg = "deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(deflate_comp_tv_template),
.decomp = __VECS(deflate_decomp_tv_template)
}
}
}, {
.alg = "dh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(dh_tv_template)
}
}, {
.alg = "digest_null",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes128_tv_template)
}
}, {
.alg = "drbg_nopr_ctr_aes192",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes192_tv_template)
}
}, {
.alg = "drbg_nopr_ctr_aes256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes256_tv_template)
}
}, {
/*
* There is no need to specifically test the DRBG with every
* backend cipher -- covered by drbg_nopr_hmac_sha256 test
*/
.alg = "drbg_nopr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_hmac_sha256_tv_template)
}
}, {
/* covered by drbg_nopr_hmac_sha256 test */
.alg = "drbg_nopr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_nopr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_sha256_tv_template)
}
}, {
/* covered by drbg_nopr_sha256 test */
.alg = "drbg_nopr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_ctr_aes128_tv_template)
}
}, {
/* covered by drbg_pr_ctr_aes128 test */
.alg = "drbg_pr_ctr_aes192",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes256",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_hmac_sha256_tv_template)
}
}, {
/* covered by drbg_pr_hmac_sha256 test */
.alg = "drbg_pr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_pr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_sha256_tv_template)
}
}, {
/* covered by drbg_pr_sha256 test */
.alg = "drbg_pr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "ecb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_tv_template)
}
}, {
.alg = "ecb(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(anubis_tv_template)
}
}, {
.alg = "ecb(arc4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(arc4_tv_template)
}
}, {
.alg = "ecb(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_tv_template)
}
}, {
.alg = "ecb(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_tv_template)
}
}, {
.alg = "ecb(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_tv_template)
}
}, {
.alg = "ecb(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_tv_template)
}
}, {
.alg = "ecb(cipher_null)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_tv_template)
}
}, {
.alg = "ecb(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(des3_ede_tv_template)
}
}, {
.alg = "ecb(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.vecs = fcrypt_pcbc_tv_template,
.count = 1
}
}
}, {
.alg = "ecb(khazad)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(khazad_tv_template)
}
}, {
/* Same as ecb(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ecb(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(seed)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(seed_tv_template)
}
}, {
.alg = "ecb(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_tv_template)
}
}, {
.alg = "ecb(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_tv_template)
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tea_tv_template)
}
}, {
.alg = "ecb(tnepres)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tnepres_tv_template)
}
}, {
.alg = "ecb(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_tv_template)
}
}, {
.alg = "ecb(xeta)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xeta_tv_template)
}
}, {
.alg = "ecb(xtea)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xtea_tv_template)
}
}, {
.alg = "ecdh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ecdh_tv_template)
}
}, {
.alg = "gcm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_gcm_enc_tv_template),
.dec = __VECS(aes_gcm_dec_tv_template)
}
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(ghash_tv_template)
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_md5_tv_template)
}
}, {
.alg = "hmac(rmd128)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_rmd128_tv_template)
}
}, {
.alg = "hmac(rmd160)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_rmd160_tv_template)
}
}, {
.alg = "hmac(sha1)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha1_tv_template)
}
}, {
.alg = "hmac(sha224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha224_tv_template)
}
}, {
.alg = "hmac(sha256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha256_tv_template)
}
}, {
.alg = "hmac(sha3-224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_224_tv_template)
}
}, {
.alg = "hmac(sha3-256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_256_tv_template)
}
}, {
.alg = "hmac(sha3-384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_384_tv_template)
}
}, {
.alg = "hmac(sha3-512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_512_tv_template)
}
}, {
.alg = "hmac(sha384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha384_tv_template)
}
}, {
.alg = "hmac(sha512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha512_tv_template)
}
}, {
.alg = "hmac(streebog256)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_streebog256_tv_template)
}
}, {
.alg = "hmac(streebog512)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_streebog512_tv_template)
}
}, {
.alg = "jitterentropy_rng",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "kw(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_kw_tv_template)
}
}, {
.alg = "lrw(aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_lrw_tv_template)
}
}, {
.alg = "lrw(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_lrw_tv_template)
}
}, {
.alg = "lrw(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_lrw_tv_template)
}
}, {
.alg = "lrw(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_lrw_tv_template)
}
}, {
.alg = "lrw(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_lrw_tv_template)
}
}, {
.alg = "lz4",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lz4_comp_tv_template),
.decomp = __VECS(lz4_decomp_tv_template)
}
}
}, {
.alg = "lz4hc",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lz4hc_comp_tv_template),
.decomp = __VECS(lz4hc_decomp_tv_template)
}
}
}, {
.alg = "lzo",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lzo_comp_tv_template),
.decomp = __VECS(lzo_decomp_tv_template)
}
}
}, {
.alg = "md4",
.test = alg_test_hash,
.suite = {
.hash = __VECS(md4_tv_template)
}
}, {
.alg = "md5",
.test = alg_test_hash,
.suite = {
.hash = __VECS(md5_tv_template)
}
}, {
.alg = "michael_mic",
.test = alg_test_hash,
.suite = {
.hash = __VECS(michael_mic_tv_template)
}
}, {
.alg = "morus1280",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(morus1280_enc_tv_template),
.dec = __VECS(morus1280_dec_tv_template),
}
}
}, {
.alg = "morus640",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(morus640_enc_tv_template),
.dec = __VECS(morus640_dec_tv_template),
}
}
}, {
.alg = "nhpoly1305",
.test = alg_test_hash,
.suite = {
.hash = __VECS(nhpoly1305_tv_template)
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ofb_tv_template)
}
}, {
/* Same as ofb(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ofb(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(fcrypt_pcbc_tv_template)
}
}, {
.alg = "pkcs1pad(rsa,sha224)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa,sha256)",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(pkcs1pad_rsa_tv_template)
}
}, {
.alg = "pkcs1pad(rsa,sha384)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa,sha512)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "poly1305",
.test = alg_test_hash,
.suite = {
.hash = __VECS(poly1305_tv_template)
}
}, {
.alg = "rfc3686(ctr(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ctr_rfc3686_tv_template)
}
}, {
.alg = "rfc4106(gcm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_gcm_rfc4106_enc_tv_template),
.dec = __VECS(aes_gcm_rfc4106_dec_tv_template)
}
}
}, {
.alg = "rfc4309(ccm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_ccm_rfc4309_enc_tv_template),
.dec = __VECS(aes_ccm_rfc4309_dec_tv_template)
}
}
}, {
.alg = "rfc4543(gcm(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aes_gcm_rfc4543_enc_tv_template),
.dec = __VECS(aes_gcm_rfc4543_dec_tv_template),
}
}
}, {
.alg = "rfc7539(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(rfc7539_enc_tv_template),
.dec = __VECS(rfc7539_dec_tv_template),
}
}
}, {
.alg = "rfc7539esp(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(rfc7539esp_enc_tv_template),
.dec = __VECS(rfc7539esp_dec_tv_template),
}
}
}, {
.alg = "rmd128",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd128_tv_template)
}
}, {
.alg = "rmd160",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd160_tv_template)
}
}, {
.alg = "rmd256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd256_tv_template)
}
}, {
.alg = "rmd320",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd320_tv_template)
}
}, {
.alg = "rsa",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(rsa_tv_template)
}
}, {
.alg = "salsa20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(salsa20_stream_tv_template)
}
}, {
.alg = "sha1",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha1_tv_template)
}
}, {
.alg = "sha224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha224_tv_template)
}
}, {
.alg = "sha256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha256_tv_template)
}
}, {
.alg = "sha3-224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_224_tv_template)
}
}, {
.alg = "sha3-256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_256_tv_template)
}
}, {
.alg = "sha3-384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_384_tv_template)
}
}, {
.alg = "sha3-512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_512_tv_template)
}
}, {
.alg = "sha384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha384_tv_template)
}
}, {
.alg = "sha512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha512_tv_template)
}
}, {
.alg = "sm3",
.test = alg_test_hash,
.suite = {
.hash = __VECS(sm3_tv_template)
}
}, {
.alg = "streebog256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(streebog256_tv_template)
}
}, {
.alg = "streebog512",
.test = alg_test_hash,
.suite = {
.hash = __VECS(streebog512_tv_template)
}
}, {
.alg = "tgr128",
.test = alg_test_hash,
.suite = {
.hash = __VECS(tgr128_tv_template)
}
}, {
.alg = "tgr160",
.test = alg_test_hash,
.suite = {
.hash = __VECS(tgr160_tv_template)
}
}, {
.alg = "tgr192",
.test = alg_test_hash,
.suite = {
.hash = __VECS(tgr192_tv_template)
}
}, {
.alg = "vmac64(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(vmac64_aes_tv_template)
}
}, {
.alg = "wp256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp256_tv_template)
}
}, {
.alg = "wp384",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp384_tv_template)
}
}, {
.alg = "wp512",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp512_tv_template)
}
}, {
.alg = "xcbc(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_xcbc128_tv_template)
}
}, {
.alg = "xchacha12",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xchacha12_tv_template)
},
}, {
.alg = "xchacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xchacha20_tv_template)
},
}, {
.alg = "xts(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_xts_tv_template)
}
}, {
.alg = "xts(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_xts_tv_template)
}
}, {
.alg = "xts(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_xts_tv_template)
}
}, {
/* Same as xts(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "xts(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xts(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_xts_tv_template)
}
}, {
.alg = "xts(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_xts_tv_template)
}
}, {
.alg = "xts4096(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xts512(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "zlib-deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(zlib_deflate_comp_tv_template),
.decomp = __VECS(zlib_deflate_decomp_tv_template)
}
}
}, {
.alg = "zstd",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(zstd_comp_tv_template),
.decomp = __VECS(zstd_decomp_tv_template)
}
}
}
};
static bool alg_test_descs_checked;
static void alg_test_descs_check_order(void)
{
int i;
/* only check once */
if (alg_test_descs_checked)
return;
alg_test_descs_checked = true;
for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) {
int diff = strcmp(alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
if (WARN_ON(diff > 0)) {
pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n",
alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
}
if (WARN_ON(diff == 0)) {
pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n",
alg_test_descs[i].alg);
}
}
}
static int alg_find_test(const char *alg)
{
int start = 0;
int end = ARRAY_SIZE(alg_test_descs);
while (start < end) {
int i = (start + end) / 2;
int diff = strcmp(alg_test_descs[i].alg, alg);
if (diff > 0) {
end = i;
continue;
}
if (diff < 0) {
start = i + 1;
continue;
}
return i;
}
return -1;
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
int i;
int j;
int rc;
if (!fips_enabled && notests) {
printk_once(KERN_INFO "alg: self-tests disabled\n");
return 0;
}
alg_test_descs_check_order();
if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
char nalg[CRYPTO_MAX_ALG_NAME];
if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
sizeof(nalg))
return -ENAMETOOLONG;
i = alg_find_test(nalg);
if (i < 0)
goto notest;
if (fips_enabled && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
goto test_done;
}
i = alg_find_test(alg);
j = alg_find_test(driver);
if (i < 0 && j < 0)
goto notest;
if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) ||
(j >= 0 && !alg_test_descs[j].fips_allowed)))
goto non_fips_alg;
rc = 0;
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0 && j != i)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);
test_done:
if (fips_enabled && rc)
panic("%s: %s alg self test failed in fips mode!\n", driver, alg);
if (fips_enabled && !rc)
pr_info("alg: self-tests for %s (%s) passed\n", driver, alg);
return rc;
notest:
printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
return 0;
non_fips_alg:
return -EINVAL;
}
#endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
EXPORT_SYMBOL_GPL(alg_test);